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Figure 1. Text-guided style transfer results using either a CLIP-based image-text similarity or SpectralCLIP. While using the standard CLIP
leads to the generation of undesirable artifacts (written words and unrelated visual entities as highlighted), the proposed SpectralCLIP
prevents the artifacts while maintaining other style features.

Abstract

Owing to the power of vision-language foundation mod-
els, e.g., CLIP, the area of image synthesis has seen re-
cent important advances. Particularly, for style transfer,
CLIP enables transferring more general and abstract styles
without collecting the style images in advance, as the style
can be efficiently described with natural language, and the
result is optimized by minimizing the CLIP similarity be-
tween the text description and the stylized image. How-
ever, directly using CLIP to guide style transfer leads to
undesirable artifacts (mainly written words and unrelated
visual entities) spread over the image. In this paper, we
propose SpectralCLIP, which is based on a spectral repre-
sentation of the CLIP embedding sequence, where most of
the common artifacts occupy specific frequencies. By mask-

*The two authors contributed equally to this paper.

ing the band including these frequencies, we can condition
the generation process to adhere to the target style proper-
ties (e.g., color, texture, paint stroke, etc.) while exclud-
ing the generation of larger-scale structures correspond-
ing to the artifacts. Experimental results show that Spec-
tralCLIP prevents the generation of artifacts effectively in
quantitative and qualitative terms, without impairing the
stylisation quality. We also apply SpectralCLIP to text-
conditioned image generation and show that it prevents
written words in the generated images. Our code is avail-
able at https://github.com/zipengxuc/SpectralCLIP.

1. Introduction

Style transfer is about transforming the overall appear-
ance of a given content image to adhere to a specific style
while preserving its content. Starting from the pioneering
paper of Gatys et al. [14], this task has attracted a grow-
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ing interest in the scientific community because of its large
application interest (e.g., in the e-commerce or the enter-
tainment industry, etc.). While most of the methods pro-
posed so far extract the style information from a reference
image [2, 3, 5, 8, 9, 14, 20, 27, 29, 30, 33, 41, 43, 44, 48] or
a set of reference images [23, 38, 49], very recently, with
the emergence of vision-language foundation models, a few
approaches have started investigating the use of a textual
description of the target style [13, 24, 47]. The main idea is
to describe the target style with a natural language sentence
(e.g., “pop art”) which is used to condition the content im-
age transformation. The main advantage of this approach is
that natural language sentences can describe more general
and more abstract style characteristics that can hardly be ex-
tracted from a single reference image. Moreover, this way,
it is possible to indirectly exploit the knowledge contained
in the vision-language foundation model, which is usually
pre-trained using hundreds of millions of image-text pairs.

Kwon et al. proposed CLIPstyler [24], which utilises the
power of CLIP for text-guided style transfer for arbitrary
images, demonstrating a broader range of styles and higher
transfer quality than previous work based on reference im-
ages. However, as pointed out in [24], this method tends
to generate images with over-specific artifacts. To distin-
guish, we define two types of artifacts: textual and visual
artifacts. Visual artifacts are over-specific entities drawn
on the generated image. In the example of Fig. 1, when
the style is “pop art”, CLIPstyler adds red lips and faces
onto the image. Textual artifacts are written words, typi-
cally from the textual prompt describing the desired style,
that appear on the generated image in an unwanted manner.
Examples can also be seen in Fig. 1, where the word “pop”
is spread over the generated image when CLIPstyler trans-
fers the image with the style of “pop art”. The presence of
this type of artifact is largely due to the entanglement of vi-
sual concepts and written texts inherent in CLIP [31]. This
entanglement issue in CLIP has been shown to be problem-
atic and prevalent in a variety of CLIP application scenar-
ios, including zero-shot classification and text-guided gen-
eration. The study and alleviation of effects resulting from
such undesirable entanglement is a significant direction that
has attracted increasing research attention [15, 25, 31].

In this paper, we propose to prevent artifact generation in
text-guided style transfer using a spectral approach. Spec-
tral analysis has been used to analyze temporal or spatial
variations of signals [16]. Recently, researchers in the field
of natural language processing (NLP) have proven its ef-
fectiveness in capturing linguistic information at different
granular levels [32, 40]. Tamkin et al. [40] show that the
sequence of textual tokens input to a Transformer network
[42] contains structures at different scales: e.g., the word
scale, the sentence scale, the document scale, etc. These
scales correspond to different frequencies in the changes

of the values of the neurons’ activations and can be iso-
lated using the coefficients obtained by applying a DCT
to the neuron activation sequence [40]. Intuitively, analo-
gously to a sequence of linguistic tokens containing a hi-
erarchy of semantic levels (i.e. from word level up to the
document level), the constituent patches of an image also
contain information at different levels. Similarly to [40],
we sort the frequency components into several continuous
bands. After analysing the patterns of artifacts present in
CLIPstyler-generated stylised images, we find that these ar-
tifacts are highly related to certain frequency bands, and
that by masking out these frequency components, we can
remove the artifacts effectively without hurting the qual-
ity of stylised images. Hence, we propose SpectralCLIP to
mask out those frequency bands, which implements a spec-
tral filtering layer on top of the last layer of the CLIP vision
encoder. We conduct experiments that verify the following
points: (i) we experiment with many types of styles and find
SpectralCLIP can effectively reduce both visual and textual
artifacts while maintaining the target style well; (ii) we con-
duct a user study of 30 participants to compare the visual
quality in terms of the overall style and the artifact-free per-
formance of generated images, and find that our generated
images are preferred by 55.28% and 74.44% of the users in
terms of overall quality and artifact-free performance, re-
spectively (Sec. 4.2); and (iii) we also leverage the ‘learn-
to-spell’ CLIP (the CLIP subspace that focuses on written
texts in the image) [31] to quantitatively validate that Spec-
tralCLIP efficiently reduces textual artifacts (Sec. 4.1) as
the score w.r.t. written texts is notably reduced. In addition,
we employ SpectralCLIP for text-guided image generation
(Sec. 4.4) and show it effectively prevents written words on
the generated images.

To conclude, the contributions of this paper are:

• We propose SpectralCLIP to prevent both textual and
visual artifacts in CLIP-guided style transfer. The ef-
fectiveness of SpectralCLIP has been verified on mul-
tiple styles through qualitative results, quantitative re-
sults, and a user study.

• SpectralCLIP is the first work to use spectral filtering
in vision-language models. Other than solving the arti-
facts issues in CLIP-guided image style transfer, it also
gives a new perspective on the disentangling of written
texts and visual concepts in the CLIP space.

• To emphasize the generality of SpectralCLIP, we show
that it can reduce the textual artifact generation also
when used in a non style-transfer task and jointly with
a completely different generator based on VQGAN.
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2. Related Work

Reference Image-Based Style Transfer. After a few
initial works on style transfer [11,19], Gatys et al. [14] pro-
pose to use the Gram matrix of a convolutional network to
represent the target style extracted from a single reference
image. Following this paradigm, multiple aspects have been
successively explored, ranging from e.g., arbitrary style
transfer [17, 20, 33], diversified style transfer [41, 44], at-
tention mechanisms to fuse style and content [29, 33, 48],
reducing artifacts [2, 5, 30, 43], increasing the content per-
sistence [26, 45], and many others. However, it is tricky
to generalize the description of an abstract style (e.g., “pop
art” or “warm and calm”) from a single reference image.
For this reason, a line of work is based on using a (large) set
of reference images of the target style [4,23,38,49]. In con-
trast, humans can usually understand a style using one or a
few words, thanks to their knowledge and the relation they
learned between words and visual appearance. Massively
trained vision-language models like CLIP [36] now make
it possible to emulate this human process, and text-guided
style transfer approaches can avoid collecting a dataset for
each target style, with a simple textual query.

CLIP-Guided Image Synthesis. The CLIP space has
been largely used for image synthesis (e.g., image gener-
ation [7, 35, 39] and image manipulation [1, 6, 34, 46]).
However, when using CLIP for a text-guided style transfer
task, a challenging aspect is to preserve the content while
changing the style, since the style textual description usu-
ally does not contain any reference to this content. To solve
this problem, Gal et al. [13] propose a directional loss and
fine-tune a StyleGAN [21, 22] pre-trained using images of
a specific domain. CLIPstyler [24] extends this approach to
an open-domain scenario and uses multiple patches. How-
ever, the multi-patch directional loss leads to the generation
of textual artifacts and “over-specification”, where the lat-
ter refers to over-specific visual artifacts which locally re-
mind of the textual description of the style [24] (Sec. 1).
Most of the experiments shown in this paper are based on
a CLIPstyler baseline, and we show that using Spectral-
CLIP for the directional loss computation, we can largely
alleviate both the visual and textual artifact problem. Fi-
nally, Materzynska et al. [31] analyse the text-image en-
tanglement problem in the CLIP space, and learn orthog-
onal projections (“forget-to-spell” and “learn-to-spell”) of
this space to disentangle the two modalities. We empiri-
cally show that using the “forget-to-spell” projection on a
CLIPstyler baseline, we can indeed reduce the textual ar-
tifacts. In contrast, the proposed SpectralCLIP can reduce
the generation of both the visual and the textual artifacts.

Spatial domain
(the outputs of the 

vision encoder of CLIP)

Frequency domain
Whole spectrum Band-stop filtering

image w/ artifacts image w/o artifactscontent

Figure 2. An illustration of SpectralCLIP. To transfer a “cartoon”
style to the leftmost content image, CLIPstyler generates many
cartoon-like artifacts, spreading over the whole image (central fig-
ure). The corresponding spectral representation is a composition
of frequencies with different periods. Removing the frequencies
corresponding to the artifact scales (SpectralCLIP) prevents the
generation of these unwanted artifacts (right figure).

3. Method

SpectralCLIP is based on computing a text-image simi-
larity using a frequency filter of the CLIP representations.
In this section, we first describe how this filtering is ob-
tained (Sec. 3.1), and then we show how it can be plugged
into existing text-based generative approaches (Sec. 3.2),
and finally how the band filters are selected (Sec. 3.3).

3.1. Spectral based filtering

Given an image I , we use the CLIP vision encoder Ev(·)
to represent I with a grid of k ⇥ k vectors which either are
extracted from the last convolutional layer of a ResNet [18]
or correspond to the final embeddings of a Vision Trans-
former [10]. Our method is independent of the specific en-
coder architecture and can be applied to both types of net-
works. In the experiments of this paper, following [24], we
used a ViT-B/32 [10], pre-trained by the authors of CLIP
and then frozen. Since a ViT-based encoder also includes a
class token, we get n = 1+k2 vectors, which we flatten into
a sequence: V = Ev(I), where V = {vvv0, ..., vvvi, ..., vvvn�1}.
Despite each vvvi 2 Rd being a d-dimensional vector, fol-
lowing [40], a spectral representation of V can be obtained
separately considering each dimension j (0  j  d � 1),
which, in our case, corresponds to the j-th channel of the
CLIP embedding. For a given j, if x(j)

i = vvvi[j] is the j-
th component of vvvi, the corresponding (scalar-valued) se-
quence X(j) = {x(j)

0 , ..., x(j)
n�1} can be represented in the

frequency domain using, e.g., the DCT-II variant of DCT:

f (j)
m =

n�1X

i=0

x(j)
i cos

h⇡m
n

(i+ 1/2)
i
, (1)

where m = 0, ..., n � 1, and f (j)
m is the coefficient of the

m-th frequency and represents the contribution of the cor-
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responding cosine wave in the “signal” discretely sampled
by the sequence X(j). Different frequencies describe differ-
ent cosine waves, and each frequency period (i.e., the num-
ber of elements of X(j) it takes to complete a full cycle)
corresponds to the scale of the change in the activation of
the j-th neuron. Tamkin et al. [40] observe that, in the nat-
ural language processing domain, these scale changes usu-
ally correspond to different structures contained in the input
document: e.g., the single word structure corresponds to the
highest frequencies, while medium-level frequencies corre-
spond to sentences, etc. Analogously, since, in our domain,
artifacts are relatively large-scale visual structures appear-
ing repeatedly throughout the image (Sec. 1), we separate
those frequencies most likely corresponding to the artifacts
from the other frequencies containing useful style informa-
tion (texture, color, etc.). To do so, we use a band-stop filter
(see Fig. 2), inspired by periodic noise removal techniques
in spectral-based image processing [16].

Concretely, we stack all the frequencies of all the d chan-
nels in a single d ⇥ n matrix F , where the j-th row Fj

contains the n DCT coefficients in Eq. (1). Then, for each
target style, we define a binary filter bbb 2 {0, 1}n, which
contains zero elements only in specific bands (see Sec. 3.3
for details). We use bbb to zero out those columns in F which
should be filtered:

S = F �M [bbb], (2)

where � is the Hadamard product, and M [bbb] is a d ⇥ n
matrix in which all the elements are ones except those cor-
responding to the columns in bbb, which are zeros.

S is the spectral representation of V , in which frequen-
cies bbb are ignored. Note that, differently from [40], where
the spectrum of each neuron is individually filtered, in our
case bbb is uniformly used for all the d dimensions. This
is because an artifact is a complex visual structure, most
likely simultaneously involving different dimensions of the
CLIP space. S is finally back-projected into the origi-
nal CLIP space using the inverse DCT (IDCT), obtaining
V̂ = {v̂vv0, ..., v̂vvn�1}. V̂ is a representation of I which can
be used jointly with different metrics (e.g., the Euclidean
metric or a cosine similarity, etc.) to compute a CLIP-
based similarity between images or between images and
text which is not influenced by the frequencies in bbb. This
way, we can condition the generation process using a tex-
tual sentence (Sec. 3.2) while simultaneously ignoring those
frequencies corresponding to the artifact generation.

3.2. Computing an image-text similarity

In this section, we show how the proposed spectral-based
filtering of an image representation (Sec. 3.1) can be used
to condition a generative process and plugged into exist-
ing text-conditioned generative frameworks with negligible
modifications of the original approaches. In our experi-

band Frequency index Period (tokens)

b1 0-1 25-1
b2 2-3 7-25
b3 4-7 4-7
b4 8-15 2-4
b5 16-49 1-2

Table 1. Correspondences between the bands, frequency indexes
and period (tokens). The corresponding periods are approximate
numbers of tokens that are needed to complete a cosine wave cy-
cle.

ments, we use both CLIPstyler [24] (a state-of-the-art text-
guided style transfer method, see Secs. 1 and 2) and the
VQGAN+CLIP method [7] adopted in [31].

VQGAN+CLIP [7] is a text-to-image generation ap-
proach based on VQGAN discrete latent codes [12]. The
latter are randomly sampled and then optimized using the
cosine similarity between the CLIP embedding of the gen-
erated image (zzzv) and the CLIP embedding of a textual
prompt (zzzt). The only thing we need to change to use Spec-
tralCLIP in this framework is the image representation. To
do so, we use zzzv = v̂vv0, where v̂vv0 is the representation of the
class token in V̂ (Sec. 3.1). Note that v̂vv0 6= vvv0 because the
frequencies in bbb have been removed. Other possible choices
can be, e.g., using an average pooling of V̂ or a linear pro-
jection of the concatenation of all the elements of V̂ into a
vector of the same dimensions as zzzt. Following [7] we use
the class token which is a simple and effective solution.

CLIPstyler [24] is based on a U-Net generator [37]
which, given a content image Ic as input, generates a style-
transferred image Is. To condition the generation process
on a style textual description s (where s is a natural lan-
guage sentence), the embedding of s, obtained using the
textual CLIP encoder, is compared with the textual em-
bedding of a fixed sentence (“Photo”). The difference be-
tween these two textual embeddings should have the same
direction of the difference between the visual embedding of
Ic and Is. This directional CLIP loss, initially proposed
in [13], is further developed in CLIPstyler by introducing
patch-level comparisons. We adopt exactly the same frame-
work, and the only necessary change to use SpectralCLIP
in CLIPstyler is to replace the standard CLIP visual em-
bedding of an image (or an image patch) with our filtered
representation. Since in CLIPstyler an image/image patch
is represented using the class token, we analogously use the
class token extracted from V̂ (i.e., zzzv = v̂vv0).

3.3. Band selection

So far we have assumed that we can associate a fre-
quency filter bbb to a given textual description of a style (in
CLIPstyler) or to a textual prompt (in VQGAN+CLIP).
However, since selecting the best bbb 2 {0, 1}n would be
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Figure 3. Style transfer results using either the CLIP or SpectralCLIP to condition the generation. SpectralCLIP effectively prevents artifact
generation while achieving similar style features, e.g., color, paint stroke (artifacts are highlighted).

intractable, we adopt a simpler solution, inspired by [40],
where the whole spectrum of frequencies (0, ..., n � 1) is
split in fixed bands, each being a contiguous interval of fre-
quencies. Note that each index m of the DCT has a fre-
quency of 2m (see Eq. (1)), and that given a sequence of
length N , the period is N/2m (it takes N/2m tokens to
complete a cycle). For example, in our case where ViT-
B/32 is used as the vision encoder, the sequence length is
N = (224/32)2 + 1 = 50. Therefore, index 1 of the
DCT corresponds to the period of 25, and index 5 to the
period of 5, etc. Specifically, we define the following 5
bands: b1 = [0, 1], b2 = [2, 3], b3 = [4, 7], b4 = [8, 15],
b5 = [16, 49]. The correspondence between these frequency
bands and periods is presented in Tab. 1. In ViT-B/32, the
input image is first resized to the resolution of 2242, and
then divided into 7⇥ 7 image patches of 322. In this sense,
it can be estimated that b1 relates to artifacts that roughly
span more than 3 lines of patches, b2 to those spanning 2
lines, and b3 � b5 to small artifacts spanning within 1 line.

Another problem is that, given a style description, the
artifact condition is unpredictable. Specifically, it is dif-
ficult to judge if the stylized image contains artifacts or
not, as well as to detect the artifact appearance. Never-
theless, through experiments on various styles, we find the
artifacts are usually at three scales. Therefore, we pro-
pose a simple yet effective method based on empirical stud-
ies. Through experimenting on multiple band combina-
tions, we find three filtering strategies (c1 = {b1, b2, b4},
c2 = {b1, b2}, c3 = {b1}) that are effective for preventing
the artifacts at the corresponding three scales, respectively.

For instance, using c1, the associated filter bbb contains ones
in the intervals b1, b2, b4, and it is used in Eq. (2) to zero out
the corresponding bands. We use visual inspection to select
the band combination that leads to the best result, then it is
used in all image stylisation conditioned on s. This selec-
tion step is done only once per given style s using a single
image content. More details are provided in Appendix A.

4. Experiments

4.1. Style Transfer Results

In this section, we evaluate SpectralCLIP in a text-
guided style transfer task. For a fair comparison with CLIP-
styler [24], we use its same network, loss functions, training
protocols, hyperparameters, etc., changing only the basic
image-text similarity as described in Sec. 3.2.
Qualitative results. In Fig. 1 and Fig. 3, we show multiple
text-guided style transfer results generated using either the
standard CLIP space (i.e., the original CLIPstyler method)
or our SpectralCLIP. These images show that CLIPstyler
frequently generates visual and textual artifacts. By con-
trast, the results generated using SpectralCLIP do not have
the issues of both visual artifacts and textual artifacts while
the styles are presented well. Take our results of “outsider
art” (Fig. 3) for example, the style shown in the images is
similar to the style in the results of CLIPstyler, but with ar-
tifacts excluded. More qualitative results are provided in
Appendix E. Additionally, results of non-artistic concrete
styles (e.g., fire) are also provided in Appendix F.
Quantitative results. Quantitatively evaluating a style-
transfer approach is difficult because of the lack of a uni-
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Figure 4. Comparisons among text-guided style transfer results, generated using CLIPstyler with (a) CLIP, (b) forget-to-spell CLIP [31],
and (c) SpectralCLIP, respectively (artifacts are highlighted).

versally accepted metric that can assess the reflection of a
target style in a generated image. On the other hand, using
a cosine similarity between the CLIP-based representations
of the target style and the generated image may favour those
methods (such as CLIPstyler) which use the same similarity
in the optimization stage. To partially solve this problem,
we use an additional metric, based on the “learn-to-spell”
projection of the CLIP space proposed (and trained) in [31]
(Sec. 2). The idea behind this metric is that since part of
the artifacts have a textual nature (i.e., strings drawn on the
generated images, Secs. 1 and 2), then a learn-to-spell based
similarity between a generated image and the corresponding
textual description of the style should be higher for those
images containing more textual artifacts. We provide more
discussion of this metric in Appendix D.

Concretely, we sample 100 images from the COCO [28]
val-set and use them as content images. Then, for each
style, we generate the style transfer results using either
SpectralCLIP or CLIPstyler. Finally, we use both the orig-
inal CLIP space and learn-to-spell CLIP projection [31] to
evaluate the similarity between the textual style description
and the generated images. Tab. 2 shows that using Spectral-
CLIP, the learn-to-spell CLIP score is significantly reduced,
indicating that SpectralCLIP effectively prevents textual ar-
tifact generation. On the other hand, the CLIP similarity
is also reduced; however, as aforementioned, this metric is
biased towards CLIPstyler, where the whole, non-filtered
CLIP image representation is used for optimization.

4.2. Comparison with Forget-to-Spell CLIP

In this section, we compare SpectralCLIP with “forget-
to-spell” CLIP [31], which is a learned subspace of CLIP
semantic space that alleviates the text-image entanglement
problem (Sec. 1). Specifically, we again use CLIPstyler as
the baseline and we replace its (standard) CLIP space with
the forget-to-spell projection proposed and trained in [31].
Hence, we compare three methods: (a) CLIPstyler with

CLIPstyler
w. CLIP

CLIPstyler w.
SpectralCLIP

cartoon CLIP 0.269 ±0.014 0.256 ±0.014

CLIP-Spell 0.482 ±0.056 0.441 ±0.066

pop art CLIP 0.315 ±0.023 0.287 ±0.018

CLIP-Spell 0.419 ±0.137 0.353 ±0.121

visionary
art

CLIP 0.322 ±0.016 0.278 ±0.018

CLIP-Spell 0.527 ±0.086 0.397 ±0.057

outsider
art

CLIP 0.314 ±0.018 0.255 ±0.019

CLIP-Spell 0.571 ±0.108 0.360 ±0.095

Table 2. Average cosine similarity between the stylized images
and the textual description of the style, measured both on the orig-
inal CLIP space (") and on the learn-to-spell CLIP (in short re-
ferred to as CLIP-Spell) (#).

(%)
w.

CLIP
w.

forget-to-spell
w.

SpectralCLIP

Overall 34.44 10.28 55.28
Artifact-Free 19.45 6.11 74.44

Table 3. User preference of the three style transfer methods with
respect to the overall quality of the generated images (") and the
presence of artifacts (").

CLIP (i.e., the original CLIPstyler), (b) CLIPstyler with the
forget-to-spell CLIP, and (c) CLIPstyler with SpectralCLIP.
Qualitative results. From the qualitative results shown in
Fig. 4, we draw three conclusions: 1) the images generated
by the original CLIPstyler contain both visual and textual
artifacts; 2) using the forget-to-spell CLIP alleviates the tex-
tual artifact issue, but it still generates visual artifacts, which
makes the results unlike human created artworks; and 3)
similar to the analysis in Sec. 4.1, using SpectralCLIP, no
visual nor textual artifacts have been generated, improving
the overall quality of the results.
User Study. We further compare the three methods through
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Figure 5. The effect of the patch-rejection threshold ⌧ in the CLIPstyler patch-loss (artifacts are highlighted, zoom in to see details).

a user study. Specifically, we use 10 styles jointly with two
different tasks which respectively analyse: 1) the overall
quality of the generated images, asking the users to assess
whether the stylized results are consistent with the target
style, the content is well preserved, and no inharmonious
artifacts are generated; and 2) the specific artifact issue,
asking the users to assess the generated images regarding
the possible presence of visual/textual artifacts. We ran-
domly sampled 100 content images from the COCO val-set
and then created a questionnaire with 24 questions. We re-
cruited 30 users, who were asked to select one out of the
three methods for each content image. The user preference
results, as reported in Tab. 3, show that SpectralCLIP gets
the best scores on both tasks. Specifically, SpectralCLIP
achieves a significantly higher preference score (77.44%)
in the artifact-free evaluation, indicating the effectiveness
of our proposal in preventing artifacts. More details about
the user study are provided in Appendix B.

4.3. Hyperparameter Study

Threshold in the patch loss. CLIPstyler uses a patch-
rejection threshold ⌧ in its patch loss to alleviate the over-
specification problem (Sec. 2). The value of this threshold
is a (manually selected) hyperparameter, which is fixed to
⌧ = 0.7 in [24]. In Fig. 5 we compare the use of this thresh-
old (⌧ = 0.7) with a non-thresholding variant (⌧ = 0.0).

The results show that the original CLIPstyler is heavily in-
fluenced by the thresholding, since its removal (⌧ = 0.0)
leads to the generation of many more artifacts, indepen-
dently of the target style. By contrast, SpectralCLIP is
much less sensitive to this thresholding, since the results us-
ing ⌧ = 0.0 are consistent with the images generated with
⌧ = 0.7, showing that our method does not rely on this
thresholding step to avoid over-specification.

Band selection. We study the effect of the band selection
(Sec. 3.3) using the style “visionary art” (Fig. 6), jointly
with five different filters: (i) masking bands 1, 2 and 4 (cor-
responding to c1 in Sec. 3.3); (ii) masking bands 1, 2 and
5; (iii) masking bands 1 and 2 (c2 in Sec. 3.3); (iv) masking
bands 1 (c3 in Sec. 3.3); and (v) only masking the lowest
frequency (i.e., the frequency index m = 0). Fig. 6 shows
that the visual appearance change caused by higher frequen-
cies tends to be more local, as can be observed by compar-
ing (i) with (ii), and (ii) with (iii). For instance, compar-
ing (i) with (ii), the former filter leads to greater visual ap-
pearance changes within a larger region. Moreover, the dif-
ferences between (ii) and (iii) are marginal, indicating that
band 5 (which includes the highest frequencies) is related
to changes in smaller areas. Furthermore, lower frequencies
result in the generation of larger artifacts, as shown by the
comparison between (iii) and (iv), and between (iv) and (v).
For example, not masking band 2 leads to the generation
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content (i) (ii)

(iii) (iv) (v)

Figure 6. The effects of different band-stop filters (artifacts are
highlighted).

of larger and more obvious artifacts on the eyes. A similar
phenomenon can be observed when we additionally do not
mask the frequency with index 1 (see (iv) and (v)). These
results confirm our assumption (Sec. 1) that most artifacts
are visual structures with a specific period, whose gener-
ation can be prevented by adopting the proposed spectral
representation and the corresponding frequency filters.

4.4. Text-to-Image Generation

To test the generality of SpectralCLIP, we consider a dif-
ferent task, adopting the text-to-image generation frame-
work used in [31] to evaluate the word-image disen-
tanglement of forget-to-spell and learn-to-spell (Secs. 1
and 4.2). Specifically, following [31], we use VQ-
GAN+CLIP [7] and we replace its text-image similar-
ity computed on the original CLIP space with Spectral-
CLIP. Fig. 7 compares the results obtained with VQ-
GAN+CLIP and VQGAN+SpectralCLIP, and confirms the
observations of Materzynska et al. [31], who highlight that
VQGAN+CLIP frequently generates inappropriate textual
strings (textual artifacts) mixed with visual content. By
contrast, this problem is largely alleviated with Spectral-
CLIP. Meanwhile, the generated image content in VQ-
GAN+SpectralCLIP is still consistent with the given text
prompt (except for the nonsense text input “irmin”). In all
the VQGAN+SpectralCLIP results shown in Fig. 7, we use
the same filtering strategy (masking only band 4, i.e., b4,
see Sec. 3.3). Note that the scale of a textual/visual artifact
depends on the CLIP encoder input, which is the full image
in the case of VQGAN, and this results in a shorter period
with respect to CLIPstyler.

Conclusion. Despite the wide success of vision-language
foundation models like CLIP in different vision-language
tasks, directly using CLIP for style transfer suffers from
the generation of visual and textual artifacts. To resolve
this problem, we propose SpectralCLIP, which transforms

(a) (b)

“pop art”

“time”

“irmin”

“equal”

text input

Figure 7. Text-to-image generation results using (a) VQ-
GAN+CLIP, and (b) VQGAN+SpectralCLIP.

the CLIP embedding sequence into the frequency domain
and filters those frequencies whose period corresponds to
the artifact scales. Experimental style transfer results show
that SpectralCLIP significantly mitigates artifact genera-
tion, thus improving the realistic degree and the quality of
the generated images.

Limitations. Despite the promising results of Spectral-
CLIP, there are still some limitations. Firstly, we empiri-
cally analyse the artifact patterns present in a range of artis-
tic styles, and mask out certain bands using one of the three
general filters. The reason why a certain target style tends
to produce different scales of artifacts is still unclear. This
may require a deeper understanding of how CLIP captures
these artistic concepts when it was pre-trained. Secondly,
this work defines three general band combinations that ef-
fectively produce cleaner stylised images. A more promis-
ing alternative for future work is to automatically select fre-
quency bands that cater to a target style. Recently, in the
language domain, Müller-Eberstein et al. [32] promote [40]
and develop learnable filters rather than handcrafted ones,
offering an intriguing direction to follow. To this end, for
image style transfer, a widely recognised metric to measure
the presence of artifacts is still missing.
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