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Abstract

Many machine learning-based axon tracing methods rely
on image datasets with segmentation labels. This requires
manual annotation from domain experts, which is labor-
intensive and not practical for large-scale brain mapping on
hemisphere or whole brain tissue at cellular or sub-cellular
resolution. Additionally, preserving axon structure topology
is crucial to understanding neural connections and brain
function. Self-supervised learning (SSL) is a machine learn-
ing framework that allows models to learn an auxiliary task
on unannotated data to aid performance on a supervised
target task. In this work, we propose a novel SSL auxiliary
task of reconstructing an edge detector for the target task of
topology-oriented axon segmentation and centerline detec-
tion. We pretrained 3D U-Nets on three different SSL tasks
using a mouse brain dataset: our proposed task, predicting
the order of permuted slices, and playing a Rubik’s cube.
We then evaluated these U-Nets and a baseline model on a
different mouse brain dataset. Across all experiments, the
U-Net pretrained on our proposed task improved the base-
line’s segmentation, topology-preservation, and centerline
detection by up to 5.03%, 4.65%, and 5.41%, respectively.
In contrast, there was no consistent improvement over the
baseline observed with the slice-permutation and Rubik’s
cube pretrained U-Nets.

1. Introduction
Reconstructing neuron connections can help researchers

better understand the relationship between brain structure
and its function. Domain experts can accurately trace the con-
nections manually, but this approach cannot practically scale
to the billions of connections needed to map a single human
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brain. Therefore, it is crucial to develop automatic large-
scale axon tracing methods that are as accurate as human
abilities, and preserve the topology of the axon structures for
brain connectivity analysis.

Deep learning methods have achieved state-of-the-art re-
sults on several biomedical image segmentation tasks. The
U-Net architecture [2] in particular surpassed the human
performance threshold in the 2017 SNEMI3D Connectomics
Challenge [6]. Previous works [8, 12, 16, 18] have explored
supervised 3D U-Net approaches for axon tracing through
image segmentation. However, these supervised approaches
rely on massive image datasets that are manually traced. The
manual tracing process is a time and labor-intensive task and
often leads to incomplete annotations.

Self-supervised learning (SSL) is a machine learning
paradigm that can leverage large amounts of unannotated
data. In this framework, a model is first trained on an SSL
auxiliary task using data that are not human annotated. Any
“annotations" needed for an SSL auxiliary task can be gen-
erated during SSL training time using only the data itself.
Afterwards, the SSL-pretrained model is fine-tuned on a
supervised target task (or downstream task) on a small set
of annotated data. Common auxiliary tasks for 3D medical
imaging problems include contrastive predictive coding [15],
rotation prediction [15], patch location prediction [15], slice
ordering [20], and playing a Rubik’s cube [17, 21].

For the target task of 3D axon segmentation and cen-
terline detection, previous works explored the SSL task of
classifying the permutation used to shuffle the z-slices of a
3D image [5, 13]. However, the benefits of this SSL task are
maximized only when the SSL training input size is larger
than the segmentation input size, and after the target task
loss function’s hyperparameters are manually tuned. To our
knowledge, no other auxiliary tasks have been investigated
for this target task.

For the particular downstream task of topology-informed
3D axon segmentation and centerline detection, we propose
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a simple yet effective SSL auxiliary task: reconstructing
the output of the Canny edge detector [1]. We empirically
demonstrate that a 3D U-Net pretrained with this SSL task
consistently achieves better segmentation, topology preserva-
tion, and centerline detection metrics than a baseline model
(i.e. a 3D U-Net not pretrained on any SSL task) when (1) the
SSL training dataset is different from the target task dataset,
and (2) the SSL training and target task input sizes are equal.
Meanwhile, 3D U-Nets pretrained on the slice permutation
and Rubik’s cube tasks often perform worse than the baseline
under the same conditions. We also illustrate a 3D U-Net
pretrained on our proposed task is generally more robust to
the target task loss function hyperparameters than 3D U-Nets
pretrained on the slice permutation and Rubik’s cube tasks,
which can reduce the hyperparameter tuning search space.

2. Related Work

2.1. Topologically-Aware 3D U-Nets

Pollack et al. [12] investigated two 3D U-Net approaches
for axon segmentation, where the baseline method was a
U-Net trained with voxel-wise cross-entropy loss. The first
approach, called CasNet, cascaded two U-Nets to simultane-
ously obtain segmentation and centerline predictions. The
CasNet was trained on a modified Dice loss [10]. The second
approach was a 3D U-Net trained on clDice loss [14], which
optimizes connections of tubular and curvilinear structures,
such as axons, as well as emphasizes topology preservation:

LclDice = (1−α)(1− soft-Dice)+α(1− soft-clDice). (1)

Computing the soft-clDice metric requires an iterative soft-
skeletonization algorithm, where the number of iterations
is a hyperparameter k. Generally, k should be chosen such
that it is greater than or equal to the maximum pixel radius
of the tubular structures in the given dataset. Otherwise, the
skeletonization may be incomplete [14]. Note that the choice
of k does not affect the (1 − soft-Dice) term. Likewise, α
is another hyperparameter that weighs the soft-Dice and
soft-clDice components, where 0 < α < 1.

Pollack et al. showed that the topologically-aware 3D
U-Net with clDice loss typically achieved improved seg-
mentation, topology preservation, and centerline detection
metrics compared to other methods. Thus, in our work, we
also use clDice loss for downstream task training.

2.2. Slice-Permutation Classification

Self-Supervised Feature Extraction for 3D Axon
Segmentation. Klinghoffer et al. [5] investigated slice-
permutation classification as an SSL task for axon segmenta-
tion. During SSL training, they split the input image into 8
even slices along the z-axis, and shuffled their order based on
one of 8 randomly chosen permutations. They trained a 3D

U-Net encoder and auxiliary classifier to classify the permu-
tation applied to the volume using an information-weighted
cross-entropy loss, LICE . At a high-level, the encoder learns
where along the z-axis the axon paths are broken due to the
shuffled slices. Voxel-wise binary cross-entropy loss was
used for target task training.

Self-Supervised Learning to Improve Topology-
Optimized Axon Segmentation and Centerline Detection.
Shamsi et al. [13] applied the slice-permutation auxiliary
task to topologically-aware 3D U-Nets and used the follow-
ing SSL objective:

LSSL = βLICE + (1− β)LR, (2)

where LR is the ℓ2 loss between the decoder output and the
original, non-shuffled image, with 0 < β < 1. They trained
on clDice loss (1) [14] for the target task. Their baseline
model was a 3D U-Net trained on clDice loss from scratch,
i.e. without any SSL training.

In their work, they showed the benefits of pretraining
on the slice-permutation task are highly dependent on the
choices of α, k, and the input size during SSL training. For
instance, when α = 0.5 and k = 8, their SSL-pretrained
model achieved better performance metrics than the baseline
model only when the SSL input size was larger than the
target task input size. When the two sizes were equal, the
baseline outperformed the SSL-pretrained model. However,
when α = 0.8 and k = 5, the SSL input size had very little
effect on the SSL-pretrained model’s target task performance.
This suggests it is necessary to manually tune α and k, as
well as use a larger input size during SSL training, to realize
the benefits of this auxiliary task.

In our work, we empirically show that when a 3D U-Net
is pretrained with our proposed SSL task, its downstream
performance is less sensitive to α and k, and can improve
the baseline even when using smaller SSL input sizes.

2.3. Playing a Rubik’s Cube

Playing a Rubik’s cube [21] requires splitting each train-
ing sample into N evenly sized sub-volumes, resulting in
P = N ! total possible permutations. To guarantee no two
permutations are highly similar, the K ≪ P permutations
with the largest Hamming distances from each other are cho-
sen to be kept. During training, one of K permutations is
chosen randomly and applied to the input image. An en-
coder and an auxiliary classifier are trained to classify which
permutation was applied to the image.

No previous work on 3D axon segmentation has explored
pretraining on this auxiliary task, but it is closely related to
the slice-permutation task. In our work, we pretrained a 3D
U-Net to play a Rubik’s cube for axon segmentation as one
of the competing approaches against our proposed method.
The encoder again learns where the axon paths are broken,
but now across all three dimensions instead.
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3. Proposed Method
For the specific target task of topology-oriented 3D axon

segmentation and centerline detection, we propose the SSL
auxiliary task of reconstructing the output of the Canny
edge detection method [1]. During each SSL training epoch,
we apply the Canny method to each slice along the z-axis
of each raw input image. For each raw image, the Canny
method returns a binary 3D image indicating which voxels
are edges. The binary image serves as the “annotations" for
SSL training. We train a Residual 3D U-Net to reconstruct
this binary image at the output of the decoder.

Compared to the original raw input image, the Canny
method output provides a sharper contrast between the axons
and the background. By learning to reconstruct this output,
we hypothesize the U-Net can better localize the axon paths.

Once trained on the auxiliary task, the entire U-Net is
fine-tuned on axon segmentation and centerline detection in
a supervised manner. The encoder is initialized using the re-
sulting weights from auxiliary task training, and the decoder
is initialized randomly. Figure 1 illustrates the end-to-end
training pipeline. See the supplementary material for notes
about our proposed method’s computational complexity.

4. Experiments
We trained and evaluated four types of 3D Residual U-

Nets for axon segmentation in a supervised manner. The
baseline model (BL U-Net) was not pretrained on any SSL
task. The other three models were pretrained on slice permu-
tation classification (SP U-Net), Rubik’s cube permutation
classification (RC U-Net), and Canny edge detector recon-
struction (EDGE U-Net, our proposed method). We aimed
to evaluate how the choice of SSL auxiliary task alone affects
downstream performance. Thus, the only difference between
all of the methods are the SSL pretraining conditions.

4.1. Training and Implementation

We developed our implementation using PyTorch. Our
3D Residual U-Net consisted of four resolution blocks, each
with a 3×3×3 convolution layer followed by ELU activation
and group normalization [19]. We used strided 2 × 2 × 2
max-pooling to downsample between encoder blocks, and
strided transpose convolutions with max pooling to upsample
between decoder blocks.

To create the model input images, we randomly cropped
the original data volume, and then applied random flips and
90◦ X − Y plane rotations as augmentations.

For both auxiliary and target task training, we used the
ADAM optimizer [4] with a cosine-annealing learning rate
multiplier [9]. The initial learning rate was 10−4 and weight
decay was 10−3. We trained all of our models on an Intel
Xeon G6 node with 2 NVIDIA Volta V100 GPUs.

Edge Detection Reconstruction. To create the edge

detection output, we set the Canny method’s Gaussian blur
standard deviation σ to 1.5, the low threshold to 10% of the
entire SSL training volume’s maximum voxel intensity, and
the high threshold to 20% of the maximum voxel intensity.
We trained on ℓ2 loss.

Slice Permutation Classification. We split each training
sample into 8 evenly-sized slices along the z-axis and applied
one of 8 permutations, chosen uniformly at random. Our
auxiliary classifier consisted of a 3 × 3 × 3 convolutional
layer, ELU activation [3], group normalization, and a linear
layer. We trained on the loss function (2) with β = 0.8.

Rubik’s Cube Permutation Classification. We split
each training sample into 8 evenly-sized sub-volumes and
applied one of 8 permutations, chosen uniformly at random.
Our auxiliary classifier consisted of four blocks, each with
a 3 × 3 × 3 convolutional layer, Leaky-ReLU, and batch
normalization. The output of the last block was passed into
a linear layer. We again trained on (2) with β = 0.8.

Target Task. We used clDice loss (1) for downstream
training. The values of α and k we used are described in
Section 4.3. The U-Net outputs the predicted segmenta-
tion. To obtain the centerline predictions, we applied a 3D
skeletonization method [7] to the segmentation predictions.

4.2. Datasets

We used Dataset 1 for all SSL training, and Dataset 2 for
all target task training and testing.

Dataset 1. As previously described in [5] and [12],
Dataset 1 consists of mouse brain tissue. Under 3× ex-
pansion, the tissue was stained using calretinin antibody
immunostaining, prepared with the SHIELD technique [11],
and imaged using a Lifecanvas SMARTSPIM light-sheet
imager. The image contains areas of globus pallidus externa,
globus pallidus interna substantia nigra reticulata, and sub-
thalamic nucleus. The full volume is 2048× 2048× 1024
voxels with a voxel resolution of 0.65×0.65×2µm. We pre-
processed the data by clipping the highest and lowest 0.01%
of the values, applying a median filter, and then scaling the
voxels to lie in the range [0, 1].

Dataset 2. As previously described in [13], the data
were acquired using a Leica confocal microscope with 20×
magnification from mouse thalamus sections labeled via
coritcal injection with recombinant adeno-associated virus
expressing tdTomato (red) and synaptophysin (green). We
used the tdTomato channel after converting it to grayscale.
The full volume is 4096 × 4096 × 52 voxels with a voxel
resolution of 0.14× 0.14× 2µm, We partitioned the volume
into training, validation, and testing sets using a 50:25:25
split, respectively. We applied the same pre-processing steps
on this dataset as we did on Dataset 1 [12].
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Figure 1. Training pipeline using edge detection reconstruction SSL auxiliary task. Top: edge detection-based SSL. The pretrained
encoder is used as the initial weights for the downstream task. Bottom: topology-oriented axon segmentation and centerline detection.

Table 1. Mean and standard deviation evaluated on the test set of Dataset 2 across 10 trials when trained at various k with α = 0.5.
SSL input size = 128× 128× 32 and target task input size = 128× 128× 32.

Metric Model k = 3 k = 4 k = 5 k = 6 k = 7
BL 0.756± 0.025 0.763± 0.024 0.769± 0.021 0.764± 0.025 0.769± 0.029
SP 0.736± 0.026 0.713± 0.023 0.729± 0.028 0.725± 0.015 0.743± 0.019

Dice RC 0.728± 0.008 0.752± 0.021 0.731± 0.010 0.747± 0.021 0.730± 0.008
EDGE 0.794± 0.010 0.774± 0.025 0.785± 0.019 0.786± 0.020 0.793± 0.014

BL 0.690± 0.015 0.675± 0.014 0.679± 0.021 0.667± 0.025 0.668± 0.054
SP 0.624± 0.026 0.596± 0.035 0.646± 0.042 0.651± 0.044 0.656± 0.024

clDice RC 0.649± 0.033 0.657± 0.023 0.657± 0.041 0.654± 0.022 0.644± 0.014
EDGE 0.699± 0.021 0.679± 0.027 0.691± 0.030 0.692± 0.027 0.700± 0.028

BL 0.769± 0.016 0.756± 0.019 0.765± 0.018 0.752± 0.029 0.754± 0.054
SP 0.695± 0.029 0.660± 0.039 0.714± 0.043 0.716± 0.049 0.731± 0.027

ρ-Dice RC 0.725± 0.036 0.745± 0.024 0.735± 0.045 0.740± 0.030 0.724± 0.022
EDGE 0.787± 0.023 0.764± 0.033 0.779± 0.034 0.781± 0.031 0.788± 0.032

4.3. clDice Loss Hyperparameter Sweeps

As discussed in Section 2.2, Shamsi et al. [13] demon-
strated the importance of choosing proper α-k values to

observe the benefits of pretraining on the slice-permutation
auxiliary task. To determine how sensitive each model type’s
downstream performance is to α and k, we used various α-k
combinations during target task training.
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Table 2. Mean and standard deviation evaluated on the test set of Dataset 2 across 10 trials when trained at various α with k = 5.
SSL input size = 128× 128× 32 and target task input size = 128× 128× 32.

Metric Model α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
BL 0.783± 0.013 0.778± 0.018 0.782± 0.011 0.791± 0.013 0.769± 0.021
SP 0.752± 0.016 0.768± 0.023 0.774± 0.007 0.749± 0.023 0.729± 0.028

Dice RC 0.767± 0.010 0.768± 0.019 0.784± 0.009 0.782± 0.012 0.731± 0.010
EDGE 0.791± 0.009 0.796± 0.008 0.795± 0.004 0.794± 0.009 0.785± 0.019

BL 0.678± 0.024 0.665± 0.035 0.673± 0.023 0.696± 0.025 0.679± 0.021
SP 0.604± 0.036 0.642± 0.051 0.653± 0.014 0.601± 0.047 0.646± 0.042

clDice RC 0.646± 0.019 0.650± 0.040 0.686± 0.018 0.680± 0.028 0.657± 0.041
EDGE 0.691± 0.020 0.701± 0.016 0.702± 0.007 0.700± 0.019 0.691± 0.030

BL 0.768± 0.024 0.753± 0.033 0.763± 0.024 0.781± 0.027 0.765± 0.018
SP 0.679± 0.038 0.720± 0.058 0.733± 0.016 0.678± 0.047 0.714± 0.043

ρ-Dice RC 0.731± 0.025 0.740± 0.042 0.771± 0.014 0.764± 0.030 0.735± 0.045
EDGE 0.780± 0.023 0.788± 0.019 0.789± 0.007 0.793± 0.020 0.779± 0.034

Table 3. Mean and standard deviation evaluated on the test set of Dataset 2 when trained at various k with α = 0.5. SSL input size =
192× 192× 48 and target task input size = 128× 128× 32.

Metric Model k = 3 k = 4 k = 5 k = 6 k = 7
BL 0.756± 0.025 0.763± 0.024 0.769± 0.021 0.764± 0.025 0.769± 0.029
SP 0.734± 0.024 0.723± 0.003 0.770± 0.025 0.732± 0.019 0.751± 0.028

Dice RC 0.779± 0.019 0.762± 0.023 0.770± 0.022 0.763± 0.023 0.784± 0.018
EDGE 0.775± 0.018 0.786± 0.017 0.759± 0.035 0.775± 0.023 0.781± 0.021

BL 0.690± 0.015 0.675± 0.014 0.679± 0.021 0.667± 0.025 0.668± 0.054
SP 0.660± 0.015 0.650± 0.011 0.668± 0.015 0.664± 0.009 0.662± 0.017

clDice RC 0.677± 0.023 0.681± 0.010 0.678± 0.009 0.681± 0.010 0.694± 0.009
EDGE 0.685± 0.035 0.684± 0.035 0.681± 0.033 0.698± 0.023 0.682± 0.041

BL 0.769± 0.016 0.756± 0.019 0.765± 0.018 0.752± 0.029 0.754± 0.054
SP 0.738± 0.014 0.725± 0.015 0.748± 0.017 0.737± 0.012 0.739± 0.015

ρ-Dice RC 0.765± 0.027 0.772± 0.011 0.764± 0.010 0.769± 0.011 0.778± 0.013
EDGE 0.764± 0.037 0.765± 0.040 0.759± 0.035 0.779± 0.023 0.762± 0.045

For each of the four model types, each trial consisted of
training on the target task using a particular α-k combination.
We first kept α = 0.5 constant, and swept through k =
3, 4, 5, 6, and 7. We then swept through α = 0.1, 0.2, 0.3
and 0.4 while keeping k = 5 constant. We conducted 10
trials for each model type and α-k combination, and then we
evaluated the models on the test set.

4.4. SSL Training Input Size

To realize the benefits of the slice permutation task, the
input size during SSL training should be larger than the
input size during segmentation training, otherwise the per-
formance gains are minimal [5] [13]. However, larger SSL

input sizes increase the time and memory needed for SSL
training. To determine if this size requirement is necessary
for the Rubik’s cube task and our proposed method, we kept
the target task input size at 128× 128× 32, while using two
SSL input sizes: 128× 128× 32 and 192× 192× 48.

4.5. Evaluation Metrics

We recorded the mean and standard deviation of each
model’s Dice, clDice [14], and ρ-Dice metrics [12] across
the 10 trials for each α-k pair. The Dice coefficient mea-
sures segmentation performance via voxel-wise similarity,
clDice measures topology preservation, and ρ-Dice measures
accuracy of centerline detections.
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Table 4. Mean and standard deviation evaluated on the test set of Dataset 2 when trained at various α with k = 5. SSL input size =
192× 192× 48 and target task input size = 128× 128× 32.

Metric Model α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
BL 0.783± 0.013 0.778± 0.018 0.782± 0.011 0.791± 0.013 0.769± 0.021
SP 0.792± 0.007 0.764± 0.012 0.757± 0.011 0.767± 0.008 0.770± 0.025

Dice RC 0.758± 0.008 0.773± 0.019 0.794± 0.003 0.788± 0.002 0.770± 0.022
EDGE 0.795± 0.011 0.788± 0.014 0.796± 0.006 0.794± 0.007 0.759± 0.035

BL 0.678± 0.024 0.665± 0.035 0.673± 0.023 0.696± 0.025 0.679± 0.021
SP 0.688± 0.017 0.630± 0.024 0.613± 0.023 0.636± 0.018 0.668± 0.015

clDice RC 0.617± 0.016 0.651± 0.043 0.699± 0.007 0.689± 0.004 0.678± 0.009
EDGE 0.700± 0.026 0.682± 0.031 0.705± 0.015 0.701± 0.016 0.681± 0.033

BL 0.768± 0.024 0.753± 0.033 0.763± 0.024 0.781± 0.027 0.765± 0.018
SP 0.774± 0.017 0.708± 0.029 0.706± 0.025 0.725± 0.015 0.748± 0.017

ρ-Dice RC 0.697± 0.018 0.729± 0.046 0.783± 0.009 0.774± 0.005 0.764± 0.010
EDGE 0.784± 0.026 0.768± 0.030 0.789± 0.017 0.784± 0.016 0.759± 0.035

For each model type, we also computed the standard
deviation of their mean Dice, clDice, and ρ-Dice scores
across k, as well as across α. We did this to measure each
model type’s sensitivity to the clDice loss hyperparameters.

Table 5. Standard deviations across k of the average target task
metrics (lower is better)

SSL Input Size Model Dice clDice ρ-Dice
BL 0.0048 0.0084 0.0066
SP 0.0102 0.0222 0.0244

128× 128× 32 RC 0.0099 0.0050 0.0082
EDGE 0.0072 0.0075 0.0086

BL 0.0048 0.0084 0.0066
SP 0.0167 0.0060 0.0073

192× 192× 48 RC 0.0087 0.0061 0.0051
EDGE 0.0091 0.0062 0.0069

5. Results
Tables 1 and 2 show each model’s Dice, clDice, and ρ-

Dice score mean and standard deviations on Dataset 2’s test
set when the SSL input size was 128× 128× 32. Tables 3
and 4 provide the same results, but with an SSL input size of
192× 192× 48. In Tables 2 and 4, we also include results
for α = 0.5, but note that these are duplicates of the k = 5
results from Tables 1 and 3, respectively. In Table 5, we
provide the standard deviation of the mean Dice, clDice, and
ρ-Dice scores across k, (i.e., across the rows of Tables 1 and
3). Table 6 provides the same results, but across α instead.
In all of the tables, we bold the best metrics. Figure 2 shows

Table 6. Standard deviations across α of the average target task
metrics (lower is better)

SSL Input Size Model Dice clDice ρ-Dice
BL 0.0072 0.0102 0.0090
SP 0.0158 0.0221 0.0224

128× 128× 32 RC 0.0190 0.0162 0.0162
EDGE 0.0040 0.0049 0.0090

BL 0.0072 0.0102 0.0090
SP 0.0118 0.0272 0.0258

192× 192× 48 RC 0.0129 0.0296 0.0320
EDGE 0.0140 0.0102 0.0114

examples of segmentation and centerline predictions from
the different model types after applying a maximum intensity
projection along the z-axis.

6. Discussion

When SSL pretrained on Dataset 1, our proposed EDGE
U-Net outperformed the baseline model and SP and RC
U-Nets. We hypothesize that the background artifacts in
Dataset 1 skewed the feature representations the SP and
RC U-Nets learned during SSL training, which impacted
their downstream performances on Dataset 2. However, the
EDGE U-Net reconstructed images with binary voxel values,
which presumably reduced the impact of the background
artifacts in its learned feature representations. We believe
this helped its downstream performance on Dataset 2.
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Figure 2. Connected component (top) and centerline prediction (bottom) examples for α = 0.5, k = 3, and SSL input size =
128× 128× 32. In the centerline predictions (bottom), green markings indicate true positive, red is false positive, and blue is false negative.
The white boxes indicate regions where the four models provided different predictions. In these regions, our proposed model generally had
more contiguous connected components and fewer false negative centerline predictions compared to the other models.

6.1. SSL Training Input Size

128× 128× 32. Tables 1 and 2 show the EDGE U-Net
always performed better than the baseline across all of the α-
k pairs we used, while the SP and RC U-Nets almost always
performed worse than the baseline. Our proposed method’s
mean Dice, clDice, and ρ-Dice scores were, on average,
2.21%, 2.71%, and 2.75% higher than the baseline’s, respec-
tively. Meanwhile, the SP U-Net’s mean Dice, clDice, and
ρ-Dice scores were 3.83%, 6.81%, and 7.77% lower than

those of the baseline on average, and the RC U-Net’s mean
metrics were 2.40%, 2.75%, and 2.71% lower on average.

Even when the SSL the target task input sizes were equal,
our approach improved on the baseline’s target task metrics,
while the other SSL pretrained models had trouble doing so.
Thus, if a shorter SSL training time or smaller memory usage
is desired, pretraining on our proposed approach can still
result in downstream performance gains, while pretraining
on the other two SSL tasks would likely not.
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192× 192× 48. The baseline model outperformed the
EDGE U-Net in only four instances out of 27 total: in clDice
and ρ-Dice when α = 0.5, k = 3, as well as in Dice and
ρ-Dice when α = 0.5, k = 5. In contrast, the baseline
outperformed the SP U-Net in 23 out of 27 instances, and the
RC U-Net in 15 out of 27 instances. On average, across all
of the α-k pairs we used, our proposed method’s mean Dice,
clDice, and ρ-Dice scores were 1.36%, 2.10%, and 1.36%
higher than those of the baseline, respectively. Meanwhile,
the SP U-Net’s mean Dice, clDice, and ρ-Dice scores were
2.38%, 3.59%, and 3.80% lower than those of the baseline
on average. The RC U-Net’s mean Dice score was 0.24%
higher than the baseline’s, while its mean clDice and ρ-Dice
scores were 0.38% and 0.42% lower.

At the larger SSL input size, the benefits of the slice
permutation task should be maximized [5, 13]. Our results
seem to indicate this is true for the Rubik’s cube task as
well, although no previous work has shown this. Regardless,
out of all of the SSL pretrained models, our EDGE U-Net
frequently achieved the highest target task metrics, and the
greatest average improvements over the baseline.

It is worth noting that when the SSL input size increased,
our EDGE U-Net’s downstream performance worsened,
while the SP and RC U-Nets’ performances both improved.
This may indicate with a large enough SSL input size, the SP
and RC U-Nets would eventually consistently outperform
the baseline and EDGE U-Net on the downstream task.

6.2. clDice Loss Hyperparameter Sensitivity

Sweeping through k with α = 0.5. Table 5 shows the
SP U-Net had the largest average performance spread across
k among all of the models when the SSL input size was
128×128×32. When the SSL input size was 192×192×48,
the SP U-Net’s average Dice score standard deviation across
k was the highest as well. The EDGE and RC U-Nets’
average metric standard deviations across k were mostly
very similar. Overall, our proposed method appears to be
less sensitive to the choice of k compared to the SP U-Net,
and similarly sensitive to the choice of k as the RC U-Net.

Sweeping through α with k = 5. Table 6 shows at
both SSL input sizes, our EDGE U-Net’s average metric
standard deviations across α were almost always lower than
those of the other two SSL pretrained models. The lone
exception is in the mean Dice score when the SSL input size
was 192 × 192 × 48. However, at that SSL input size, our
proposed method’s average Dice score was still remarkably
consistent from α = 0.1 to α = 0.4.

The SP and RC U-Nets appear more sensitive to the
choice of α than our EDGE U-Net. Additionally, Table 4
shows the SP and RC U-Nets achieved similar or better met-
rics than the baseline at some values of α, but noticeably
worse metrics at other values. Thus, to maximize the benefits
of slice permutation and Rubik’s cube tasks, it is likely neces-

sary to tune α with a large search space during downstream
training. Meanwhile, our proposed method performed more
consistently and almost always achieved better metrics than
the baseline across different α values. The benefits of our
proposed SSL task are evident at almost all values of α we
used. While some tuning of α may still be beneficial, we
believe the search space can be greatly reduced.

7. Conclusion
In this work, we showed reconstructing the output of the

Canny edge detection method is an effective SSL auxiliary
task for topology-oriented axon segmentation and centerline
detection. A Residual 3D U-Net pretrained on our proposed
task consistently achieved higher downstream metrics than
the baseline model, even when different data was used for
SSL and target task training, and when the SSL input size
was equal to the target task input size. Meanwhile, under the
same conditions, 3D U-Nets pretrained on the slice permu-
tation and Rubik’s cube tasks often performed worse than
the baseline. Finally, a 3D U-Net pretrained on our proposed
method appears to be more robust to the choice of clDice loss
hyperparameter values compared to 3D U-Nets pretrained
on the slice permutation and Rubik’s cube tasks.

7.1. Future Work

One possible next step is to investigate these SSL ap-
proaches on larger datasets across other organisms. In ad-
dition, it is not obvious how the Canny edge detection pa-
rameters should be set during SSL training, and downstream
performance likely depends on these parameter choices. In-
vestigating the effect of these parameters on downstream
performance, or having a 3D U-Net reconstruct the output of
a parameter-free edge detection or skeletonization method
as an SSL task, are other possibilities for future work.

Additionally, as discussed in Section 6, we hypothesize
that the noise and background artifacts in Dataset 1 caused
the SP and RC U-Nets to perform worse than the baseline
on the target task on Dataset 2. Performing edge detection
or skeletonization on the input images before permuting the
slices or sub-volumes during SSL training might mitigate
these effects, thus improving downstream performance.
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