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Abstract

Visual commonsense reasoning (VCR) is a challenging
multi-modal task, which requires high-level cognition and
commonsense reasoning ability about the real world. In re-
cent years, large-scale pre-training approaches have been
developed and promoted the state-of-the-art performance of
VCR. However, the existing approaches almost employ the
BERT-like objectives to learn multi-modal representations.
These objectives motivated from the text-domain are insuf-
ficient for the excavation on the complex scenario of visual
modality. Most importantly, the spatial distribution of the
visual objects is basically neglected. To address the above
issue, we propose to construct the spatial relation graph
based on the given visual scenario. Further, we design two
pre-training tasks named object position regression (OPR)
and spatial relation classification (SRC) to learn to recon-
struct the spatial relation graph respectively. Quantitative
analysis suggests that the proposed method can guide the
representations to maintain more spatial context and facil-
itate the attention on the essential visual regions for rea-
soning. We achieve the state-of-the-art results on VCR and
two other vision-and-language reasoning tasks VQA, and
NLVR2.

1. Introduction

Vision-and-language reasoning is one of the most chal-
lenging tasks in multi-modal area, and the representative
benchmarks incorporate Visual Commonsense Reasoning
(VCR) [40], Visual Question Answering (VQA) [2] and
Natural Language for Visual Reasoning (NLVR) [33]. Dif-
ferent from VQA and NLVR, VCR task requires to se-
lect the correct answer and provide corresponding expla-
nation simultaneously given an image-question pair. Con-
sequently, the comprehensive cognition-level scene under-
standing and cross-modal reasoning are essential for VCR.

Figure 1. Existing pre-training approaches are insufficient for the
excavation on visual modality. In this paper, we propose the spatial
relation graph based on the visual modality and design two pre-
training tasks named object position regression (OPR) and spatial
relation classification (SRC) to promote the spatial context under-
standing and vision-and-language reasoning.

With the development of vision-and-language pre-training
models in recent years [4, 21, 24, 39], state-of-the-art VCR
algorithms basically follow the pretrain-and-finetune man-
ners.

The existing vision-and-language pre-training ap-
proaches almost employ the BERT-like objectives to learn
multi-modal representations , such as Masked Region Mod-
eling (MRM) [24] similar to Masked Language Modeling
(MLM) and Image-Text Matching (ITM) [4, 24, 32] similar
to Next Sentence Prediction. Fig.1 illustrates the widely
applied tasks for vision-and-language pre-training. There-
into, MLM is to predict the masked text embeddings and
ITM is to distinguish the matching of the image-text pair,
lacking detailed excavation on the visual modality. The task
of MRM, which is designed to classify the region feature
extracted by the object detector, finitely concentrates on the
individual semantic category and the appearance learning.
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These BERT-like objectives motivated from text domain
self-training are insufficient for the excavation on the
complex scenario of visual modality. VCR task requires
an in-depth understanding of the visual scenario and the
commonsense reasoning beyond that. As Fig.1 shows,
selecting the correct answer of the visualized case basically
requires the spatial-aware capture on the “persons”, which
is less excavated in previous pre-training. Consequently, a
more comprehensive understanding of the spatial context
will significantly benefit the multi-modal reasoning for
VCR.

To model the spatial context of the given scenario, we
propose to construct the spatial relation graph directly with
the coordinates of the visual object regions. Compared with
previous methods [19,36] introducing semantic-aware rela-
tions, our proposed method is free of external knowledge
and training on the visual relationships. As Fig.1 shows,
objects from the annotations and detection predictions con-
stitute the graph nodes set. The value of each node is the
corresponding region coordinates. The relations calculated
with the coordinates of the object regions are represented
as the graph edges. Beyond the BERT-like pre-training
approaches, we propose to alternately learn on the con-
structed graph, promoting the spatial relations modeling on
the multi-modal data.

Concretely, we design two novel pre-training tasks to re-
cover the property of nodes and edges in the constructed
spatial relation graph respectively. Existing vision-and-
language pre-training methods [4, 10, 21, 39] almost adopt
BUTD [1] to extract the object visual embeddings. Among
them, the region positions are just finitely utilized as an aux-
iliary input to the visual embeddings. To maintain more
spatial information in the multi-modal representations, we
propose alternative pre-training with Object Position Re-
gression (OPR) and Spatial Relation Classification (SRC).
Taking the textual data and visual features as the context,
OPR is to predict the masked positions pruning the input
position information for each object. Beyond the individ-
ual spatial modeling, SRC aims to explicitly raise aware-
ness of the spatial relations among the object. Noteworthy,
the proposed alternative pre-training is significantly differ-
ent with previous methods [19, 38] introducing visual rela-
tions, which followed by graph-based networks for visual
representation learning. We are the first to regard the spatial
relation graph as learning targets of the multi-modal pre-
training, which can be easily applied on current universal
and advanced transformer-based frameworks.

Experimental results demonstrate alternative training
with OPR and SRC can achieve a significant performance
boost compared with previous state-of-the-art methods for
VCR. Quantitative analysis suggests the proposed pre-
training tasks can guide the representations to capture more
spatial information and improve the attention weights on

more essential visual regions for reasoning. Additional ex-
periments on VQA and NLVR2 further prove the effective-
ness of our method in vision-and-language reasoning field.

The contributions of our method are three-folds:

• To the best of our knowledge, we are the first to regard
the spatial relation graph as learning targets, and pro-
mote spatial context understanding of the vision-and-
language representations.

• We propose two novel pre-training tasks, named Ob-
ject Position Regression and Spatial Relation Clas-
sification, which can be widely applied on univer-
sal transformer-based multi-modal frameworks with-
out external knowledge.

• We achieve the state-of-the-art results among the mod-
els of comparable scale. Experiments are conducted on
VCR (with a significant improvement compared with
previous works) and two other vision-and-language
reasoning tasks VQA, and NLVR2.

2. Related Work
Representation Learning. In recent years, there are

substantial interests in both vision [3, 7, 9, 11] and language
[6, 8, 29] pre-training for representation learning. Most vi-
sual pre-training methods are based on the convolutional
neural network architecture (CNN) such as VGG [31] and
ResNet [12] trained on the ImageNet dataset [5]. The
language pre-training methods are almost based on multi-
layer transformer [35]. BERT introduces Masked Language
Modeling (MLM) pre-training task that randomly masks the
input words and predicts these masked words based on the
contexts. MLM has been a standard schema for linguistic
model representation learning.
Vision-and-Language Representation Learning. ViL-
BERT [24] and LXM-ERT [34] are the pioneering works
in vision-and-language representation learning, where two
parallel transformers are utilized to process visual fea-
tures or language embeddings separately, and a third trans-
former is built on the top for multi-modal features fusion.
Compared to the above architecture, recent work such as
VisualBERT [20], VL-BERT [32], Unicoder-V [18] and
UNITER [4] advocate a single-stream architecture, where
two modalities are fused in the early stage. VinVL [42]
improves the vision-and-language models by developing an
improved object detection model to generate object-centric
representations of images. SOHO [13] learns to extract
comprehensive image features through a visual dictionary
that facilitates cross-modal understanding. CATT [37] pro-
poses causal attention to remove the ever-elusive confound-
ing effect in the existing attention-based models. More-
over, other techniques like knowledge integration [39], con-
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Figure 2. Overview of the model. We employ the multi-layer self-attention transformer to learn the multi-modal representation for both
textual and visual data. The text encoder T aggregates the token, position, type of each word wi into the input text embeddings. The visual
encoder V aggregates the object feature extracted by BUTD [1], bounding box coordinates, type of each region vi into the input visual
embeddings.

trastive learning [21], adversarial training [10], supervi-
sion from text [14, 28], modality matching from large scale
video dataset [41] are introduced to further improve the
performance of the pre-trained models. The above mod-
els have brought leaping advances in vision-and-language
downstream tasks such as VCR [40], visual captioning
[26,27,43], visual dialog [25] and image-text retrieval [17].
Vision-and-Language Pre-training Tasks. Most of pre-
training approaches directly employ BERT-like objectives
to learn multi-modal representations, such as Masked Re-
gion Model (MRM) [24] similar to Masked Language
Model (MLM) and Image-Text Matching (ITM) [4, 24,
32] similar to Next Sentence Prediction (NSP). The ordi-
nary MLM pre-training neglects the semantic relationships
among the textual data. ERNIE-ViL [39] improves the
masking strategy by predicting the token types according
to the textual scene graph, incorporating objects, attributes,
and relationships. By increasing the corresponding masking
probability, ERNIE-ViL achieves a better semantic align-
ment across the vision and language modality. The ordi-
nary ITM pre-training randomly samples a negative image
or text from the same training batch for each pair, leading
to a coarse alignment between the textual and visual repre-
sentations. To further facilitate the alignment, UNIMO [21]
proposes text rewriting techniques to augment the original
captions at word, phrase, and sentence levels. In this way,
UNIMO obtains large volumes of positive and negative ex-
amples for each image-text pair. Furthermore, cross-modal
contrastive learning (CMCL) is leveraged by UNIMO to
align the textual and visual information into a unified se-
mantic space.
Visual Relationship Enhanced Representation Learn-
ing. Previous methods [15, 19, 36, 38] introduce scene
graphs to model the spatial or semantic relationships among
the visual objects, almost followed by graph-based atten-
tion networks to enhance the visual features. However,
we propose to construct the spatial relation graph with-

out external semantic information, are the first to regard
the constructed spatial graph as learning targets of multi-
modal pre-training, promoting spatial context understand-
ing of the vision-and-language representations. Our pro-
posed spatial relations modeling can be easily applied on
large-scale and universal transformer frameworks with de-
signed masked strategies and loss functions. Experimental
results demonstrate that our method gains significant im-
provement on several benchmarks.

3. Approach

In this section, we first introduce the architecture of our
model. Then we illustrate the construction of spatial rela-
tion graph and the proposed pre-training tasks for spatial
relations modeling. Finally, we describe the complete pre-
training objectives and procedures with alternative learning.

3.1. Overview of the Pre-trained Model

The vision-and-language pre-trained model aims at
learning the joint representations that integrate information
of both visual and textual modalities. As shown in Fig.2,
we employ multi-layer transformer [6] to learn the unified
representations. For texts data w={wi}, we adopt the token
embedding initialized by RoBERTa [23], and special tokens
incorporating [CLS], [IMG] and [SEP ] are added to the
tokenized sequences. The texts are divided into different
types for the questions or answers. With the text encoder T
in Fig.2 shows, the input text embedding for each sub-word
is generated by aggregating its original token embedding,
sequence position embedding, and type embedding.

Similarly, the image is also converted to a sequence of
visual embeddings. Consistent with [4, 21, 39], we use
BUTD [1] to detect the foreground regions and extract
the visual features correspondingly, denoted as p={pi}
and v={vi} respectively. The position information for
each object is encoded via a 5-dimensional vector pi as
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Figure 3. We propose to construct the spatial relation graph for
the visual scenario. Based on the graph, we design two novel pre-
training tasks named Object Position Regression (OPR) and Spa-
tial Relation Classification (SRC) learning to recover the property
of the nodes and edges respectively.

Equation (1) shows, where (x1, y1) and (x2, y2) denote
the region top-left and bottom-right corner coordinates,
while W and H denote the width and height of the
image. The position vectors are projected to the same
dimension as v. With the visual encoder V , the input visual
embedding for each region is generated by aggregating
its visual feature, position embedding, and the visual
type embedding. For a text-image pair, its textual and
visual tokens are concatenated as a sequence. Then the
sequence input embeddings are feed into the multi-layer
transformer to learn the final multi-modal representations:
{F[CLS], Fw0, . . . , Fwt , F[IMG], Fv0,p0 , . . . , Fvk,pk

, F[SEP ]}.

pi = (
x1

W
,
y1
H

,
x2

W
,
y2
H

,
(y2 − y1)(x2 − x1)

WH
) (1)

3.2. Spatial Relations Modeling

The existing vision-and-language pre-training tasks par-
tially concentrate on the individual category and appearance
learning. For a complex visual scenario, objects positions
and the interactive spatial relations contain more informa-
tion to be excavated for multi-modal reasoning.
Spatial Relation Graph. To model the spatial context of
the scenario, we propose to construct the spatial relation
graph for the given images. As Fig.3 shows, objects from
annotations or detection predictions constitute the graph
nodes set p. The value of each node is the corresponding
object spatial position vectors pi in Equation (1). The rela-
tions calculated with the position vectors are represented as
the spatial relation edges {Eij}.

We investigate various spatial relation descriptions from
the aspect of directions or overlap between the visual ob-
jects, as Table.6 shows. Eventually, we introduce the Inter-
section over Union (IoU) to quantify the spatial relations.
We design two novel pre-training tasks named Object Po-
sition Regression (OPR) and Spatial Relation Classification
(SRC) to learn to reconstruct the nodes and edges of the
graph respectively, promoting the spatial context and com-
prehensive cross-model understanding.
Object Position Regression (OPR). As Fig.2 shows, in the
conventional visual encoder V , position features are finitely
utilized as auxiliary information in the input embeddings.
Guiding the representations to maintain more spatial infor-
mation, OPR is designed to predict the position vector of
each object pruning the original input with the textual and
visual appearance clues as context.

Concretely, to guarantee the precision of the targeted po-
sition vector, only objects with detection confidence scores
larger than 0.5 and ground truth objects are available to
be masked. For OPR pre-training, we randomly mask the
available position vectors with a probability 50%. As Fig.3
shows, the visual encoder for OPR is fed with only feature
embedding and token type embedding, excluding bound-
ing box position embedding, for the position-masked ob-
jects. With additional two layers MLP network, the trans-
former output Fvm is projected to predict the masked po-
sition vector pm. We denote the object features as v, the
corresponding position vectors as p, and the input words
as w. Each image-text pair (v,p,w) is sampled from the
whole training set D. The model parameters set is de-
noted as θ and the predicted position vector can be de-
noted as Pθ(pm|v,p\m,w). The task directly predicts the
5-dimensional vector in Equation (1). The loss function of
OPR can be summarized as follows.

LOPR(θ) = E(v,p,w)∈D||Pθ(pm|v,p\m,w)− pm||2 (2)

Spatial Relation Classification (SRC). As stated above,
OPR guides the pre-trained model to maintain more indi-
vidual spatial information of each object, i.e nodes of the
spatial relation graph in Fig.3. For further modeling the spa-
tial context, we propose to learn to reconstruct the edges of
spatial relation graph, namely spatial relation classification
(SRC).

To model the relations, we detailedly investigate the ef-
fect on the performance with different spatial metrics and
modeling approaches (Table 6). Eventually, we introduce
the IoU from the overlapping aspect to model the rela-
tionships, i.e Eij=IoU(pi, pj). Since IoU regression is
an excessively tough task for the continuous variation, we
model the prediction of the IoU as a classification prob-
lem. Concretely, we divide the IoU {Eij} to 10 classes
with a uniform interval of 0.1, and the constant target is
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transferred to a category target E′
ij . For SRC pre-training,

a pair of visual objects (pi, pj) are sampled. The corre-
sponding transformer output (Fvi,pi

, Fvj ,pj
) are fused and

projected by a two-layer MLP network to predict the rela-
tionship label E′

ij . The predicted spatial relation is denotes
as Pθ(E

′
ij |v,p,w) and softmax-based cross-entropy loss is

adopted. The loss function of SRC pre-training can be sum-
marized as follows.

LSRC(θ) = −E(v,p,w)∈DlogPθ(E
′
ij |v,p,w) (3)

3.3. Alternative pre-training

We propose to alternatively train the multi-modal model
with the proposed OPR and SRC from the aspect of spatial
context, combining Masked Language Modeling (MLM)
and Masked Region Classification (MRC) from the aspect
of semantic meanings. By the means of alternative pre-
training, the model can capture more comprehensive repre-
sentations for the visual and textual modality. Next, we will
briefly introduce the implementation details and objectives
of the adopted MLM and MRC.

For Masked Language Modeling, we randomly mask
the input textual token embeddings with a probability of
15%, and replace the masked wm with a special token
[MASK]. The model is trained to predict the masked tokens
based on the surrounding context. Denote the prediction
is Pθ(wm|v,p,w\m), and the softmax-based cross-entropy
loss function can be summarized as follows.

LMLM (θ) = −E(v,p,w)∈DlogPθ(wm|v,p,w\m) (4)

For Masked Region Classification, we randomly sample
image regions vm and mask out their visual features with
a probability of 15%. The model is trained to predict the
object category of each masked region based on the con-
text. Additional fully-connected layers are introduced to
project the prediction to the categories probability distribu-
tion Pθ(vm|v\m,p,w). We adopt the KL-divergence loss
function to minimize the difference between the prediction
and the object detection model labeled distribution v̂m. The
loss function of MRC can be summarized as follows.

LMRC(θ) = E(v,p,w)∈DKL(Pθ(vm|v\m,p,w), v̂m)
(5)

4. Experiments
4.1. Dataset

Visual Commonsense Reasoning (VCR) dataset [40]
contains 100K images and 264K related questions, which
are divided into the train, val, and test split at a ratio

Table 1. Results of the VCR task compared with the previous state-
of-the-art models.

Models
VCR val

base large
Q→A QA→R Q→AR Q→A QA→R Q→AR

ViLBERT [24] 72.4 74.5 54.0 - - -
VisualBERT [20] 70.8 73.2 52.2 - - -

SGEITL [36] - - - 74.9 77.2 57.8
VL-BERT [32] 73.8 74.4 55.2 75.5 77.9 58.9
UNITER [4] 74.6 77.0 57.8 77.2 80.5 62.6
VILLA [10] 75.5 78.8 59.8 78.5 82.6 65.2

ERNIE-ViL [39] 76.4 79.7 61.2 79.0 83.7 66.4
Ours 78.8 83.1 65.8 83.0 87.9 73.4

of 8:1:1. The VCR task incorporates two sub-tasks: vi-
sual question answering (Q→A) and answer justification
(QA→R), which are both multiple-choice problems. The
holistic setting (Q→AR) requires both the chosen answer
and the chosen rationale to be correct. In the visual ques-
tion answering (Q→A) task, we concatenate the question
and each candidate answer for the language modality. We
take dot product of the final transformer outputs F[CLS] and
F[IMG] to predict the matching score with an additional FC
layer. For the answer justification (QA→R) task, we con-
catenate the question, the answer, and each candidate ratio-
nale as the input of the textual data.

4.2. Implementation Details

For fair comparison with previous methods, the exper-
iments are conducted on two model sizes: base with 12
layers of transformer block and large with 24 layers of
transformer block. We initialize the pre-trained model with
UNIMO [21] for the main results, and conduct another stage
of pre-training on the training split of VCR. The multi-task
mix ratios for OPR, SRC, MLM and MRC are 1:1:10:1.
The total number of pre-training steps is 50,000. After the
alternative pre-training, we fine-tune the model over 10,000
steps with a batch size of 64 and adopt Adamw optimizer
with an initial learning rate of 6e-4.

For all experiments, we use AdamW optimizer with
weight decay of 10−2. The learning rate is warmed up
for 10% of the total training steps and is decayed linearly
to zero for the rest of the training. The maximum se-
quence length of text tokens and visual regions are set as
514 and 100, respectively. For the text tokens, we adopt
Byte-Pair Encoding (BPE) to tokenize the sentence sim-
ilar to RoBERTa [23]. For the visual regions, we adopt
BUTD [1] pre-trained on the Visual Genome [16] to detect
the object regions and extract the visual features (pooled
ROI features) correspondingly, which is consistent with pre-
vious methods [4, 21, 39]. Specifically, regions with class
detection probability exceed a confidence threshold of 0.2
are selected. For the masking strategies, we randomly mask
15% of tokens in MLM, 15% of object region features in
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MRC, and 50% of region position vectors in OPR.

4.3. Main Results

We compare our method against the previous state-of-
the-art models and the results are illustrated in Table 1. We
obtain a 4.6% and 7.0% improvement for Q→AR under the
base and large setting compared with previous public state-
of-the-art results achieved by ERNIE-ViL [39]. Meantime,
our result significantly outperforms SGEITL [36], which in-
troduce external scene graphs to enhance the representation
learning.

Table 3 reports the test split evaluation results of VCR.
Under the large setting, we achieve the state-of-the-art re-
sults with a single model, a 2.4% improvement even com-
pared with the UNIMO [21] ensembling 7 models. VCR
is a challenging task, which requires cross-modal common-
sense reasoning and understanding on the complex scenario
which is implicitly encoded in the image. Experimental re-
sults suggest we achieve new state-of-the-art results across
the three benchmarks for VCR. The results strongly demon-
strate the effectiveness of our method.

4.4. Ablation Study

To further analyze the effectiveness of OPR and SRC,
we conduct detailed ablation studies and investigate the in-
fluence on VCR at different settings.
What type of pre-training task is more effective? We
conduct the ablation study with different pre-training tasks
on UNITER-base [4]. Previous methods [4, 10, 39] al-
most adopt MLM, MRFR and MRC for the pre-training
on VCR. Thereinto, MRFR is a pre-training task similar to
MRC, which directly regresses the object appearance fea-
tures rather than predict the semantic categories. As Table 4
shows, the contribution of MRFR pre-training is almost use-
less for VCR, which suggests local appearance learning for
the visual objects is already sufficient for the multi-modal
pre-training.

However, the performance is significantly better if
MRFR is replaced with either SRC or OPR. As Table.4
shows, when we conduct SRC and OPR simultaneously, a
1.0% improvement on QA→R and a 1.4% improvement on
Q→AR can be obtained. Experimental results suggest spa-
tial relations modeling is a valuable and vital complement
for current multi-modal representation learning on visual
modality. For further verification on the general effective-
ness of OPR and SRC, we apply the proposed method on
UNITER-large and VILLA-large [10]. As Table 5 shows,
both UNITER and VILLA can obtain an improvement with
OPR and SRC alternative pre-training. The ablation study
on various pre-trained models convincingly demonstrates
pre-training from the spatial perspective is necessary and
effective for the multi-modal reasoning tasks.
How to model the spatial relations? We investigate dif-

ferent metrics for the spatial relations and various model-
ing approaches for SRC, as Table 6 shows. For direction
prediction, we conduct left/right and upside/below classifi-
cation between the visual object centers. For overlapping
prediction, SRC learns to classify whether the sampled ob-
ject regions are overlapped. Experimental results suggest
overlapping prediction is a better metric than direction pre-
diction. The supposed reason is the overlapping can reflect
more relevance of the objects.

Further, we conduct more detailed investigation on the
overlapping prediction with IoU and GIoU [30]. Experi-
mental results suggest fine-grained classification on IoU can
obtain a superior performance than binary classification on
overlapping. In contrast, IoU regression is a excessively
tough task, even harmful to the final performance. The per-
formance of GIoU classification is slightly weaker than the
trivial IoU metric, eventually we select IoU classification as
the pre-training objective for SRC.

4.5. Experiments on Other Dataset

To prove the generalization of our method, we conduct
experiments on other vision-and-language reasoning tasks,
Visual Question Answering (VQA) [2] and Natural Lan-
guage for Visual Reasoning (NLVR) [33]. Results com-
pared with the state-of-the-art models are summarized in
Table.2.
Visual Question Answering (VQA). VQA2.0 contains
204K images and 1.1M related questions, which are divided
into the train, val, and test split at a ratio of 2:1:2. The VQA
task requires answering natural language questions accord-
ing to the given images. We treat VQA as a multi-label clas-
sification task assigning a soft target score to each answer
based on its relevancy to the 10 human answer responses.
We take dot product of the outputs F[CLS] and F[IMG] and
map the representations into 3,129 possible answers with an
additional two FC layers. We adopt the same pre-training
schedule as VCR. Fine-tuning on VQA is performed over
5K steps with a batch size of 256 and we adopt the Adamw
optimizer with an initial learning rate of 5e-4.

As Table.2 shows, we achieve new state-of-the-art results
both on base and large setting. Concretely, we get a 0.2%
performance boost under the base model setting evaluated
on VQA test-dev and test-std. For the large model setting,
the margin reaches up to 0.4% compared with UNIMO [21].
The results suggest the spatial relations modeling is also ef-
fective for question-answer tasks.
Natural Language for Visual Reasoning. NLVR2 con-
tains 107K examples of human-written English sentences,
which are divided into the train, dev, testP and testU at a
ratio of 12:1:1:1. The task is to determine whether a natu-
ral language caption is corresponding with a series of pho-
tographs. We take dot product of the final transformer out-
puts F[CLS] and F[IMG] to predict the matching score for
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Table 2. Results of VQA and NLVR2 compared with previous state-of-the-art models.

Models
VQA NLVR2

base large base large
test-dev test-std test-dev test-std dev testP dev testP

ViLBERT [24] 70.6 70.9 - - - - - -
VisualBERT [20] 70.8 71.0 - - 67.4 67.0 - -
LXMERT [34] 72.4 72.5 - - 74.9 74.5 - -

LXMERT+CATT [37] 73.5 73.7 - - 77.2 77.2 - -
VL-BERT [32] 71.2 - 71.8 72.2 - - - -
UNITER [4] 72.7 72.9 73.8 74.0 77.2 77.9 79.1 80.0
SOHO [13] 73.3 73.5 - - 76.4 77.3 - -
Oscar [22] 73.2 73.4 73.6 73.8 78.1 78.4 79.1 80.4

VILLA [10] 73.6 73.7 74.7 74.9 78.4 79.3 79.8 81.5
ERNIE-ViL [39] 73.2 73.4 75.0 75.1 - - - -

UNIMO [21] 73.8 74.0 75.1 75.3 - - - -
Ours 74.0 74.2 75.5 75.6 79.4 80.1 80.6 82.2

Table 3. The comparison of VCR test set evaluation under the
large setting. ∗: the result is achieved by ensembling 7 models;
partially from the VCR Leaderboard [40].

Models
VCR test

Q→A QA→R Q→AR
VL-BERT [32] 75.8 78.4 59.7
SGEITL [36] 76.0 78.0 59.6
UNITER [4] 77.3 80.8 62.8
VILLA [10] 78.9 82.8 65.7

ERNIE-ViL [39] 79.2 83.5 66.3
UNIMO∗ [21] 82.3 86.5 71.4

Ours 83.2 88.1 73.8

Table 4. The results of VCR val with different pre-training tasks
on UNITER-base.

Alternative pre-training Tasks Q→A QA→R Q→AR
MLM+MRC 74.3 76.9 57.3
MLM+MRC+MRFR 74.3 76.9 57.4
MLM+MRC+OPR 74.6 77.2 58.0
MLM+MRC+SRC 74.8 77.1 58.1
MLM+MRC+SRC+OPR 75.2 77.9 58.7

each image-text pair with an additional FC layer. For fine-
tuning, we train the models with 5K steps totally and a batch
size of 32. The Adamw optimizer with an initial learning
rate 2e-5 is adopted.

As Table 2 shows, we achieve a 1.0% and 0.8% improve-
ment on NLVR2 dev under the base and large setting re-
spectively. For NLVR2 testP, the improvement is 0.8% and

Table 5. The results of VCR val with OPR and SRC on UNTER
and VILLA-large.

Models Q→A QA→R Q→AR
UNITER 77.1 80.3 62.1
UNITER+OPR+SRC 78.3 81.6 64.2
VILLA 78.1 82.0 64.4
VILLA+OPR+SRC 78.4 82.3 64.8

Table 6. The results of VCR val with different SRC modeling
methods.

SRC Modeling Q→A QA→R Q→AR
Direction Prediction 81.3 87.1 71.0
Overlapping Prediction 81.5 87.0 71.2
IoU Regression 81.2 86.9 70.8
IoU Classification 81.7 87.1 71.3
GIoU Classification 81.3 87.1 71.1

Table 7. Average correlation coefficient between the position em-
beddings and the transformer input visual / output F[CLS] repre-
sentations.

Alternative pre-training Input Corr. Output Corr.
MLM+MRC 0.14 -0.0060
MLM+MRC+SRC 0.19 0.0009
MLM+MRC+OPR 0.16 0.0020
MLM+MRC+OPR+SRC 0.19 0.0041

0.7% correspondingly. Validation on NLVR2 also support
the conclusion stated above.
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Figure 4. Case study on the text-to-object attentions (darker represents larger). (b) is the attention visualization of baseline, (c) is the
attention with OPR and SRC pre-training. The correct answer and rationale are marked in bold. The answers picked by the models
are indicated in parenthesis. pre-training with OPR and SRC, which memorizing more spatial relations clues in the visual scenario, can
improve the attention weights on the more essential visual regions, thus benefits the multi-modal reasoning.

4.6. Discussion

In this section, we discuss the impact of spatial-aware
modeling on the multi-modal representation learning and
reasoning. By quantitative analysis on the features and at-
tention weights, the motivation can be further demonstrated.
How spatial modeling impacts the representation learn-
ing? To explore how the proposed spatial perspective mod-
eling impacts on the multi-modal representations, we con-
duct feature correlation analysis on 100 random VCR sam-
ples as Table 7 shows. Thereinto, the “Input Corr” de-
notes the average correlation coefficient between the in-
put position embedding and the input visual representa-
tion V(vk, pk) for each object. The “Output Corr” denotes
the average correlation coefficient between the input posi-
tion embeddings and the output multi-modal representation
F[CLS].

Quantitative results suggest the correlation coefficient
stated above is boosted with OPR and SRC alternative pre-
training. It can be inferred that the proposed spatial rela-
tions modeling can facilitate the maintaining and memoriza-
tion of the spatial context before and after the transformer
layers by alternative pre-training. The spatial information
eventually can be exploited in the fine-tuning stage, thus
benefits the multi-modal reasoning downstream tasks.
Attention weights analysis. Fig.4 provides an example of
the learned text-to-object attentions. We can see that the
baseline model selects the right answer, but the wrong ra-
tionale, which can be corrected with the proposed OPR and
SRC pre-training. In this case, the spatial relation between

the person[1] and the microphone is essential for the reason-
ing. The attention visualization suggests that pre-training
with OPR and SRC, which memorizing more spatial rela-
tions clues, can improve the attention weights on the more
relevant visual regions for the multi-modal reasoning.

5. Conclusion
Previous vision-and-language pre-training approaches

motivated by text domain are insufficient on the visual
modality excavation for reasoning. To address the above is-
sue, we propose to construct the spatial relation graph based
on the given visual scenario. Further, we design two pre-
training tasks named object position regression (OPR) and
spatial relation classification (SRC) to learn to reconstruct
the graph respectively. By alternative pre-training with OPR
and SRC, we achieve state-of-the-art results on three visual-
and-language reasoning downstream tasks VCR, VQA, and
NLVR2. In particular, even though the VCR task is con-
sidered to be a very difficult multi-modality reasoning task,
our method improves the performance of previous works by
over 2.4%, which is a significant margin. Additionally, we
also conduct detailed ablative experiments to demonstrate
the effectiveness of our proposed pre-training tasks. Quan-
titative analysis suggests the spatial relations modeling can
guide the model to maintain more spatial context and facili-
tate the attention on essential regions, thus benefits the chal-
lenging multi-modal reasoning. This work is supported by
the National Key Research and Development Program
of China (2022YFC3602601).
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