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Abstract

Existing works on weakly-supervised audio-visual video
parsing adopt hybrid attention network (HAN) as the multi-
modal embedding to capture the cross-modal context. It
embeds the audio and visual modalities with a shared net-
work, where the cross-attention is performed at the input.
However, such an early fusion method highly entangles the
two non-fully correlated modalities and leads to sub-optimal
performance in detecting single-modality events. To deal
with this problem, we propose the messenger-guided mid-
fusion transformer to reduce the uncorrelated cross-modal
context in the fusion. The messengers condense the full
cross-modal context into a compact representation to only
preserve useful cross-modal information. Furthermore, due
to the fact that microphones capture audio events from all
directions, while cameras only record visual events within a
restricted field of view, there is a more frequent occurrence
of unaligned cross-modal context from audio for visual event
predictions. We thus propose cross-audio prediction consis-
tency to suppress the impact of irrelevant audio information
on visual event prediction. Experiments consistently illus-
trate the superior performance of our framework compared
to existing state-of-the-art methods.

1. Introduction
With the ultimate goal of understanding both audio and

visual content in video, multimodal video understanding
finds a variety of applications in video retrieval [11], video
surveillance [38] etc. As video is naturally equipped with
both audio and visual signals, many prior works have in-
corporated audio modality into the analyses and shown its
benefits to several emerging visual tasks [10, 14, 17, 30, 35].
Audio-Visual Video Parsing (AVVP) [34] is one of the most
challenging tasks which aims at classifying and localizing
the temporal event segments in the audio and visual streams
respectively. The task requires the model to fully understand
video content in both audio and visual streams while only
video-level label is provided, as the fine-grained event la-
bels for the two modalities are labour-intensive to source.
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Figure 1. Illustration of audio-visual video parsing task. Given a
video, it classifies events and detects their temporal locations in
the audio and visual streams, respectively. During training, only
video-level label is provided.

Since there exists an intractable barrier to access full super-
vision, models must resort to a weakly-supervised paradigm
by learning from the union of all events in a video without
any modality and time indication.

To address the challenging problem, the state-of-the-art
approaches utilize the correlation between the audio and
visual streams to guide the model training. For example,
Hybrid Attention Network (HAN) [34] captures the cross-
modal context by fusing the pre-extracted audio and visual
features directly from the first layer of the network using
cross-attention (as illustrated in Fig. 2(a)). However, this
strong entanglement could undesirably mix uncorrelated
information from audio and visual streams. Real scenes
may include occlusion or may be captured by camera of
limited field of view, which causes the audio and visual
streams not fully correlated. For instance, in Fig. 1, the
silent dog and off-camera human speech only appear in one
single modality. Accordingly, we analyze the performance of
HAN in detecting single-modality and multi-modality events
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Model Single-modality Event Multi-modality Event

HAN 44.0 67.2
HAN-CA 47.0 58.8

Ours 50.6 66.1

Table 1. Analysis of HAN [34]. ‘HAN-CA’ denotes HAN without
cross-attention. Segment-level evaluation is conducted.

as shown in Tab. 1. Single-modality events denote events
only happening in audio or visual modality, while multi-
modality events refer to events appearing with temporal
overlap on audio and visual streams. The results are averaged
F-scores per event. Compared with the original HAN, the
HAN-CA1, when excluding cross-modal fusion, exhibits
a significant decrease in predicting multi-modality events.
However, the prediction performance for single-modality
events experiences an enhancement. It suggests that strong
entanglement with another non-fully correlated modality
is harmful in detecting its own exclusive events while the
absence of fusion negatively affects the detection of audio-
visual events. As either fully entangled fusion or complete
independence of the two modalities can hurt the performance
badly, it is imperative to design a better fusion strategy for
the two partially correlated modalities.

To solve this problem, we propose messenger-guided
mid-fusion transformer (MMT) to suppress the uncorrelated
information exchange during fusion. Compared to the early
fusion in HAN, the mid-fusion is more flexible in control-
ling the flow of the cross-modal context. It can first ag-
gregate a clearer global understanding of the raw input se-
quence, which helps identify the useful cross-modal context
in the fusion module. The messengers are the core of MMT,
which serves as the compact cross-modal representation dur-
ing fusion. (Fig. 2(b)). Due to their small capacity, they
can help amplify the most relevant cross-modal information
that agrees best with the clean labels while suppressing the
noisy information that causes disagreement. Our MMT is
able to largely improve the performance of detecting single-
modality events while maintaining a relatively high perfor-
mance of detecting multi-modality events.

We further propose cross-audio prediction consistency
(CAPC) to suppress the undesired predictions in the visual
stream caused by mismatched audio information. As pointed
out by [39], the “audible but not visible events” are more
common than “visible but not audible events” since the cam-
era only captures the scene of limited view, while the micro-
phones capture events from all directions. Thus, the visual
modality is more likely to encounter the non-correlated cross-
modal context. To alleviate such situations, we introduce
CAPC. Our idea is to allow the visual modality to learn from
beyond its paired audio, and induce it to have consistent
visual event predictions as learning with its original pair. As

1We change the input of the cross-attention module to the modality itself
so as to keep the model size unchanged.
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Figure 2. Network comparison: (a) HAN embedding and (b) our
embedding. A and V denote the pre-extracted audio and visual
features, respectively. A and V denotes the self-refined audio
and visual features, respectively. Ã and Ṽ denote the audio and
visual representation after cross-modal fusion, respectively. Audio-
exclusive (visual-exclusive) events denotes events only happening
on audio (visual) modality. Each circle represents one event.

such, the visual stream learns to only fuse the audio context
that is correlated with itself and ignores other unrelated in-
formation to maintain the same visual event detection under
different audio contexts.

In summary, our contributions are as follows:

• We propose messenger-guided mid-fusion transformer
to reduce the uncorrelated cross-modal context in the
audio-visual fusion. The messengers serve as a compact
representation to amplify the most relevant cross-modal
information under weak supervision.

• We propose cross-audio prediction consistency to cal-
ibrate the visual event prediction under interference
from the unmatched audio context. The visual event
prediction is forced to remain unchanged when pairing
with different audios so as to ignore the irrelevant audio
information.

• We conduct extensive qualitative and quantitative ex-
periments to analyze the effectiveness of our approach.
Our method also achieves the state-of-the-art perfor-
mance on AVVP benchmark.

2. Related Work
2.1. Audio-Visual Representation Learning

The natural correspondence between audio and visual
modalities overcomes the limitations of perception tasks
in single modality and introduces a series of new appli-
cations. Semantic similarity is the most commonly used
audio-visual correlation [2,3,5,20,28]. The shared semantic
information in both audio and visual modality is a valu-
able free-source supervision. SoundNet [5] learns sound
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representation by distilling knowledge from the pre-trained
visual models. Morgado et al. [28] propose cross-modal
contrastive learning, where negative and positive samples of
visual frames are drawn from audio samples and vice-versa.
Besides semantic correlation, other works utilize temporal
synchronization [1,22,30,32], motion correlation [12,41] and
spatial correspondence [13,26,40]. However, self-supervised
learning from natural videos is potentially noisy as the audio
and visual modalities are not always correlated. Recently,
Morgado et al. [27] propose to learn robust audio-visual
representation by correcting the false alignment in the con-
trastive loss. Our task shares similar motivation with [27]
as some events only happen in single modality leaving no
audio-visual correspondence.

2.2. Audio-Visual Video Parsing

Early works [23,35] only detect events that is both audible
and visible. Based on the strong assumption that the audio
and visual information are aligned at each time step, [23,35]
fuse the audio and visual features at the same time step.
However, the events happening on the two modalities are
not always the same since the audio and vision are inher-
ently different sensors. To fully understand the content in
the multimodal videos, Tian et al. [34] introduced the task
of audio-visual video parsing (AVVP). It classifies and lo-
calizes all the events happening on the audio and visual
streams in a weakly-supervised manner. They design a hy-
brid attention network (HAN) to capture the uni-modal and
cross-modal temporal contexts simultaneously. The audio
and visual features are fused at the start of the network,
where the self-attention and cross-attention are performed
in parallel. Since then, HAN serves as the state-of-the-art
audio-visual embedding and is widely adopted in follow-up
works. MA [39] generates reliable event labels for each
modality by exchanging the audio and visual tracks of a
training video with another unrelated video. JoMoLD [8]
leverage audio and visual loss patterns to remove modality-
specific noisy labels for each modality. Lin et al. [24] explore
the cross-modality co-occurrence and shared cross-modality
semantics across-videos. Although HAN embedding shows
promising performance, the full entanglement of two non-
fully correlated modalities is not ideal for the task of AVVP.
Therefore, we propose messenger-guided mid-fusion trans-
former and cross-audio prediction consistency to reduce the
uncorrelated cross-modal context in the audio-visual fusion.

2.3. Multimodal Transformer

The attention module in the transformer [37] is effective
in capturing the global context among the input tokens, and
is widely adopted in the multimodal task [11, 16, 21, 25, 29].
Gabeur et al. [11] use transformer to capture cross-modal
cues and temporal information in the video. OMNIVORE
[16] proposes a modality-agnostic visual model that can

perform classification on image, video, and single-view 3D
modalities using the same shared model parameters. Per-
ceiver [21] and MBT [29] address the high computation cost
of the multimodal transformer by using a small set of fusion
tokens as the attention bottleneck to iteratively distill the
uni-modal inputs. Despite our messengers also serve as the
attention bottleneck, it is used to suppress learning from
noisy labels. Moreover, the messengers are more effective in
the small multimodal models. The MBT and Perceiver ini-
tialize the fusion tokens randomly and require multiple times
updates with the uni-modal inputs for it to carry meaningful
cross-modal information, which is not applicable for the
model with small number of encoder layers. In contrast, our
messenger is directly derived from the global representation
of each modality so that it is already informative without
multiple times of updates.

3. Method

Let us denote a video with T non-overlapping segments as
{Vt,At}Tt=1, where Vt and At are the visual and audio clip
at the t-th segment, respectively. The corresponding label
for visual event, audio event and audio-visual event at the
t-th segment is denoted as yv

t ∈ {0, 1}C , ya
t ∈ {0, 1}C and

yav
t ∈ {0, 1}C , respectively. C is the total number of classes

in the dataset and yav
t = yv

t × ya
t . An event is considered

as an audio-visual event only if it occurs in both modalities.
Note that more than one event can happen in each segment.
Grouping all the segment-level labels together, we obtain the
video-level label Y = {yv

t ∪ ya
t}Tt=1 ∈ {0, 1}C . The goal of

audio-visual video parsing is to detect all the visual, audio
and audio-visual events in the video. The training of AVVP
is conducted in weak supervision, where only video-level
labels Y are provided.

In the following sections, we first introduce messenger-
guided mid-fusion transformer as the new multi-modal em-
bedding for AVVP, and then the novel idea of cross-audio
prediction consistency to reduce the negative interference of
the unmatched audio context to the visual stream.

3.1. Messenger-guided Mid-Fusion Transformer

Fig. 3 shows our proposed messenger-guided mid-fusion
transformer. We instantiate the self-attention and cross-
attention layers with transformers [37] as it shows excel-
lent performance in the uni-modal [4, 9] and multimodal
[11,16,31] tasks with just the attention mechanism. The pre-
trained visual and audio feature extractors extract segment-
level visual features {f v

t }Tt=1 and audio features {f a
t }Tt=1,

respectively. The {f v
t }Tt=1 and {f a

t }Tt=1 are the input to
the multimodal embedding, where the uni-modal and cross-
modal context are modeled sequentially. Instead of directly
feeding the full cross-modal context to the fusion, we sum-
marize it into compact messengers. Finally, the outputs of
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Figure 3. The architecture of the messenger-guided mid-fusion transformer. Visual Encoder and Audio Encoder denote the transformer
encoders for the visual and audio, respectively. Visual Decoder and Audio Decoder denote the transformer decoders for the visual and audio,
respectively.

the last layer of the decoders are sent into the classifiers to
detect segment-level events for each modality.

Uni-modal Context Refinement. We model the uni-
modal context with transformer encoders, where the self-
attention is capable of aggregating the temporal context for
a better global understanding of the raw input sequence. For
brevity, we only illustrate the working flow of the visual
modality since the visual and audio branches work symmet-
rically. The pre-extracted visual features are first converted
into 1-D tokens Sv ∈ RT×d with feature dimension d as
follow:

Sv = [f v
1W

enc
v , f v

2W
enc
v , . . . , f v

TW
enc
v ] +PE, (1)

where Wenc
v is the linear projection layer that projects pre-

extracted features to d dimension and PE is the position
embedding. Then, the tokens are sent into a L-layer trans-
former encoder. We adopt the original architecture of trans-
former [37]. Each layer consists of a multi-headed self-
attention (MSA) and a position-wise fully connected feed-
forward network (FFN):

S̃l
v = LN

(
MSA

(
Sl

v

)
+ Sl

v

)
,

Sl+1
v = LN

(
FFN

(
S̃l

v

)
+ S̃l

v

)
,

(2)

where LN denotes layer normalization and Sl
v is the input

tokens at the l-th layer.

Cross-modal Context Fusion with Messengers. We
model the cross-modal context using M -layer transformer
decoders, where each layer consists of the multi-headed self-
attention (MSA), multi-headed cross-attention (MCA), and
the position-wise feed-forward network (FFN). The work-
ing flow inside the m-th layer of the decoder is as follows:

R̃m
v = LN(MSA (Rm

v ) +Rm
v ) ,

R̂m
v = LN

(
MCA

(
R̃m

v , SL
a

)
+ R̃m

v

)
,

Rm+1
v = LN

(
FFN

(
R̂m

v

)
+ R̂m

v

)
,

(3)

where MCA(·) performs cross-modal fusion between the
visual feature R̃m

v (query) and the audio context SL
a (key and

value).
However, providing full cross-modal context is not ideal

when the two modalities are not fully correlated, and is
even worse when the supervision is noisy. The video-level
label Y is the union of the audio and visual events, which
can introduce noise when supervising each modality, i.e. an
event that is present only in one modality becomes a noisy
label for the other modality. As shown in Fig. 4(b), with
connection with full audio context, the model is assured
that the audio-exclusive event truly happens in the visual
stream guided by the noisy supervision Y. Consequently, its
generalization ability is severely affected. To this end, we
create a fusion bottleneck Ma as shown in Fig. 4(c) so that
they can suppress the irrelevant audio context, and the model
is less likely to overfit to the noisy label Y .

Specifically, we condense the full cross-modal context
into the compact representation Mv as follows:

Mv = Tanh
(
Pool

(
SL

v W
msg
v ;nv

))
, (4)

where Wmsg
v ∈ Rd×d is the linear projection layer, Pool(·)

is the average pooling along the temporal dimension with
a target length of nv and Tanh(·) is the activation func-
tion. Mv ∈ Rnv×d has limited capacity in storing informa-
tion compared to the full cross-modal context SL

v ∈ RT×d,
where T is much larger than nv . Consequently, it creates an
attention bottleneck that gives priority to the most relevant
cross-modal context that fits the clean labels. The compact
audio context Ma ∈ Rna×d at the audio stream is obtained
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Figure 4. Comparison of different fusion methods. Each circle represents one event. We only illustrate the cross-modal fusion at the visual
branch for brevity. (a) shows an oracle setting, where the visual label Yv is available. In this case, the model only learns from the relevant
audio context. (b) shows the fusion with full audio context. (c) shows the fusion with messengers.

in a similar way. We name it messenger as it represents its
source modality as the direct input in the cross-modal fusion
as follows:

R̂m
v = MCA

(
LN

(
R̃m

v ,Ma

))
+ R̃m

v , (5)

where the audio messengers Ma replace the full cross-modal
context SL

a .

Classification. RM
v is considered as the final visual repre-

sentation and is sent into the modality-specific classifiers for
segment-level event prediction Pv ∈ RT×C as follow:

Pv = Sigmoid
(
RM

v Wcls
v

)
, (6)

where Wcls
v ∈ Rd×c is the classifier weights. During train-

ing, we aggregate Pv into video-level predictions P̃v ∈ RC

via soft pooling similar to [34] since only video-level label
Y ∈ {0, 1}C is provided. The audio prediction Pa and P̃a
are obtained in a similar way. We also combine P̃v and P̃a
into a modal-agnostic video-level prediction P̃video ∈ RC . In
total, we have three classification losses:

Lcls = CE
(
P̃v, Yv

)
+CE

(
P̃a, Ya

)
+CE

(
P̃video, Y

)
, (7)

where CE denotes the binary cross-entropy loss. We set
Yv = Ya = Y when only the video-level label is available.

3.2. Cross-Audio Prediction Consistency

We further propose cross-audio prediction consistency
(CAPC) to suppress the inaccurate visual event prediction
arising from unmatched audio information. As analyzed
in [39], audio-exclusive events are more common than visual-
exclusive events and thus the visual stream is more likely
to be influenced by the non-correlated cross-modal context.
As shown in Fig. 6, the visual branch confidently detects the

audio-exclusive event ‘Chicken rooster’ when only learnt
with its paired audio. To alleviate this problem, we introduce
a consistency loss in the visual event prediction by pairing
the same visual sequence with different audios. Specifically,
the visual modality V is paired with not only its original
audio counterpart Aorig, but is also paired with audios that
are randomly selected from other videos at each training
iteration. We denote the visual prediction from the original
pair (V,Aorig) as P̃v ∈ RC , and the visual prediction from
the i-th random pair (V,Ai

rand) as P̃ i
v ∈ RC . CAPC requires

P̃ i
v to be the same as P̃v as follow:

Lccr =
1

N

N∑
i=1

∥∥∥P̃ i
v − P̃v

∥∥∥2
2
, (8)

where N is the number of random pairs for each visual
sequence. The cross-attention at the visual stream will learn
to only grab the useful audio context (i.e. audio-visual event)
from A and Ai

rand and ignore the irrelevant information (i.e.
audio-exclusive event) in order to achieve this prediction
consistency.

We notice that there may be a trivial solution to achieve
this prediction consistency. The cross-attention totally ig-
nores all the audio context and thus leads to complete inde-
pendence of the visual prediction from the audio information.
However, we show in Tab. 4 that the model does not degen-
erate to this trivial solution. Instead, CAPC improves the
robustness of fusion under non-fully correlated cross-modal
context.

Finally, the total loss of our method is:

Ltotal = Lcls + µLccr, (9)

where µ is the hyperparameter to balance the loss terms.
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Method Audio Visual Audio-Visual Type@AV Event@AV
Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event

AVE [35] 47.2 40.4 37.1 34.7 35.4 31.6 39.9 35.5 41.6 36.5
AVSDN [23] 47.8 34.1 52.0 46.3 37.1 26.5 45.7 35.6 50.8 37.7

HAN [34] 60.1 51.3 52.9 48.9 48.9 43.0 54.0 47.7 55.4 48.0
HAN † [34] 59.8 52.1 57.5 54.4 52.6 45.8 56.6 50.8 56.6 49.4

MA [39] 60.3 53.6 60.0 56.4 55.1 49.0 58.9 53.0 57.9 50.6
Lin et al. [24] 60.8 53.8 63.5 58.9 57.0 49.5 60.5 54.0 59.5 52.1
JoMoLD [8] 61.3 53.9 63.8 59.9 57.2 49.6 60.8 54.5 59.9 52.5

Ours 61.9 53.9 64.8 61.6 57.6 50.2 61.4 55.2 60.9 53.1

Table 2. Comparison with the state-of-the-art methods of audio-visual video parsing on the LLP test dataset. ‘Audio’, ‘Visual’ and
‘Audio-Visual’ denotes audio event, visual event and audio-visual event detection, respectively. Note that they are different from the event
categories in Tab. 1 and we illustrate the difference in the Supplementary Material. ‘Seg.’ denotes segment-level evaluation and ‘Event’
denotes event-level evaluation. ‘HAN†’ is the variant of HAN that additionally uses label refinement. The best result is marked in bold.

3.3. Discussions on CAPC

Comparison with Consistency Regularization. Consis-
tency regularization is widely adopted in semi-supervised
learning [6, 7, 33], where the model is required to output the
similar prediction when fed perturbed versions of the same
image. In contrast to augmenting the modality itself, the
CAPC keeps the modality itself intact and only augments
its cross-modal context, i.e. pairing the visual modality with
different audios. By learning consistency under cross-audio
augmentation, the fusion robustness is improved.

Comparison with Audio-Visual Correspondence.
Audio-visual pairing correspondence [2, 3] and audio-visual
temporal correspondence [22, 30] are the cross-modal self-
supervision in the video. They highlight the audio-visual
alignment to learn good audio and visual representation.
In contrast, we highlight the audio-visual misalignment to
reduce the negative impact of the unmatched audio context
to the visual modality.

4. Experiments

4.1. Experiment Setup

Dataset. We conduct experiments on the Look, Listen and
Parse (LLP) Dataset [34]. It contains 11,849 YouTube
videos, each is 10-second long. It covers 25 real-life event
categories, including human activities, animal activities, mu-
sic performances, etc. 7,202 video clips are labeled with
more than one event category and per video has an average
of 1.64 different event categories. We follow the official data
splits [34]. 10,000 video clips only have video-level labels
and are used as training sets. The remaining 1,849 videos
that are annotated with audio and visual events and second-
wise temporal boundaries are divided into 849 videos as the
validation set and 1,000 as the test set.

Evaluation Metrics. We use F-scores as the quantita-
tive evaluation method. We parse the visual, audio and

audio-visual events, denoted as ‘Visual’, ‘Audio’ and ‘Audio-
Visual’, respectively. We use F-scores for segment-level and
event-level evaluations. The segment-level metrics evalu-
ate the predictions for each segment independently. The
event-level evaluation first concatenates consecutive posi-
tive segments as the event proposal and then compares the
alignment with the ground-truth event snippet under the
mIoU=0.5 as the threshold. Meanwhile, we use ‘Type@AV’
and ‘Event@AV’ for the overall access of the model perfor-
mance. The ‘Type@AV’ averages the evaluation scores of
‘Audio’, ‘Visual’ and ‘Audio-Visual. The ‘Event@AV’ con-
siders all the audio and visual events for each video rather
than directly averaging results from different event types.
Implementation Details. Each video is downsampled at
8 fps and divided into 1-second segments. We use both the
ResNet-152 [18] model pre-trained on ImageNet and 18
layer deep R(2+1)D [36] model pre-trained on Kinetics-
400 to extract visual features. The 2D and 3D features
are concatenated as the visual representation for the visual
input. For the audio signals, we use the VGGish network
[19] pre-trained on AudioSet [15] to extract 128-D features.
The feature extractors are fixed during training. For each
modality, both the number of encoders L and the number of
decoders M are set to 1. The hidden size is set to 512 and
the number of attention head is set to 1. The number na of
audio messengers and the number nv of visual messengers
are set to 1, respectively.

We train our model in three stages. In the first stage, we
optimize our proposed audio-visual embedding with classi-
fication loss Lcls on the video-level label Y. In the second
stage, we calculate the pseudo label [39] for each modality.
In the third stage, we re-train our embedding with Eqn. 9
using the pseudo label. µ is set to 0.5 and N is set to 1. We
use Adam optimizer with learning rate 3× 10−4 and batch
size of 64. We train 40 epochs and decrease the learning
rate by 10−1 every 10 epochs in each training stage. All
the experiments are conducted using Pytorch on a NVIDIA
GTX 1080 Ti GPU.
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na nv Audio Visual Audio-Visual Type@AV Event@AV

No MSG 61.5 63.2 55.7 60.1 59.9
MBT 60.9 64.1 56.0 60.3 59.8

5 5 61.5 64.4 57.0 61.0 60.6
3 3 62.1 63.9 56.9 61.0 60.5
1 3 61.6 64.7 56.8 61.0 60.6
3 1 62.1 64.6 56.8 61.2 60.9
1 1 61.9 64.8 57.6 61.4 60.9

Table 3. Ablation study of the messengers. ‘No MSG’ denotes the
model performs cross-modal fusion without messengers. ‘MBT’
replaces the messengers with the fusion bottleneck token [29]. na

and nv is the number of audio and visual messengers, respectively,
and ‘na = 1, nv = 1’ is our final model. Segment-level results are
reported.

4.2. Comparison with State-of-the-art Results

We compare our method with state-of-the-art audio-visual
event parsing methods of AVE [35], AVSDN [23], HAN [34],
MA [39], Lin et al. [24] and JoMoLD [8]. We report their
results from their paper. All the methods are trained using the
same pre-extracted features as input. The recent methods,
MA [39], Lin et al. [24] and JoMoLD [8] all adopt the
HAN [34] as the audio-visual embedding.

Tab. 2 shows the quantitative comparisons on the LLP
dataset [34]. Our model constantly outperforms other meth-
ods on all the evaluation metrics. Although we remove the
entanglement in the early layers, the performance of audio
and visual event detection are both improved than all the
HAN-based methods. This demonstrates that a compact fu-
sion is better than the fully entangled fusion approach when
the audio and visual information are not always correlated.

4.3. Ablation Study

Effectiveness of the Messengers. Tab. 3 shows the effec-
tiveness of the messengers. ‘No Messenger’ abbreviated
as ‘No MSG’ is the model which directly performs cross-
modal fusion using Eqn. 3. Compared with our final model
‘na = 1, nv = 1’, both the audio and visual performance
decrease. We also provide qualitative analysis of the mes-
senger in Fig. 5. ‘No MSG’ wrongly detects the visible but
not audible event ‘Car’ on the audio stream due to the un-
constrained visual context. By constraining the full visual
context into our compact messenger, the irrelevant visual
information ‘Car’ is suppressed and only keeps the useful
information of the ‘Motorcycle’ for the audio.

In addition, we compare our messenger with fusion bot-
tleneck token [29], denoted as ‘MBT’, by replacing the mes-
senger with the same number of fusion bottleneck tokens
in the transformer model. Our messenger ‘na = 1, nv = 1’
consistently outperforms ‘MBT’ in the shallow transformer
model, where only one layer of the encoder is used for each
modality.

Analysis of the number of messengers. Tab. 3 also shows

Motorcycle

0s 2s 4s 6s 8s 10s

Motorcycle
Car

Visual: GT

Speech

Car
Speech

Car

Motorcycle

Motorcycle
Speech

Audio: GT

Audio: Ours

Audio: No MSG

Figure 5. Qualitative comparison of the messengers. ‘Visual’ and
‘Audio’ represent the visual and audio event, respectively. ‘GT’
denotes ground truth. ‘No MSG’ denotes model performs cross-
modal fusion without messengers. ‘Ours’ denotes the fusion with
messengers.

Audio Visual Audio-Visual Type@AV Event@AV

No FA 62.1 62.5 56.3 60.3 60.3
No CAPC 61.9 64.2 56.4 60.8 60.7

Ours 61.9 64.8 57.6 61.4 60.9

Table 4. Ablation study of the cross-audio prediction consistency.
‘No FA’ denotes the model without fusion with audio at the visual
stream. ‘No CAPC’ denotes the model without using cross-audio
prediction consistency. Segment-level results are reported

the performance of our model with different numbers of
messengers. na and nv is the number of audio and visual
messengers, respectively. Using a large number of mes-
sengers shows decreasing performance, suggesting the dilu-
tion of the beneficial cross-modal context. Hence we adopt
‘na = 1, nv = 1’ in our final model.

Effectiveness of Cross-audio Prediction Consistency.
Tab. 4 presents the ablation study of cross-audio predic-
tion consistency. ‘No CAPC’ is the model trained without
cross-audio prediction consistency. By forcing prediction
consistency on the visual stream, i.e. ‘Ours’, both the per-
formance of visual and audio-visual event detection show
obvious improvement.

We also verify whether CAPC leads to the trivial solution,
i.e. the visual prediction does not need the audio information
at all. We replace the input to the cross-attention at the visual

5621



GT

0s 2s 4s 6s 8s 10s

Chicken_rooster

0s 2s 4s 6s 8s 10s

Chicken_rooster
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Chicken_rooster

Chicken_rooster

Chicken_rooster

Chicken_rooster

Figure 6. Qualitative comparison of CAPC. ‘GT’ denotes the ground truth event labels. ‘No CAPC’ denotes the model without cross-audio
prediction consistency. ‘No FA’ denotes the model without fusion with audio at the visual stream.

µ Audio Visual Audio-Visual Type@AV Event@AV

0.1 61.3 63.6 56.3 60.4 60.1
0.5 61.9 64.8 57.6 61.4 60.9
1 61.9 64.6 57.6 61.4 60.7

Table 5. Analysis of different value of µ. Segment-level results are
reported.

stream with the visual modality itself, i.e. replacing Ma with
SL

v in Eqn. 5, denoted as ‘No FA’. The performance is worse
than the ‘No CAPC’, and much worse than our full model
‘Ours’. We also provide the qualitative comparison in Fig. 6.
‘No FA’ shows the poor generalization ability on the visual
event detection as it wrongly detects a totally irrelevant event
‘Helicopter’. By learning with both its paired audio and other
non-paired audios, the model can correctly identify that the
‘Chicken rooster’ is an audible but not a visible event. This
shows that our cross-audio prediction consistency does not
de-activate the cross-modal fusion. Instead, it improves the
robustness of the fusion between two non-fully correlated
modalities.

Analysis of CAPC loss weight µ. Tab. 5 presents the abla-
tion study on different value of µ. Interestingly, using a small
weight, i.e. µ = 0.1 is worse than the model without CAPC
(‘No CAPC’ in Tab. 4). The possible reason is that the model
trained with ‘µ = 0.1’ tends to focus on the easy training
samples (Aorig and Ai

rand are both fully correlated with V).
CAPC thus encourages V to take in full audio context to
achieve faster convergence in this case, which provides the
false signal. Only using larger weight can effectively opti-
mize hard samples (Aorig and Ai

rand are not fully correlated
with V), where CAPC guides visual stream to only select
useful audio information. It can also be verified that CAPC
loss of µ = 0.1 is much larger than µ = 0.5. Therefore, we
choose µ = 0.5 as our final setting.

N Audio Visual Audio-Visual Type@AV Event@AV

1 61.9 64.8 57.6 61.4 60.9
2 61.7 64.5 57.0 61.1 60.5
3 61.7 64.0 57.0 60.9 60.6

Table 6. Analysis of different number of random pairs N. Segment-
level results are reported.

Analysis of the number of random pairs in CAPC. Tab. 6
presents the ablation study of the number of random pairs in
CAPC. Using a larger number of pairs, i.e., N = 3, not only
increases computation cost but also exhibits a decline in per-
formance. We postulate the reason is that larger N provides
a false signal that the visual modality should ignore any au-
dio context (including correlated audio information). More
analysis is provided in Supplementary Material. Therefore,
we choose N = 1 in our final model.

5. Conclusion
We address the problem of fusion between two non-

fully correlated modalities in weakly supervised audio-visual
video parsing. We propose the messenger-guided mid-fusion
transformer to reduce the unnecessary cross-modal entangle-
ment. The messengers act as fusion bottlenecks to mitigate
the detrimental effect of the noisy labels. Further, we propose
cross-audio prediction consistency to reduce the negative in-
terference of unmatched audio context to the visual stream.
The effectiveness of our proposed method is analyzed both
quantitatively and qualitatively.
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