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Abstract

Pre-trained vision-language models (VLMs) have
achieved promising success in many fields, especially with
prompt learning paradigm. In this work, we propose GIP-
COL (Graph-Injected Soft Prompting for COmpositional
Learning) to better explore the compositional zero-shot
learning (CZSL) ability of VLMs within the prompt-based
learning framework. The soft prompt in GIPCOL is
structured and consists of the prefix learnable vectors,
attribute label and object label. In addition, the attribute
and object labels in the soft prompt are designated as
nodes in a compositional graph. The compositional graph
is constructed based on the compositional structure of the
objects and attributes extracted from the training data and
consequently feeds the updated concept representation into
the soft prompt to capture this compositional structure
for a better prompting for CZSL. With the new prompting
strategy, GIPCOL achieves state-of-the-art AUC results
on all three CZSL benchmarks, including MIT-States,
UT-Zappos, and C-GQA datasets in both closed and
open settings compared to previous non-CLIP as well as
CLIP-based methods. We analyze when and why GIPCOL
operates well given the CLIP backbone and its training
data limitations, and our findings shed light on designing
more effective prompts for CZSL.

1. Introduction
Compositional ability is a key component of human in-

telligence and should be an important building block for
current autonomous AI agents. Fig. 1 demonstrates a com-
positional learning example where after learning the el-
ement concepts sliced and apple, the autonomous agent
is expected to recognize the novel composition sliced ap-
ple, by composing the leared element concepts1 which has
not been observed during the training time. This example

1element concepts also known as primitive concepts including both at-
tributes and objects in CZSL

Concept of Sliced

Sliced Tomato Sliced CakeSliced Bread

Concept of Apple

Diced Apple Peeled AppleRipe Apple
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…
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Test Phase:
Target Set
• Open world
• Close world

Figure 1. CZSL setting: given the element concepts of sliced and
apple, our target is to recognize the compositional concept sliced
apple.

shows the compositional attribute-object learning problem
and this type of compositional ability is essential for lan-
guage grounding in the vision-language tasks, such as in-
struction following [3], navigation [1] , and image caption-
ing [30].

In this paper, we investigate the compositional zero-
shot learning (CZSL) problem as shown in the exam-
ple. It requires agents to recognize novel compositions of
the attribute-object (attr-obj) pairs appearing in an image
by composing previously learned element concepts (e.g.,
“sliced” and “apple” individually are considered as element
concepts). The main challenges of CZSL are 1) zero-shot
setting in which we do not have training data for the novel
compositions. 2) the model should learn the compositional
rules to compose the learned element concepts. 3) the dis-
tribution shift from the training data to the test data cased
by zero-shot setting. Such shift causes the learned models
overfitting the seen compositions and makes it difficult to
generalize to novel compositions. Previous solutions usu-
ally construct a shared embedding space to calculate the
matching scores between images and seen pairs and add
different generalizing constraints to regularize the space ex-
pecting the learnt embeddings capable of encoding compo-
sitional properties [14, 18, 19]. Given impressive perfor-
mance of large VLMs on downstream tasks, in this work,
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we attempt to solve CZSL from the lens of prompting large
VLMs specifically using CLIP [23] as in [20].

Different from traditional zero-shot learning (ZSL) set-
tings where each class is represented by a single text la-
bel [35, 36], CZSL needs to consider the compositional
information among the concepts. Therefore, the prompt
design which can efficiently encode the compositional in-
formation is the main challenge for our work. We ex-
pect the designed prompt can re-program CLIP for com-
positional learning [27] and the compositional labels in
the prompt should consider the compositonal information.
Motivated by above expectations, we propose GIPCOL
(Graph-Injected Soft Prompting for COmpositional Learn-
ing) to design a better prompt to apply VMLs in CZSL. The
core idea of GIPCOL is to re-program CLIP for CZSL by
setting the prefix vectors in the soft prompt as learnable
parameters which is different from CSP [20]. Moreover,
GIPCOL captures the compositional structure between con-
cepts by constructing a compositional graph from the seen
pairs in the training dataset. The concepts, both element
concept and compositional concept, are acting as nodes in
the graph and the compositional graph models the feasible
topological combinations between these concepts. GIPCOL
uses a GNN module to update the element label’s repre-
sentations based on their neighbor information in the con-
structed compositional graph. And the updated element em-
bedding is used as class labels int the soft prompt. Con-
cretely, the learnable prefix vectors and GNN-updated ele-
ment concepts consist of the soft prompt for GIPCOL and
work together to explore CLIP’s knowledge for CZSL. The
contributions of this work can be summarized as follows,

• Novel prompting design. Our technique introduces a
novel way of utilizing the compositional structure of
concepts for constructing the soft prompts. Though we
use GNN for capturing this structure, any other differ-
entiable architectures can be used here to enrich the
prompt’s compositional representation.

• GIPCOL achieves SoTA AUC results on all three CZSL
benchmarks, including MIT-States, UT-Zappos, and
the more challenging C-GQA datasets. Moreover,
it shows consistent improvements compared to other
CLIP-based methods on all benchmarks.

2. Related Work
Compositional Zero-Shot Learning (CZSL) is a special
field of Zero-Shot Learning (ZSL). The CZSL is a challeng-
ing problem as it requires generalization from seen com-
positions to novel compositions by learning the composi-
tional rules between element concepts. There are mainly
four lines of research to address this problem. 1) Classifier-
based methods train classifiers for attributes and objects

separately and combine the element predictions for com-
positional predictions [16]. 2) Embedding-based methods
construct a shared embedding space for both textual pairs
and images. Different methods add different constraints on
the space to enhance compositionality [19]. 3) Generation-
based methods learn to generate visual features for the novel
compositions and train classifiers from the generated im-
ages [31]. 4) Newly proposed prompt-based methods utilize
CLIP and introduce learnable element concept embedding
or soft prefix vectors in the soft prompt to solve CZSL prob-
lems [20, 32].
Prompt-based Learning. Parallel to ’fine-tuning’, prompt
learning provides an efficient mechanism to adapt large pre-
trained language models(PLMs) or vision-language mod-
els (VLMs) to downstream tasks by treating the input
prompt as learnable parameters while freezing the rest of
the foundation model. Prompt learning is a parameter-
efficient framework originated from the NLP field aiming
at utilizing knowledge encoded in PLMs for downstream
tasks [2, 13, 24]. Recently, as the prevalence of large
vision-language models (VLMs), prompt learning is intro-
duced into multimodal settings to solve VL-related prob-
lems [8, 28, 33], including the CZSL problems [20, 32].
In both linguistic and multi-modal settings, prompt engi-
neering plays an important role. How to design a suitable
prompt template for downstream tasks is a challenge and
GIPCOL proposes a novel approach to address this chal-
lenge.
Vision-Language Models. Large VMLs are pre-trained
to learn the semantic alignment between vision and lan-
guage modalities in different levels [7,23]. Attention-based
encoder, large mini-batch contrastive loss, and web-scaled
training data are the main factors to boost the performance
of such vision-language models. Recent advances in these
pre-trained VLMs have presented a promising direction to
promote open-world visual understanding with the help of
language. Besides the open-world image classification,
VLMs are used in other visual fields, like dense predic-
tion [25] and caption generation [17].

Among existing methods, the most relevant to ours are
CSP [20] and CGE [18]. CSP treat the element concept
labels as learnable parameters to prompt CLIP for CZSL
and can be considered as a baseline for GIPCOL. CGE en-
codes compositional concepts using GNN and constructs
a shared embedding space to align images and composi-
tional concepts. It is a task-specific architecture and needs
to fine-tune the visual encoder to achieve satisfactory per-
formance. Compared with such task-specific models, GIP-
COL is a general prompting method and uses GNN to cap-
ture interactions among the concepts for its soft prompting
design. GIPCOL fixes CLIP’s pre-trained visual and textual
encoders and achieves better performance in a more general
and parameter-efficient manner. It is worth noting that GNN
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used in CGE and GIPCOL have different nature, CGE for
compositional encoding and GIPCOL for soft prompt con-
struction.

Seen 
Pairs

Unseen 
Pairs

Close-World CZSL

Open-World CZSL

All Other Pairs 
(feasible/infeasible)

Figure 2. Illustration of different CZSL settings based on the target
compositional set. GIPCOL is evaluated under closed-world and
open-world settings.

3. Problem Formulation
In this section, we formally define the CZSL task. Let

A = {a0, a1, . . . , an} be the attribute set and O =
{o0, o1, . . . , om} be the object set. All possible compo-
sitional label space C is the Cartesian product of these
two element concept sets, C = A × O with size n × m.
At training time, we are given a set of seen2 examples
Cseen = {(x1, c1) , . . . , (xk, ck)}, where xi is an image
and ci = (ai, oi)

3 is its compositional label from the seen
set Cseen ⊂ C. The goal of CZSL is to learn a func-
tion f to assign a compositional label from the target set
Ctarget ⊆ C to a given image . Based on different target set
settings as shown in Fig. 2, CZSL can be categorized into
1) Closed-world CZSL, where Ctarget = Cseen ∪Cunseen,
the target set consists of both seen and unseen pairs as in-
troduced in [22]. In this setting, both seen and unseen
pairs are feasible. This setting is called a closed-world
setting because the test pairs are given in advance. 2)
Open-world CZSL, where Ctarget = C. The target set con-
tains all attr-obj combinations including both feasible and
infeasible pairs. This is the most challenging case intro-
duced in [14]. We evaluate our models under both closed-
world and open-world settings.

4. GIPCOL
By pre-training on 400 million image-text association

pairs, CLIP has already learned the general knowledge for
images recognition. In order to fully utilize CLIP’s capa-
bility in compositional learning, GIPCOL freezes CLIP’s
textual and visual encoders and focuses on structuring its
textual prompt to address compositional concept learning.
The GIPCOL’s architecture is shown in Fig. 3. In partic-
ular, GIPCOL adds two learnable components to construct

2seen examples also mean training examples, we use them interchange-
ably in this work.

3We use the pair index to denote the object and attribute indexes for the
sake of simple notation. The object and attribute indexes do not refer to
their original sets in this case.

the soft prompt for CZSL: the learnable prefix vectors and
the GNN module. The prefix vectors are used to add more
learnable parameters to represent the compositional con-
cepts and reprogram CLIP for compositional learning. The
GNN module is to capture the compositional structure of
the objects and attributes for a better compositional concept
representation in the constructed soft prompt. We describe
the details of GIPCOL, including the learnable prefix vec-
tors, GNN, and CLIP’s visual/textual encoder in the follow-
ing section.

4.1. GIPCOL Architecture

Learnable Prefix Vectors. We designate k learnable prefix
vectors Θ = {θ1, θ2, ..., θm} where θi ∈ Rd in soft prompt
for compositional concept encoding. d is set to 768 to be
consistent with CLIP embedding size. Here, larger k means
more learnable parameters and learning ability for compo-
sitional concept representation. These vectors are used to
prepend to the attr-obj embeddings and act as part of the
compositional representation. These prefix vectors are fine-
tuned by gradients flowing back through CLIP during the
training time.
GNN as Concept Encoder. Different from traditional
zero-shot learning (ZSL) problems where output labels are
treated independently, CZSL requires modeling the inter-
actions between element concepts. For example, given the
compositional concept red apple, we need to learn both the
concept apple and how red changes apple’s state instead of
treating red and apple as two independent concepts. Graph
Neural Networks (GNN) have been proved to be able to
capture such dependencies [15, 18]. We introduce GNN in
GIPCOL to enrich the concept’s representations by fusing
information from their compositional neighbors as follows,

(âi, ôi) = GNNΦ(ai, oi) (1)

where Φ is GNN’s parameter, (ai, oi) and (âi, ôi) are the
original and updated compositional concept’s representa-
tion. The updated node representations from GNN will
serve as class labels in soft prompt. The whole soft prompt
represents the compositional concept and will be put into
CLIP’s textual encoder for compositional learning.
Frozen CLIP’s Text Encoder. After obtaining the updated
compositional representations (âi, ôi), GIPCOL adds the
learnable prefix vectors Θ = [θ1, θ2, ..., θm] prepending in
front of (âi, ôi) to represent compositional concept as fol-
lows,

[SOS,

prefix Vectors︷ ︸︸ ︷
θ1, θ2, ..., θm,

GNN-Updated Concept︷ ︸︸ ︷
âi, ôi, EOS︸ ︷︷ ︸

Soft Prompt as Compositional Concept Representation

]. (2)

Then we use CLIP’s frozen text encoder, a Bert encoder [5],
to extract the normalized EOS vector as the compositional
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Figure 3. GIPCOL Architecture. Besides CLIP’s frozen text and visual encoders, GIPCOL consists of two learnable components: a
soft-prompting module and a GNN. GIPCOL calculates the cosine similarity between the given image and all candidate pairs and the
cross-entropy loss is back-propagated through the frozen LM in order to update soft-prompt and GNN.

concept’s representation for further multi-modal alignment
as follows,

ci =
TxtEnc (Θ, (âi, ôi) )

∥TxtEnc (Θ, (âi, ôi))∥
(3)

where (âi, ôi) is the GNN-updated attribute and object vec-
tors and ci is the i-th compositional concept vector encoded
by CLIP.
Frozen visual encoder. Following CLIP’s pre-processing
routine, we first rescale the image’s size to 224×224. Then
we use ViT-L/14 as the visual encoder ViT to encode the
image and extract the [CLASS] token as the image’s repre-
sentation. The extracted image vector xi needs to be nor-
malized as follows for further similarity calculation.

xi =
V isEnc(vi)

∥V isEnc(vi)∥
(4)

where vi is the given image and xi is its vector representa-
tion.
Aligning Image and Compositional Concept. After ob-
taining the vectors for the compositional concept ci and the
image x, GIPCOL calcualtes the probability of x belonging
to class ci as follows,

p(ci | x) =
exp ((x · ci) /τ)∑K

k=1 exp ((x · ck) /τ) .
(5)

where τ is a temperature parameter from CLIP, · denotes the
inner product of the concept vector and the image vector and
K is the number of attr-obj pairs in the training set.

4.2. GNN in Soft Prompting

As disussed previously, a key idea to address the CZSL
problem is to learn concept representations that are able to
internalize the compositional information. Graph could be
the tool to model such compositional dependencies. And
this idea has been used in previous work [15, 18] by ap-
plying Graph Neural Networks(GNN) as encoders to repre-
sent the compositional concepts. Although we adopt sim-
ilar graph-based methods for compositional encoding, our
novelty is to use the graph’s compositional structure to fa-
cilitate the automated prompt engineering in compositional
learning as shown in Appendix A. We model the element
concepts and their composition explicitly in GNN for the
soft prompting construction. In principle, the GNN mod-
ule can be replaced by other differentiable architectures that
are able to capture the concept’s compositional information.
We describe the detailed GNN application in GIPCOL next.

Node Embedding V . There are two types of nodes in
GIPCOL’s compositional graph: element concept node and
compositional concept node. The node embedding’s size
is R(|a|+|o|+|c|)∗d, where |a| is the attribute number, |o| is
the object number, |c| is the training pair number and d is
the feature dimension. For the element nodes, we initialize
them using CLIP’s embedding vectors. For the composi-
tional nodes, we initialize them using the average embed-
ding of the element nodes, that is, att vec+obj vec

2 . GIPCOL
relies on GNN to fuse information from the constructed
compositional graph and update the concept’s representa-
tion.

Compositional Graph Constructions E . We use a graph
to capture the compositional dependencies and learn richer
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Figure 4. Different prompting strategies. GIPCOL combines both soft prefix vector and GNN for prompt construction.

concept representations. The connection design among con-
cepts is the key challenge for such graph. In order to utilize
the feasible compositional information, GIPCOL considers
the training pairs and construct one single compositional
graph for both closed-world CZSL and open-world CZSL to
conserve the computing and storage resources. Specifically,
given a pair c = (a, o), besides the self-connected edge,
GIPCOL adds three undirected edges (c ↔ a), (c ↔ o)
and (a ↔ o) in the graph where the adjacency matrix
A ∈ RK×K is symmetric with K = |a| + |o| + |c|. The
compositional concept plays the bridging role to help con-
nect element concepts and only the element concepts are
used to construct the compositional prompting due to the
zero-shot setting.
GNN Module: Once we have the compositional graph and
the initialized concept features, we can update the con-
cept’s embedding by fusing the compositional information
from its neighbors. Any GNN models could be applied
here and in GIPCOL, we use Graph Convolution Network
(GCN) [10] in Eq. 6 for compositional encoding.

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)Φ(l)

)
(6)

where H l denotes the node’s representations in the lth layer,
σ is the non-linearity ReLU function, Ã is the adjacency
matrix with added self-connections, D̃ is a diagonal node
degree matrix and Φl is the learnable weight matrix in layer
l. Notably, other graph constructing methods, like using
external knowledge [9], and other GNN models, like GAT
[29], could be further explored to improve CZSL perfor-
mance based on GIPCOL’s architecture. However, these
are not target of this work. Here, GIPCOL shows the effec-
tiveness of utilizing compositional knowledge in prompting
construction in CZSL.

4.3. Training

After obtaining the concept and image representations,
we calculate the class probability using Eq. 5. And the regu-
larized Cross-Entropy loss is used to update GIPCOL’s pre-
fix vectors Θ and GNN parameters Φ as follows,

− 1

|N|
∑
i∈N

log pθ(ci | x) + λ1∥Θ∥2 + λ2∥Φ∥2 (7)

where λ1 and λ2 are the hyper-parameters to control the
weight decay for prefix vector and GCN separately. GIP-
COL keeps CLIP’s pre-trained textural and visual encoders
fixed during the training time. And more details about the
training process can be found in Append. B.

4.4. Inference

During inference, given an image, we first construct the
soft prompts for all target concepts using the fine-tuned pre-
fix vectors and GNN. Then, we use CLIP’s frozen textual
and visual encoders to obtain the image vector x and the
target concept vector set Ctareget. Then we use cosine
measurement to select the most similar attr-obj pair from
Ctarget as the compositional label as follows,

ĉ = argmax
ci∈Ctarget

cos (ci, x) . (8)

where ci is the i-th compositional vector from the target set.

4.5. CLIP-Prompting Method Comparison

In this section, we clarify the difference between all
CLIP-prompting methods used in CZSL as shown in
Fig. 4. Generally, all current CLIP-prompting methods
keeps the image representation fixed and learn construct-
ing the CLIP’s textual prompt to represent the composi-
tional concept as shown in Eq. 2. The main difference is
that CSP [20] learns the element embedding, COOP [35]
learns the prefix vectors and PromptCompVL learns both
the element embedding and the prefix vectors. All these
three methods do not explicit consider the compositional
structures between concepts. In order to inject more seman-
tic information into soft prompt, CoCoOP [36] introduces a
Meta-Net and tries to modify the prefix vectors based on
each image input. It uses the instance-level information
not the global compositional information for CZSL. Such
instance-level prompting also causes training inefficient and
consumes a significant amount of computing resources as
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discussed in that work. Different from all previous methods,
GIPCOL proposed a novel prompting strategy by combin-
ing the learnable prefix vectors and the GNN module and
the detailed comparition is in Append. A.

5. Experiments
5.1. Experimental Setting

Datasets. We conduct experiments on three datasets, MIT-
States [6] UT-Zappos [34] and C-GQA [18]. MIT-States
and C-GQA consist of images with objects and their at-
tributes in the general domain. In contrast, UT-Zappos con-
tains images of shoes paired with their material attributes
which is a more domain-specific dataset. Our experiments
follow the previous works [18,22] on the data split for train-
ing and testing. More details about the data splits and statis-
tics can be found in Append. C.

Implementation details. We extend on the codebase of
[20]4 and [18]5 for GIPCOL’s implementation. Moreover,
for a fair comparison, the length of the prefix vector, k, is
set to 3 which is the same length of CLIP hard-prompting ’a
photo of’. The dimension of soft-prompting d is set to 768
which is consistent with CLIP’s model setting. Moreover,
we use two-layer GCN to encode concepts and the corre-
sponding GNN’s learnable parameters are Φ = {Φ1,Φ2}
Our code will be made publicly available on GitHub6.
Evaluation Metrics. Zero-shot models are biased to the
seen classes as shown in previous woks [4, 14]. As a stan-
dard method in zero-shot learning, we introduce a scalar
value adding to the unseen classes to adjust the bias towards
the seen classes as used in [20, 22]. By varying the added
bias from −∞ to +∞, we report GIPCOL’s performance
using the following four metrics in both the closed-world
and the open-world settings as discussed in Sec. 3: 1) Best
seen accuracy (S), testing only on seen compositions when
bias is −∞; 2) Best unseen accuracy (U), testing only on
unseen compositions when bias is +∞; 3) Best harmonic
mean (HM) which balances the performance between seen
and unseen accuracies; 4) Area Under the Curve (AUC), the
area below the seen-unseen accuracy curve by varying the
scalar added to the unseen compositional concepts.
Baselines. We compare GIPCOL with two types of base-
lines: 1) non-CLIP methods (top seven models in the closed
setting and top six in the open setting) namely Attributes
as Operators (AoP) [19], Label Embed+ (LE+) [16], Task
Modular Networks (TMN) [22], SymNet [12], Composi-
tional Graph Embeddings (CGE) [18], Compositional Co-
sine Logits (CompCos) [14] and Siamese Contrastive Em-
bedding Network(SCEN) [11]. 2) CLIP-based methods
(the bottom three models), namely CLIP [23], Context Op-

4https://github.com/BatsResearch/csp
5https://github.com/ExplainableML/czsl
6https://github.com/HLR/GIPCOL

timization(COOP) [35] and compositional soft prompting
(CSP) [20].

Feasibility Calibration in Open-World Setting. Open-
world CZSL is more challenging compared with the closed-
world setting as the class space contains all possible com-
binations of attributes and objects including both feasible
compositions and infeasible compositions. In order to fil-
ter out the infeasible compositions, we apply the feasibil-
ity calibration as used in [14, 20]. For each unseen pair
(a, o), we first collect two sets from the training data. One
is the applicable attribute set A = {a1, a2, . . . , aM} for
the target object o and the other is the applicable object
set O = {o1, o2, . . . , oN} for the target attribute a where
(ai, o) and (a, oj) has been observed in training time. Then
we calculate the similarity between a and each element in A
and use the maximum similarity score as this pair’s attribute
feasibility score as follows,

fa(a, o) = max
(ai,o)∈Cseen

e(a) · e(ai)
∥e(a)∥∥e(ai)∥

, (9)

where e is the GloVe embedding [21]. On the other hand,
this pair’s object feasibility score is calculated in a similar
way based on the applicable object set. Finally, the unseen
pair feasibility score is calculated as the average of the two
scores, fa+fo

2 . After obtaining the feasibility score for all
unseen pairs, we can filter out infeasible compositions by
setting a threshold T whcih can be tuned based on the val-
idation set. The final prediction for image x in the open-
world setting is computed as follows,

ĉ = argmax
ci∈Ctarget, ci≥T

cos (ci, x) . (10)

Different from the closed-world setting, we require the fea-
sibility score of the predicted label c to be larger than a
threshold. The threshold uses in our experiments is shown
in Append. D.

5.2. Results

Results on MIT-States. As shown in Tab. 1 and 2, GIP-
COL achieves the new SoTA results on MIT-States on both
closed-world and open-world settings compared with CLIP
and non-CLIP baselines (except for the best-unseen met-
ric (U)). The CLIP-based models have consistently better
performance compared to the non-CLIP methods7. CLIP-
prompting methods, including COOP, CSP and ours, further
boost the performance compared to the vanilla CLIP model.

Results on UT-Zappos. On UT-Zappos, previous CLIP-
based approaches under-perform the SoTA performance

7In principle CLIP-based and non-CLIP-based methods cannot be di-
rectly compared as we have no information about the training data used for
CLIP training. Here we follow previous work and include these baselines
for the sake of comparison and consistency with the previous work.
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MIT-States UT Zappos C-GQA

Method S U H AUC S U H AUC S U H AUC
AoP [19] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [16] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN [22] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1

SymNet [12] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos [14] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.7 28.1 11.2 12.4 2.6

CGE [18] 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 33.5 15.5 16.0 4.2
SCEN [11] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5
CLIP [23] 30.2 40.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4

COOP [35] 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
CSP [20] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2

GIPCOL (Ours) 48.5 49.6 36.6 19.9 65.0 68.5 48.8 36.2 31.92 28.4 22.5 7.14

Table 1. Closed-World CZSL results on UT-Zappos, Mit-States and C-GQA datasets.

MIT-States UT Zappos C-GQA

Method S U H AUC S U H AUC S U H AUC
AoP [19] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [16] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN [22] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -

SymNet [12] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCos [14] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 - - - -

CGE [18] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.1 1.8 2.9 0.47
CLIP [23] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27

COOP [35] 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.70
CSP [20] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20

GIPCOL (Ours) 48.5 16.0 17.9 6.3 65.0 45.0 40.1 23.5 31.6 5.5 7.3 1.30

Table 2. Open-World CZSL results on UT-Zappos, Mit-States and C-GQA datasets.

achieved by CGE which is a non-CLIP model. However,
GIPCOL successfully surpasses the CGE model. Note that
UT-Zappos is a domain-specific dataset that consists of shoe
types and the materials. We suspect that CLIP may not have
seen sufficient similar samples from this specific domain
and therefore purely tuning the prompting is not helpful to
solve the problem. In contrast, GIPCOL adds additional
compositional information to learn the element concept em-
bedding which appears to boost the compositional learning
ability within this specific domain.

Results on C-GQA. On the more challenging C-GQA
dataset, GIPCOL also achieves new SoTA results on both
closed and open world settings with an exception for the
seen accuracy in the open world. However, the key met-
ric is AUC which is consistently higher for GIPCOL in all
settings.

5.3. Qualitative Analysis

Predicted Examples. We looked into a number of ran-
domly selected predictions from GIPCOL shown in Ap-
pend. E. The red colored texts are the ground-truth labels,
the blue colored texts are GIPCOL’s correctly predicted la-
bels and the black colored texts are GIPCOL’s wrongly pre-

dicted labels. The first two columns present examples with
correctly predicted compositional labels and the last two
columns show the wrongly predicted labels, either wrong
in attributes or wrong in objects. From this figure, we can
see that GIPCOL can recognize objects in most of the com-
positions in MIT-States and C-GQA datasets. However, it
has difficulty to precisely predict the attributes for these two
datasets. For example, it predicts modern clock instead of
ancient clock which is the antonym of the actual attribute.
But for UT-Zappos, the more domain-specific dataset, GIP-
COL even has difficulty in recognizing the objects.

Differences in Domains: From Tables 1 and 2, we observe
that CLIP without any prompt-tuning can achieve better
performance compared to non-CLIP models on the MIT-
States dataset, but not on the UT-Zappos dataset. We hy-
pothesize that this issue can be related to the distribution
difference between the pre-training data used by CLIP and
the data domain of the downstream task. To validate this
hypothesis, we further look into some concrete examples
from MIT-stats and UT-Zappos. We take burnt boat from
MIT-Stats and Faux Fur-Shoes Clogs and Mules from UT-
Zappos for comparison as shown in Append. F. The CLIP’s
training data is not publicly available. However, LAION-
400M [26] used the released CLIP model and obtained the
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closest 400M image-text pairs8 from their crawled dataset
from Web by reverse engineering. We based our analysis on
this constructed LAION-400M subset. By querying LAION-
400M with burn boat, we could retrieve about 600 relevant
images. By querying with Faux Fur Shoes Clogs and Mules
we can retrieve about 200 relevant images. The first inter-
esting difference is in the quantity of the retrieved relevant
images which is significantly lower for the shoe dataset.
The second difference is the data quality differences. As can
be seen from Append. F, the retrieved shoes are less similar
to the UT-Zappos’ shoes when compared to the similarity
of the retrieved boats to MIT-Stats boats. We note that UT-
Zappos is about shoe fashion and was constructed in 2014
while CLIP is pretrained using recent 2020’s images. The
change in fashion trends has made the images look different
for the same compositional concept. Based on these obser-
vations, it is evident that the quantity and quality of CLIP’s
pre-training data play an important role in its performance.
Covering the Performance Gap. Despite the above-
mentioned issues, GIPCOL improves the UT-Zappos
dataset. While we found that CLIP’s pre-training data is
important in its performance in the Zero-shot setting, intro-
ducing the additional compositional knowledge in GIPCOL
positively impacts CLIP’s ability in recognizing the novel
compositional concepts. GIPCOL uses GNN to inject com-
positional information into concept representations which
turned out to be helpful. The improvement is important, es-
pecially for UT-Zappos which is a special domain with not
many shared similar examples with CLIP’s training.

5.4. Ablation Study

To better understand the influence of each component in
GIPCOL, Tab. 3 shows the performances of its variations
on UT-Zappos’ closed-world setting.

Model S U H AUC
GIPCOL 65.0 68.5 48.8 36.2
- without GNN 64.4 64.0 46.12 32.2
- without prefix 64.7 62.3 45.9 31.0
- without both (CLIP) 15.8 49.1 15.6 5.0

Table 3. Performance of GIPCOL’s variations.

Effects of GNN. We remove the GNN module and directly
set attribute and object embeddings as learnable parameters
as in [32]. The performance decreases. Especially the AUC
drops from 36.2% to 32.2%.
Effect of Learnable Prefix Vectors. Another variant of
GIPCOL is to fix the prefix vectors and only tune the GNN
module to update the class embeddings. From Tab. 3, we
can see that learnable prefix vectors play a more important
role than GNN. In fact, adding the prefix vectors changes

8https://rom1504.github.io/clip-retrieval

CLIP’s textual input and makes it biased towards composi-
tional learning, which is a key component in GIPCOL.

5.5. Higher-Order Compositional Learning

Previous work (CSP) [20] introduced another challeng-
ing dataset: AAO-MIT-States, a subset derived from MIT-
States to evaluate the higher-order compositional learning
ability in the form of attribute-attribute-object (AAO) com-
positions. After learning the prefix vectors and GNN-
encoded element concepts, GIPCOL can be easily adapted
to solve AAO by modifying the compositional prompt to
(θ1, θ2, ..., θm, âi, âj , ôk) to represent the higer-order com-
positions. We report the AAO results in Tab. 4. We can see
that GIPCOL has a better higher-order compositional lean-
ing ability, with a 3% absolute improvement compared with
CSP.

Model Accuracy

CLIP 62.7
CSP 72.6
GIPCOL (Ours) 75.9

Table 4. AAO Performance of different CLIP-based models.

6. Conclusion
In this paper, we propose GIPCOL, a new CLIP-based

prompting framework, to address the compositional zero-
shot learning (CZSL) problem. The goal is to recognize
compositional concepts of objects with their states and at-
tributes as described by images. The objects and attributes
have been observed during training in some compositions,
however, the test-time compositions could be novel and un-
seen. We introduce a novel prompting strategy for soft
prompt construction by treating element concepts as part of
a global GNN network that encodes feasible compositional
information including objects, attributes and their composi-
tions. In this way, the soft-prompt representation is influ-
enced not only by the pre-trained VLMs but also by all the
compositional representations in its neighborhood captured
by the compositional graph. Our results have shown that
GIPCOL performs better and achieves SoTA AUC results
on all three benchmarks including MIT-States, UT-Zappos,
and C-GQA . These results demonstrate the advantages and
limitations of prompting large vision and language models
(such as CLIP) for compositional concept learning.
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