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Abstract

Unmanned aerial vehicles (UAVs) are widely used for
image acquisition in various applications, and object de-
tection is a crucial task for UAV imagery analysis. How-
ever, training accurate object detectors requires a large
amount of annotated data, which can be expensive and time-
consuming. To address this issue, we propose an active
learning framework for single-stage object detectors in UAV
images. First, we introduce Diverse Uncertainty Aggrega-
tion (DUA), a novel uncertainty aggregation method that
aims to select images with a more diverse variety of ob-
ject classes with high uncertainties. Second, we address
the problem of class imbalance by adjusting the uncertainty
calculation based on the performance of each class. Third,
we illustrate how reducing the number of images for label-
ing does not necessarily lead to a lower labeling cost. Eval-
uation of our approach on a common UAV dataset shows
that we can perform similarly (within 0.02 0.5mAP) to using
the whole dataset while using only 25% of the images and
32% of the labeled objects. It also outperforms Random Se-
lection and some other aggregation methods. Evaluation on
VOC2012 show also consistent results utilizing only 25% of
the labeling cost to reach a performance within 0.1 0.5mAP
of using the whole dataset. Our results suggest that our pro-
posed active learning framework can effectively reduce the
annotation cost while improving the performance of single-
stage object detectors in UAV image settings. The code is
available on: https://github.com/asmayamani/
DUA

1. Introduction

Unmanned aerial vehicles (UAVs) have revolutionized
the way of collecting images for various applications, from
monitoring crop growth in agriculture [15] to disaster man-
agement [7] and surveillance [2]. However, despite the
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Figure 1. Active Learning for Object Detection. We train an
object detector on a set of labeled images. Then, we select the
most informative images from a set of unlabeled images through
our new DUA active sampler and WRP weighting mechanism. An
oracle annotates the unlabeled images used to re-train the object
detector.

great potential of UAV imagery, the diversity of objects and
scenes captured in UAV images poses a significant annota-
tion challenge. Annotating these images can be a costly and
time-consuming task, hindering the use of UAV imagery for
several practical applications.

To circumvent these limitations, active learning has
emerged as a promising solution to reduce the annotation
cost by selecting the most informative and diverse samples
to annotate next. Active learning algorithms aim to select
a small subset of unlabeled data that experts can annotate
and then add to the training set to improve the model’s per-
formance. Active learning methods have been successfully
applied to various computer vision tasks [2 1], including ob-
ject detection [4], segmentation [26], and classification [ 1 6].
However, the existing active learning methods for object de-
tection in UAV image settings mainly focus on two-stage
detectors, where the detection is divided into the regional
proposal step and the classification step. These detectors are
more suitable for active learning than single-stage detectors,
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where the bounding box regression and object classification
are done simultaneously. Moreover, most of these meth-
ods do not address the problem of class imbalance, which
is prevalent in UAV imagery due to the high variation in
object sizes and frequencies. Two-stage frameworks divide
the detection process into the region proposal and the clas-
sification stage. These models first propose several object
candidates, known as regions of interest (Rol), using refer-
ence boxes (anchors). In the second step, the proposals are
classified, and their localization is refined.

While accelerating improvement is happening in single-
stage object detectors, much of the current work on active
learning for object detection focuses on two-stage detectors
[1,8,12,17,19,23,28], or requires training auxiliary models
[27]. In previous work [1,4,8,12,17,19,23,28], the budget
is considered on the image level without considering the
label level, so approaches favoring highly dense images are
usually selected. However, they lead to a higher cost per
image [4]. On the application level, object detection for
images shot from a UAV holds special challenges to other
object detection models. These challenges include small
object inference, background clutter, and wide viewpoint
[5]. In addition, annotating only one view of the object may
not be sufficient to train a reliable object detection model
since drone images are captured from different angles.

This paper proposes an active learning framework for
single-stage object detection in UAV images. Our approach
aims to reduce the annotation cost while maintaining high
accuracy by selecting the most informative and diverse sam-
ples for the annotation process. We introduce a novel uncer-
tainty aggregation method called Diversity in Uncertainty
Aggregation (DUA) approach that sums each class’s aver-
age uncertainty per image. Additionally, we propose dif-
ferent weighting methods to address the class imbalance is-
sue. Our approach uses significantly fewer labeled samples
while outperforming several baseline methods, demonstrat-
ing the effectiveness of our proposed method. Figure 1 il-
lustrates the main ideas of our approach.

Contributions. We summarize our contributions as fol-
lows: (i) We propose a DUA technique to query images
for active learning to aggregate uncertainties while ensur-
ing that images that carry information on various classes
are selected. (ii) We propose two methods for addressing
the problem of class imbalance by adjusting the uncertainty
calculation based on the performance of each class. (iii)
Provide analysis on the labeling cost at different aggrega-
tion and weighting methods.

2. Related Work

Early works on active learning relied on kernel meth-
ods by feeding image pairs through different kernels to cap-
ture image similarity as an input to a Support Vector Ma-
chine (SVM) [16]. With the use of deep learning in com-

puter vision tasks comes the need to re-purpose appropriate
acquisition functions to accommodate higher dimensional
data [10]. Deep active learning can be categorized into
Uncertainty-based methods, Diversity-based methods, and
other hybrid approaches. The following sections will ex-
plain some of those methods and how previous works dealt
with an imbalanced class problem.

Uncertainty-based Methods. Multiple studies focused on
approximating aleatory and epistemic uncertainty, as the
Convolution Neural Network (CNN) model’s uncertainties
are poorly captured. Early work [3, 10] in this field fo-
cused on the image classification task. In [10], Monte-Carlo
(MC) dropout captures the epistemic uncertainty, keeping
the dropout during testing with multiple runs to approx-
imate the posterior. Different acquisition functions rely-
ing on Bayesian CNN uncertainty are explored. The study
shows that using Bayesian CNN outperforms determinis-
tic CNN in capturing uncertainty. It also shows that using
variation ratio as the acquisition function performed bet-
ter with distinct classes. In contrast, BALD [13], which
maximizes the mutual information between predictions and
model posterior, performs better when the difference be-
tween the classes is very narrow. Such performance is at-
tributed to the fact that BALD avoids selecting noisy points
and selects points that reduce the epistemic uncertainty. In-
spired by Deep Ensembles [ 18], Beluch et al. [3] proposed
averaging the Softmax vector of five CNN image classifi-
cation models with different parameters to form an ensem-
ble. The images with the highest uncertainties are queried
by measuring the predictive variance between the vectors.
This approach outperformed MC-dropout and the single
CNNs regardless of the acquisition functions. However, this
method is computationally expensive for large datasets.

One of the earliest works related to active learning on
object detection is [4]. It studied the different aggregation
methods of uncertainties using the sum, average, and maxi-
mum uncertainties. The reported results show that the sum
aggregation methods perform better mean average preci-
sion (mAP) and area under the mean squared error learning
curve (AULC). To suppress high uncertainties of noisy neg-
ative instances from the background, Yuan et al. [29] lever-
aged the discrepancy of two adversarial instance classifiers
to learn each object’s uncertainty. The image uncertainty
was estimated by treating the image as a bag of instances
and utilizing a classifier to estimate the labels. The instance
uncertainty scores were iteratively re-weighted to minimize
the image classification loss. Ensemble uncertainty-based
methods lowered the labeling cost significantly in models
built for autonomous driving [8]. More recent studies at-
tempted to capture different uncertainties in two-stage de-
tectors. Choi et al. [6] proposed mixture density networks
to learn a probabilistic distribution of both the localization
and classification to estimate the aleatoric and epistemic un-
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certainty in a single forward pass of a single model. Yu et
al. [28] proposed a Consistency-based Active Learning ap-
proach for object Detection (CALD), which integrates the
box regression uncertainties and classification of uncertain-
ties of two-stage detectors with a single metric. It also fo-
cuses on the informative local region in an image rather than
the whole image to better estimate the image uncertainties.
CALD did outperform [1,22] based on a recent survey [9].

Diversity-based Methods. This approach attempts to over-
come a limitation in uncertainty-based methods in which
highly correlated images are selected. Therefore, the im-
ages are clustered in a diversity-based approach, and a rep-
resentative image is selected. Sener et al. [24] is one of
the earliest works that recognized the limitation of selecting
highly correlated images. To mitigate this issue, the study
formulates the active learning problem as a core-set prob-
lem in which the algorithm selects the optimum cover set
for random batches of images. It then converts this problem
to the K-Center problem to choose the centers of the sets.
By this conversion, the optimum cover set is the image that
minimizes the L2-norms between the representation in the
last fully connected layer in a CNN and the representation
of the rest of the images in the set. The core-set Diversity-
based approach showed improvement of 6% across subsets
in the satellite images study [ 1].

Other Methods. Focusing on binary class detection,
Aghdam et al. [1] calculates the posterior probability for
each pixel and aggregates pixel-level scores per image and
thresholds the distance between the representation of the se-
lected images. This is based on the hypothesis that patches
in different images will have similar prediction probability
distribution if they have been seen adequately during train-
ing, ensuring the diversity of the selection. A task-agnostic
approach is proposed by Yoo et al. [27] by introducing a
loss prediction module. This component is a small para-
metric module to a target neural network to learn to predict
the loss. It then predicts the loss over the unlabeled dataset
to select the images with higher loss.

Dealing with Imbalanced Classes. One challenge that
introduces biases in the object detection model is the
imbalances of objects’ classes within the training data. To
tackle this issue, Brust et al. [4] weighted the uncertainties
by the object’s presence in the training data of the previous
iterations. Other studies used the ratio of the selected
labels [23] or the loss of the background and the other ob-
jects’ classes [19] as weights for the class with a weighted
cross-entropy loss function. A weighting filter tailored for
object detection is proposed by Huang et al. [14], which
calculates the frequency domain information of images and
removes similar ones in selected data.

This work proposes a hybrid method that aggregates un-
certainties while ensuring the object diversity of the selected

images. It applies to single-stage object detection models
and overcomes limitations of summing uncertainties that fa-
vor images with a high population of the over-represented
class. The proposed approach also overcomes the limita-
tions of averaging uncertainties, selecting images with few
classes and high background noise. The proposed approach
also deals with the class imbalance issue as it adjusts the
ranking of the images chosen by weighting the uncertainties
obtained by the class performance. This adjustment aids in
prioritizing objects with lower AP in a validation subset due
to their rareness, limited intra-class variance representation,
or low inter-class variance.

3. Methodology

Figure 1 shows a high-level flow of the proposed active
learning framework. The system starts with an object de-
tection (OD) model trained on a small subset of labeled im-
ages. Then, it runs inference on the set of unlabeled images.
The uncertainties of the detected objects are aggregated us-
ing Diversity in Uncertainty Aggregation (DUA), and then
weighted using Weighting by Random Performance (WRP).
The images are ranked based on the weighted uncertainty
and, subsequently, based on the budget, are annotated. Fi-
nally, the model is re-trained using the updated subset of
annotated images. You Only Look Once (YOLO) [20] will
be used to demonstrate how our querying approach can be
applied to single-stage object detectors. We will discuss the
general details of YOLO and how it calculates the confi-
dence scores. Then, we will discuss how to calculate and
aggregate the uncertainties. Finally, we discuss how we
weigh the aggregated uncertainties to account for class im-
balance.

3.1. Backbone Model

This work uses YOLOV7 as a backbone for the proposed
approach. YOLO is one of the fastest and most highly
accurate real-time object detection techniques in the com-
puter vision field [25]. YOLO is a single-stage object de-
tector that formulates object detection as a regression prob-
lem [20]. The model outputs the bounding box coordi-
nates of the detected objects with their class probabilities.
YOLO works by dividing the image into an S x S grid,
in which each cell is responsible for predicting the output
of B bounding boxes after extracting the features from the
whole image. The features are extracted through multiple
layers, and the last layer produces the output vector. This
vector contains the coordinates and size of the bounding
box, the probability of the bounding box containing an ob-
ject (con fidencepo,.), and C' conditional class probabilities
(Pr(class;|object)). The con fidencepo, is calculated dur-
ing the training process as follows:

confidencepo, = Pr(object).IoU €))
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where Pr(object) is the probability of the box containing an
object, and IoU is the intersection over the union between
the bounding box and the ground truth.

3.2. Calculating Uncertainties

As mentioned, YOLO formulates object detection into a
regression problem. At testing, the model outputs the confi-
dence scores encoding the probability of that class appear-
ing in a bounding box and how well the predicted box fits
the object. This is calculated by multiplying the conditional
class probabilities, Pr(class;|object), and the individual
box confidence, con fidencep,,, predictions learned during
training [20]. In this work, the uncertainty of an object is
calculated as.

uncertaintyobject = 1 — con fidenceciqss )
The class confidence is computed as follows:

con fidenceciqass = confidencepo, X Pr(class;|object)

3)
3.3. Diversity in Uncertainty Aggregation (DUA)

We propose DUA, a method that encourages class diver-
sity when aggregating the uncertainties. For each unlabeled
image in the iteration, we average the uncertaintyopject
per class to obtain uncertaintyci,ss. Then, we perform
summation over all uncertainty.;,ss- By doing so, images
with a larger variety of classes with high average uncer-
tainty per class are obtained. This aims to select images
that have distributed contributions to the improvement of
AP across classes and limit over-represented classes from
overpopulating the selection at each iteration. Figure 2
illustrates how summing uncertainties (Sum) and averag-
ing them Avg from [4] compares to our DUA approach
when selecting between different images after running in-
ference. The figure contains the top selected picture across
approaches at the 1%¢ iteration. The Sum approach selects
an image with over 300 detected objects belonging to 4
classes, and 200 of these objects belong to the “car” class.
The Average approach selects an image with only 10 objects
across 2 classes, each object with high uncertainty. On the
other hand, DUA, with and without weighting, selects im-
ages with 7 classes and less than 140 objects with varying
uncertainties.

3.4. Weighting by Performance

Weighting the classes by their presence in the training
data (WTC), as in [4], may suppress the selection of classes
with many labels in the training subset yet perform poorly.
This can be attributed to the low inter-class variance that
causes high confusion or the low representation of the high
intra-class variance. To mitigate such issues, we propose
Weighing by Random subset Performance (WRP). In this

= Dun
Figure 2. Most Informative Images at First Iteration. The top
image was selected in the first iteration using different aggregation
approaches.
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Figure 3. Weighting by random performance (WRP) approach.

proposed approach, the uncertainties of different classes at
an image are weighted before ranking based on the current
model performance on a random validation subset sampled
and labeled from the unlabeled training data per the for-
mula:

W = MinMaxzScaler(1 — AP, (C)), @)

where W is the weight vector for all classes, and C is the
class vector. The flow of the algorithm is illustrated in Fig-
ure 3.

Although weighting randomly from the unlabeled data is
the optimal choice to avoid overfitting, sacrificing 10% of
the budget for Random labeling to test on could be costly.
Another approach would be to weight based on the train-
ing performance (WTP). For this, we use the AP of the
model on the training subset, and we perform the same
scaling as in Equation 4. With this, all the labeling bud-
get goes to labeling images selected by the approach. II-
lustrated in Figure 2, weighting the uncertainties by perfor-
mance minimizes the selection of images of objects on the
high-performing side. DUA without weighting pulls images
with a higher number of cars, 114, whereas when weighting
by performance using WRP only 35 cars are retrieved.
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4. Experiments
4.1. Experimental Setup

Datasets. We examined and evaluated our proposed ap-
proach on the VisDrone2019 dataset [5]. This dataset was
collected by the AISKYEYE team. The dataset contains
288 videos with 261, 908 frames and 10, 209 static images.
These images and videos are collected using various drone
platforms in different scenarios and cover different loca-
tions, environments, objects, and densities. The dataset is
prepared for object detection in drone images and videos,
single and multi-object tracking, and crowd counting. The
dataset consists of 6,471 images for training, of which
4,279 are annotated. The sizes for the validation, test-dev,
and testing subsets are 548, 1,610, and 1, 580, respectively.
VisDrone2019 dataset contains 10 classes: person, car, bus,
truck, bicycle, motor, pedestrian, van, awning-tricycle, and
tricycle. Table 1 shows the distribution of object instances
across classes. We also evaluate our approach on VOC2012
dataset. VOC2012 consists of 17,125 images for training
and validation. We use 90% as the training subset where we
perform the active learning proposed approaches and report
the results of the remaining 10% as the validation subset.

Fine-tuning and Incremental Learning Setup. For the
experiments the VisDrone dataset, we initialized the pro-
cess by selecting 100 random points (images). At each it-
eration, we included an extra 100 instance selected by the
active learning approach. In the case of the first experiment
related to the uncertainty aggregation approach, the active
learning approach is applied on 500 random instances as
preliminary experiments showed that applying active learn-
ing approaches to a large random sample of the training data
yields results through increased diversity. 500 was cho-
sen as it is sufficiently large for the size dataset and the
queried images per iteration. However, the whole dataset
is considered in the second experiment related to the dif-
ferent weighting approaches to minimize the confounding
factor of randomization. When evaluating the proposed ap-
proaches on VOC2012 we initialized the process by select-
ing 500 random points due to the larger training set and
number of classes. We then add 500 extra images based
on the active learning approach performed on the large pool
of 5000 images randomly selected from the training data.

Baseline. We employ several baselines to compare the per-
formance of our proposed method when it comes to the Vis-
Drone dataset. The first is to use Random sampling of new
images for each iteration. The second baseline is to aggre-
gate uncertainties by summing them (Sum), and the third is
to aggregate uncertainties by averaging them (Avg) [4]. We
also compare with training on the whole annotated train-
ing dataset (Whole). As for treating class imbalance, the
baseline considered is weighting the classes based on their
presence in the training data (WTP) [4]. When evaluating
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Figure 4. Active Learning Curves. Results of comparing dif-
ferent aggregation methods mAP@0.5 and the number of images
(Left) and objects (Right) labeled per iteration.

on VOC2012, we only consider Whole, Random, Sum as
baselines.

4.2. Comparison with Baseline
4.2.1 Uncertainty Aggregation

Table 2 shows the MAP results of the proposed approach for
aggregating uncertainties compared to baselines on the val-
idation set after the 10" iteration of the training. DUA has
a higher average mAP@0.5 across classes than the baseline
querying methods, even compared to training on Whole. It
also has a higher average mAP@0.5 per class than Whole
for 7 out of 10 classes reducing the object labeling cost to a
third. We can also notice that the number of objects of the
1100 queried images is significantly less for DUA at 95k
and 72k for Sum and DUA, respectively. Figure 4 captures
this difference further and shows that Sum and Avg have
similar accuracy when considering a similar number of la-
bels. At a similar labeling cost of 52k for Random, Sum,
and Avg, the mAP@0.5 is at 0.271, 0.261, and 0.27 for the
approaches, respectively. In contrast, at also 52k object la-
beling cost, DUA achieves 0.299 mAP@0.5. It is worth not-
ing that this labeling cost accumulates at different iterations,
implying that some approaches query images with higher
object densities. Random pulls 5k per 100 images (per it-
eration)), reaching 50k labels at the 9t" jteration. On the
other hand, Sum accumulates this labeling cost faster and
reaches 50k at the 5" iteration. For Avg and DUA, this ac-
cumulation occurs at the 8 and 7'" iterations, respectively.
As for reaching a similar performance of about 0.27, as an
example, Sum reaches this performance at the 6" iteration
with 60k labels. In contrast, DUA reaches this performance
at the 4" iteration with around 30k labels, highlighting the
enhanced selection process of DUA.

4.2.2 Weighting by Performance

From the results in Table 3, weighting improved the per-
formance of underrepresented classes (tricycle, awning-
tricycle, bus); however, with different behaviors. We can
notice that WTC improved the performance of the “bus”
class the most, being a large object under-represented class.
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Table 1. Number of object instances per class. In bold
are over-represented classes, in ifalic under-represented classes.

object class all pedestrian  people

bicycle car

van truck tricycle awning-tricycle bus motor

#instances 226189 52762 17093 6950

95977

16866 8652 2877 1968 4148 18896

Table 2. Main Results Comparison. Results of comparing the
proposed approach for aggregating uncertainties concerning pre-
vious methods and baseline on the validation set.

Table 3. Analysis of Different Active Learning Weighting. Per-
formance evaluation results concerning the proposed methods and
baseline on the validation set in terms of mAP@0.5.

Class Whole Random Sum  Avg DUA
Images 4279 1100 1100 1100 1100
Objects 226k 57.3k 958k 634k 72.7k
All 0313 0.288 0311 027 0317
Pedestrian 0.341 0.330 0.351 0.325 0.343
People 0311 0.305 0332 0.305 0.333
Bicycle 0.066  0.042 0.061 0.026 0.066
Car 0.726  0.716 0.727 0.684 0.730
Van 0.315 0.279 0.311 0.234 0.309
Truck 0.284  0.262 0253 0.239 0.294
Tricycle 0.174  0.122 0.191 0.133 0.188
Awning-tricycle 0.086  0.066 0.080 0.070 0.092
Bus 0.438 0.415 0411 0336 0418
Motor 0.384  0.346 0.388 0.353 0.397

DUA  DUA+WTC DUA+WRP DUA+WTP

All 0311 0317 0.308 0.316
Pedestrian 0.340  0.347 0.348 0.346
People 0326 0.325 0.327 0.34
Bicycle 0.063  0.0588 0.0509 0.0539
Car 0.728 0.724 0.726 0.723
Van 0.314  0.309 0.291 0.306
Truck 0.29 0.295 0.271 0.29
Tricycle 0.186  0.182 0.187 0.189
Awning-tricycle  0.0911  0.0871 0.0897 0.0956
Bus 0.39 0.453 0.398 0.421
Motor 0.381  0.387 0.394 0.399

== Pedestrian

People == Bicycle

Car ==Van ==Truck = rTricycle

Awning-tricycle

Bus ~ Motor

Figure 5 illustrates that WTC did query an equal amount
of “bus” objects compared to “awning-tricycle” objects de-
spite its reasonable performance. Weighting by perfor-
mance approaches overcomes this issue as the weighting is
done on how a certain class performs rather than just the
presence. Illustrated in Figure 5, WRP queries “bus” ob-
jects at a slower rate than “tricycle” and “awning-tricycle”.
In addition, the “people” class is being queried at a high rate
despite not being an underrepresented class due to the con-
fusion with the “pedestrian” class. As for over-represented
classes such as “car”, the increase between the 5! and
10" class is 200% when using DUA only without weight-
ing, whereas using the different weighting approaches, only
90% of this quantity of labels are queried leading to a less
than 1% mAP@O.5 difference. This reduction comes from
the weight for the “car” confidence score being zero across
weighting mechanisms, so no image was queried because
it had a car. The increase in the “car” object results from
querying images to obtain the representation of other ob-
jects, and cars are coincidentally present.

Looking at the weights per iteration across approaches,
in Figure 6, we can see that the weights calculated by the
WRP approach, fluctuates even in later iterations. This
could be due under-represented classes not appearing in the
sample resulting in a weight of one. It also indicates a
higher potential for growth as it is exploring diverse forms
of the class. In contrast, WTC will continue to query objects
with the same distribution as the previous queries do make
a lasting impact. Another concern that arises with WTP
is that once the model is trained, it could minimize further
exploration of objects from the same class with a different

15000
13500
12000
10500

Number of objects
Number of objects
2 39
g3 8
g8 g
88 8

Figure 5. Cumulative object count per iteration for the different
weighting approaches. Left: DUA+WTC, right: DUA+WRP

—Pedestian —People —Bioydle —Car m=Van ==Tuck = +Tricyde = Awningticycle = ‘Bus ~ -Motor

1 2 3 4 5 6 7 8 9 10

leration

Figure 6. Weights change per iteration for the three weighting
approaches. (Top) DUA+WTC, (Middle) DUA+WRP, (Bottom)
DUA+WTP.

view as long as the model achieves high performance on the
training data.
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Table 4. Performance evaluation results with respect to the
proposed methods and baseline on the test-dev set in terms of
mAP@0.5.

Class Whole Random DUA DUA+WTC DUA+WRP DUA+WTP
All 0.273 0211 0.243  0.248 0.253 0.246
Pedestrian 0.21 0.187 0.196  0.215 0.208 0.208
People 0.16 0.134 0.155 0.165 0.161 0.161
Bicycle 0.0702  0.0406 0.0532  0.0571 0.0607 0.0669
Car 0.664  0.634 0.644  0.638 0.648 0.639
Van 0.308  0.205 0.264 0.25 0.252 0.254
Truck 0.318  0.183 0229  0.242 0.275 0.24
Tricycle 0.112 0.0783 0.126 0.133 0.119 0.115
Awning-tricycle  0.134  0.0555 0.131  0.105 0.113 0.109
Bus 0.511 0423 0425 0451 0.461 0.436
Motor 0.243  0.173 0.223  0.218 0.223 0.231

Table 5. Performance evaluation on VOC2012
Whole Random Sum DUA DUA+WRP

Labels at 5" iteration 32273 6326 10510 8336 8005
0.5mAP (All classes) 0.807 0.692 0.718 0.714 0.708
Close labeling cost - - 7398 7174 6732
0.5mAP (All classes) - - 0.643  0.698 0.695
0.5mAP of minimum across classes - - 0261 0.349 0.424

4.2.3 Performance evaluation on VisDrone dataset

The performance evaluation results in terms of mAP@0.5
per class on the test-dev split of the dataset are present in Ta-
ble 4. When evaluating the model built using the annotated
training dataset (4279 images), it yields 0.273 mAP@0.5 on
the dev-test set. Meanwhile, using one-fourth of the images
with DUA acquisition function, the model reaches a 0.243
mAP@(.5, with only a 0.03 mAP@(.5 difference. Using
the proposed weighting approaches (WRP and WTP) fur-
ther narrows the difference. With DUA+WRP, the model
reaches a 0.253 mAP@0.5. Evaluation of the model on the
test-dev set also shows the effectiveness of DUA+WRP over
Random sampling, as the model built using images queried
by Random sampling scores 0.211 mAP@0.5 only. Visual-
ization of the different approaches is in Figure 7.

4.2.4 Performance evaluation on VOC2012 dataset

The results of evaluating our proposed approach on the
validation set of the VOC2012 dataset are shown in Ta-
ble 5. As shown in the table, the performance is com-
parable to using the Whole dataset with only 20% of the
training images (3000 labeled images) with all active learn-
ing approaches. The 0.5 mAP was less than using Whole
by less than 0.1 0.5SmAP. However, the main variance be-
tween the three active learning approaches is the number
of labels within the images as Sum reaches that using 30%
of the labels. In contrast, DUA and DUA+WRP use only
25% of the labeling cost in terms of objects. The results
also show that when selecting iterations with close label-
ing cost per object, iteration 3 for Sum and 4 for DUA and
DUA+WRP, DUA and DUA+WRP achieve higher perfor-
mance than Sum. The results are further amplified when
looking at the least 0.5 mAP among the different classes

Table 6. Results of varying the size of the random pool on which

DUA is applied
Random size DUA on 500 instances DUA on 1000 instances DUA on ~4000 Full Dataset
All 0.303 60188 0.31 62585 0.3 63429
Pedestrian 0.33 14719 0.337 14071 0.33 13903
People 0.308 5875 0.324 6234 0.322 6499
Bicycle 0.0522 2244 0.0487 2234 0.0412 2249
Car 0.721 21598 0.723 22694 0.716 23075
Van 0.289 3948 0.307 4133 0.291 4360
Truck 0.277 2355 0.262 2583 0.271 2762
Tricycle 0.173 1232 0.19 1535 0.172 1505
Awning-tricycle  0.0792 879 0.0863 1035 0.0808 1109
Bus 0.434 602 0.432 671 0.407 790
Motor 0.37 6736 0.387 7395 0.373 7177

where DUA+WRP had 161% higher 0.5mAP than Sum
and 121% higher 0.5mAP than DUA. This confirms our re-
sults on VisDrone, where DUA+WRP is helping the least-
performing classes the most.

4.3. Ablation Study
4.3.1 Incremental Learning

Four setups have been examined for selecting the incremen-
tal learning approach. The first setup is to continue learning
from the weights of the previous iteration while including
20 random data points from the previous iteration and 80
data points from the queried data points for a 100 epoch
per iteration. The second setup is to continue learning from
the weights of the previous iteration while training on the
old data points and 100 new selections for 20 epochs. The
third setup is to continue learning from the weights of the
previous iteration while training on the old data points and
100 new selections for 100 epochs. The last is to train
from scratch for 100 epochs on the previous and new 100
points selection. Some of these setups ran for ten iterations,
while the rest ran only for five iterations, as early iterations
showed they were not optimal.

As the results show in Table 7, setups 1 and 2 do not
provide steady fast growth. This could be due to the small-
sized initialization and few numbers of epochs. The primary
choice was between setup 3 and setup 4 as the difference
between them at the 10%" iteration is 0.018 mAP@0.5, with
setup 4 leading. Figure 8 emphasizes the use of setup four
and shows that when training from scratch, in later itera-
tions, the model does continue to improve with a signifi-
cant margin. Compared to when adopting continuous train-
ing, the improvement has high speed at the start and then
plateaus, possibly due to overfitting the points from early
iterations.

4.3.2 Sampling Training Dataset

Running the inference per iteration on the whole dataset to
calculate uncertainties may be infeasible due to computa-
tion costs. In multiple studies, the active learning approach
is applied over a large, randomly selected pool of images.
In this experiment, we study the effect of varying the size
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Figure 7. Visualization of the predictions on the test-dev split
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Figure 8. Improvement of the 3" (up) and 4t" (bottom) setups
over 10 iterations .

Table 7. mAP@0Q.5 of the fifth iteration of Random Selection

Setup
Class 1 2 3 4
All 0.19 0.164 0258 024
Pedestrian 0.246 0.24 0297  0.296
People 0.187 0.153 0.262  0.269
Bicycle 0.00984  0.00982  0.0426 0.0233
Car 0.643 0.63 0.696  0.682
Van 0.165 0.136 0.243  0.208
Truck 0.157 0.144 0.21 0.202
Tricycle 0.0305 0.00696 0122  0.0656
Awning-tricycle  0.00343  0.000474  0.0596 0.0215
Bus 0.248 0.119 0342 034
Motor 0.212 0.204 0.306 0.294

of this randomly selected pool of images. We experiment
with 500, 1000, and 2000 random instances and the entire
dataset (4279 images). Only eight iterations per size are
studied due to computational costs. Results in Table 6 show
that, as opposed to what was anticipated, some randomness
is better for the querying process. It did help in querying im-
ages with fewer labels while improving the mAP@0.5 for
1000 and 2000 randomly selected pools. This could be due
to the DUA approach favoring ideas with a larger number
of class objects, ensuring the selection of almost all images
with the under-represented object. This sometimes jeop-
ardized information that could be gained from images that
don’t necessarily have the under-represented object. Also,
introducing some randomness reduces images with high un-

certainty patterns in the same iteration. Despite the apparent
benefits of applying active learning to a random pool of un-
labeled data, it makes small differences in the approaches
harder to evaluate. Therefore, we used the whole dataset
when assessing the proposed weighting approaches.

5. Conclusion

This work studies active learning for single-shot object
detection. It proposes the DUA method that sums average
uncertainties across each class to query the images based
on the confidence score incorporating the bounding box and
classification uncertainties. When evaluated on the test-dev
split of VisDrone, the proposed approach, DUA, achieves a
comparable performance to using the whole annotated train-
ing data, with a 0.03 mAP difference, while using a fourth
of the annotation cost. The improvement is emphasized in
the case of the under-represented classes of the awning-
tricycle and bicycle, where DUA did exceed the perfor-
mance of using the whole dataset. This study also proposes
weighting by performance with its two approaches to ad-
dress the issue of class imbalances. It further minimizes the
difference by using all the annotated images to 0.02 mAP.
Evaluating the approach on VOC2012 using a validation
subset indicates similar patterns. For future work, we con-
sider evaluating the approach on other benchmark datasets
and exploring the combination of the WTC and WRP ap-
proaches.
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