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Figure 1. Qualitative comparison of re-colorization with RGB source as input. The sub-figure on the top-left of the source (if exists) is the
ground-truth we annotated.

Abstract

Exemplar-based re-colorization transfers colors from a
reference to a colored or grayscale source image, account-
ing for the semantic correspondences between the two. Ex-
isting grayscale colorization methods usually predict only
the chromatic aberration while maintaining the source’s lu-
minance. Consequently, the result’s color may diverge from
the reference due to such luminance difference. On the other
hand, global photorealistic stylization without segmentation
cannot handle scenarios where different parts of the scene
need different colors. To overcome this issue, we propose
a novel and effective method for re-colorization: 1) We
first exploit the spatial-adaptive latent space of SpaceEdit
in the context of the re-colorization task and achieve re-
colorization via latent maps prediction through a proposed
network. 2) We then delve into SpaceEdit’s self-reconstruct
latent codes and maps to better characterize the global
style and local color property, based on which we construct
a novel loss to supervise re-colorization. Qualitative and
quantitative results show that our method outperforms pre-
vious works by generating superior outputs with more con-
sistent colors and global styles based on references.
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Figure 2. (a) Colorization methods predict ab channel only and
reuse the l channel of source. (b) Photorealistic stylization meth-
ods perform global stylization on the features of the source accord-
ing to reference. (c) Our method predict latent maps to spatial-
adaptively stylize the source image.

1. Introduction

For a pair of content-related source and reference
images, exemplar-based re-colorization reasonably trans-
fers the color of the reference to the source. Tradi-
tional exemplar-based colorization methods primarily tar-
get grayscale source images. There is a growing need to re-
colorize colored images by references, which is the focus
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of our paper. Although, in theory, traditional grayscale col-
orization methods (e.g., [1, 6, 13, 23, 24]) also apply to col-
ored image re-colorization by simply converting the source
images from RGB to grayscale, their design and architec-
tures often limit the performance. As Figure 2(a) shows,
they only predict chromatic aberration (ab channels) while
reusing the source image’s luminance (l channel) for the
output. As the l channel contains the most significant
amount of content information of an image, improperly ad-
justing it may disrupt the source’s content. Consequently,
the output’s color can become inconsistent with the refer-
ence due to luminance differences (i.e., the color of sky).

Another task related to re-colorization is photorealistic
image stylization [14], which transfers a reference image’s
global style (e.g., color, saturation, and brightness) to a
source image while keeping the fine-grained content of the
source unchanged. Specifically, re-colorization can be in-
terpreted as spatial-adaptive photorealistic image stylization
without explicit segmentation, which is more challenging.
Existing photorealistic stylization methods [3,4,7,12,14,25]
all perform global stylization and cannot directly handle the
scenes where different parts of an image need different styl-
ization, thus may lead to unsatisfactory results, as shown in
Figure 2(b). Thus, segmentation is usually needed to im-
prove their performance under such scenarios.

Recently, StyleGAN [2, 8] has been widely used for im-
age generating and editing tasks due to its capability to gen-
erate highly realistic images. Luo et al. [16] utilize Style-
GAN for automatic colorization. However, their methods
could only support close domain images (i.e., same cate-
gory). In SpaceEdit [20], a conditional StyleGAN is pro-
posed for open-domain image editing (which is also the
generator we adopted). It is a conditional generator con-
ditioned on pixel-level content. Specifically, it takes both
image and latent code as input. The former provides con-
tent information, and the latter performs global color styl-
ization. The output image has the same content but differ-
ent color from the input. Inspired by SpaceEdit, we formu-
late the re-colorization as latent optimization (GAN inver-
sion) of SpaceEdit. However, the solution is not straight-
forward. First, SpaceEdit’s 1d latent space is for global
style editing, and it has limitations in our task since re-
colorization requires more accurate local-wise color trans-
formation. Second, their latent optimization method only
works on content-matched image pairs since L1 loss is
used. However, our task requires latent optimization on
image pairs with different contents. To overcome those is-
sues, we first extend the original 1d latent space to a 2d
spatial-adaptive format, which could represent more com-
plex color transformations. We then propose a W-predictor
network to predict the latent maps for re-colorization. To
improve the W-predictor’s performance, we further delve
into the properties of the self-reconstruction latent codes

and maps, studying their representation of the global style
and local color information. Based on the properties of self-
reconstruction latent codes, we construct a novel loss called
w0 loss to supervise re-colorization.

Another challenge for the re-colorization research is the
lacking of the content-matched ground truth of the source
images to calculate pixel-wise quantitative metrics. Pre-
vious works usually [13, 22] adopt histogram intersection
similarity (HIS) to evaluate performance. However, HIS is
a global statistic without spatial information and does not
reflect local-level colorization accuracy. Bai et al. [1] gener-
ates augmented image pairs (e.g., cropping) as ground truth
for evaluation. However, such pairs do not reflect actual use
cases as the content of paired images are highly similar. To
better support the research in this domain and evaluate rel-
evant approaches more precisely, we offer ground truth for
the Deep Photo Style Transfer (DPST) dataset [15], which
is adjusted in Adobe Lightroom. With the upgraded DPST
dataset, we further demonstrate that our solution outper-
forms previous works both qualitatively and quantitatively.

In summary, our contributions are three folds. First, we
propose a novel solution for exemplar-based re-colorization
based on spatial-adaptive SpaceEdit. In particular, we pro-
pose a network to predict latent maps for accurate col-
orization. second, we delve into the properties of self-
reconstruction latent codes and maps to represent images’
style and color features, based on which we construct a
novel style loss for re-colorization. Finally, our method
achieves state-of-the-art performance in transferring color
and style between unmatched contents without segmenta-
tion maps. We also offer manually adjusted ground truth
for the DPST dataset to facilitate more objective quantita-
tive evaluations of the exemplar-based re-colorization.

2. Related Work
Exemplar-based Grayscale Image Colorization. Deep-
learning-based methods [1, 6, 13, 23, 26, 29] utilize the fea-
tures from a pretrained VGG [21] model to capture semantic
correspondence between the pair of images. Some [1, 23]
first pre-color source images coarsely into RGB and thus
make correspondence more accurate. In [23], researchers
utilize stylization networks and the Adaptive Instance Nor-
malization (AdaIN) operation to stylize the features of the
source image. However, the coarse results are usually un-
satisfactory and full of artifacts due to the inaccurate cor-
respondence between the source and reference. Conse-
quently, such methods [1, 6, 23, 26] often require an extra
colorization sub-network (usually a U-Net [19]) to refine
the coarse results. Recently, other methods [1, 22] leverage
transformers [22] for better performance.
Photorealistic Image Stylization. In general, existing styl-
ization operations are global: PhotoWCT [12], WCT2 [25],
and PhotoWCT2 [4] are based on the whitening and col-
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Figure 3. The left is the overall pipeline of our method. The right is the detailed structure of the generator, w-Encoder Ew and W-predictor
PW. We first finetune generator (Gθ) and train w-Encoder (Ew) jointly. After finetuning, Gθ′ is fixed and extended to spatial-adaptive
format G′

θ′ . Gθ′ and G′
θ′ have the same structure but takes as input 1d latent codes and 2d latent maps, respectively. We then train W-

Encoder (EW) on fixed G′
θ′ . After that, both Ew and EW are fixed and set as modules of W-predictor (PW). Finally, we train PW by image

pairs with identical contents. After training, PW works on images with different contents.

oring transformation (WCT). PCA-d [3] utilizes PCA for
style knowledge distillation. MAST [7] learns a global pro-
jection matrix P ∈ RC×C to transform the content features
into the subspace of style features. DNCM [9] stylizes the
source image by multiplying it with an adaptive color map-
ping matrix. LS-FT [5] introduces a transformation that en-
ables controlling the balance between content preservatoin
and style transfer. Among them, although MAST utilizes
VGG features to establish the semantic mapping between
two images, the global stylization still weakens the perfor-
mance in scenes where different parts of an image need
different stylization (shown in later experiments). There-
fore, segmentation is required to ensure their reported per-
formance.
Image Editing via the Latent Space of GANs. After
witnessing the breakthrough latent-space disentanglement
from StyleGAN2 [8], researchers have been exploring how
to utilize the latent space of a pretrained generator for im-
age manipulation. The authors of [18] train an encoder to
inverse the image into latent codes. Luo et al. [16] utilizes
latent optimization of StyleGAN [8] for automatic coloriza-
tion. Stylemap [10] and SalS-GAN [27] exploit the spatial-
adaptive latent space of StyleGAN2 for more flexible im-
age editing. However, those methods only apply to close-
domain images within the same object category. SpaceEdit
[20] proposes a conditional StyleGAN2 that takes both an
image and a latent code as input, which aims at global color
style editing for open-domain images. It obtains the latent
code representing the style transformation between two im-
ages by online latent optimization with the L1 loss. Unfor-

tunately, their latent optimization only works on pairs with
identical contents. In addition, the stylization is global, as
the latent space in their work is one-dimensional.

3. Method

3.1. Overview of method

Figure 3 shows the overall pipeline and networks’ struc-
ture of our methods. In the following, we first introduce
the SpaceEdit generator and our adaptation on it (i.e., fine-
tuning and extension to 2d spatial-adaptive latent space) in
Sec. 3.2. We then introduce self-reconstruct latent codes
and maps and analyze their properties in Sec. 3.3, which
benefits the latent map prediction. Finally, we elaborate on
the detailed structure and training process of our proposed
latent prediction network (W-predictor) in Sec. 3.4.

3.2. Generator structure and adaptation

3.2.1 Generator Structure

Our generator structure and initial weights follow that of
SpaceEdit [20]. SpaceEdit aims for global color style edit-
ing (e.g., tone, saturation, and brightness). Specifically,
the edited result should have a different color style but the
same content as the input image. To satisfy the require-
ment, the authors proposed a conditional StyleGAN2 gen-
erator, whose structure is shown in the top-right of Fig 3.
It takes both image and latent code as input. To preserve
most fine-grained details of the input image, the authors
add skip-connection from the encoder’s layers to the de-
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coder’s corresponding layers. SpaceEdit is pretrained on
the Discover1 dataset, which contains 60k pairs of before-
and after-adjustment photos.

3.2.2 Generator Finetuning

SpaceEdit’s latent space is for global style editing. To ob-
tain a better latent representation of color transformations
in the re-colorization task, we first finetune the generator
with image pairs of the Discover dataset. We do random
color augmentation to simulate more color transformations.
The finetune process is shown in Fig. 3. Specifically, a w-
Encoder Ew takes as input an image pair (Iin, Iout) with
the same content but different colors and predicts the la-
tent code w representing the color transformation from Iin
to Iout (i.e., green→red in Figure 2). The generator G
then generates an output IG = Gθ(Iin, Ew(Iin, Iout)) to
match the target output Iout. We train generator Gθ and
w-Encoder Ew jointly by minimizing the L1 loss between
IG and Iout. Once finetuning is completed, both Gθ′ and
Ew are fixed, and we obtain a new latent space for re-
colorization.

3.2.3 Spatial-adaptive latent space

After finetuning, we extend the latent space from 1d to
spatial-adaptive 2d as in [27]. Previous works [10, 27] have
revealed the advantage of 2d space over 1d space. The spa-
tial information brings the potential to represent more com-
plex color transformations. Specifically, our customized
spatial-adaptive generator G′

θ′ takes an image and a series
of 2d latent maps {W 1,W 2, ...,Wn} (n = 20 is the num-
ber of layers in the decoder) with a pyramid of various input
resolutions. For each layer, the corresponding W k is first
resized to the same resolution as the input feature x, then
converted to a style map m with the same resolution and
channel as x by an affine transformation. Next, we perform
spatial-adaptive modulation on an input feature x:

x′
ij = mij · xij (1)

where x′ are the features after modulation, and i, j are chan-
nel and spatial indices of the features, respectively. After
that, the colorization task is formulated as predicting opti-
mal latent maps to re-colorize the source. We achieve this
via a proposed network called W-predictor (PW).

3.3. Self-reconstruct latent codes and maps

Before elaborating on the W-predictor, one interest-
ing question to consider is: can we find a proper rep-
resentation for global color style via the latent space of
SpaceEdit? In the original StyleGAN, the latent codes rep-
resent the style (i.e., pose, expression, and appearance in

1https://lightroom.adobe.com/learn/discover

Query image Clustered images by w0

0.986 0.985 0.985

Clustered images by color histogram 

0.983 0.982 0.982

Figure 4. Clustered images according to w0 and color histogram,
respectively. The values below are the corresponding similarity
scores. Our w0 better characterizes global styles.

face generation) of generated images. In SpaceEdit, how-
ever, the latent codes represent the color transformation
(i.e., green→red). Fortunately, we found that the self-
reconstruct latent codes can represent the global color
style. Specifically, an image’s self-reconstruction code is
a 1d latent code w0 with which the generator can recon-
struct the image itself (i.e., I = Gθ′(I,w0)). It can be
obtained from our trained w-Encoder by feeding two iden-
tical images as w0 = Ew(I, I). A critical difference be-
tween our trained self-reconstruction code and the one in
SpaceEdit [20] is that theirs came from iteratively optimiz-
ing L1 loss online: w0 = argmin

w
L1(I,Gθ(I,w)). More-

over, they only used it for style interpolation.
We reveal that the self-reconstruct code w0 represents

the global style by clustering images according to the cosine
similarity of w0. Figure 4 illustrates that images with sim-
ilar global styles (i.e., low key) have closer self-reconstruct
codes, indicating that w0 can effectively characterize global
styles. To explain this, we argue that w0 only ensures exist-
ing colors in the image are correctly mapped to themselves
while ignoring the missing colors. We verify the hypothe-
sis by reconstructing 1k images with its own w0 or w0 from
other images and calculate the mean absolute error (MAE)
at a scale of 255. The error is 1.89 with their own w0 and
2.85 with ones from others. Moreover, we find that for re-
constructing an individual image with w0 from another im-
age, the error is lower when those images have a similar
style to the individual image, as shown in supplementary.

Based on the properties of w0, we propose a novel w0

loss Lw0 to measure the similarity of global style between
reference image IR and predicted image IP :

Lw0(IR, IP ) = ∥w0R − w0P ∥1 (2)

in which w0R and w0P are the self-reconstruction codes of
IR and IP , respectively. We use Lw0

(IP , IR) as one of
the training losses for W-predictor to force IP ’s global style
close to IR’s.

Compared to w0, the color histogram used in previous
colorization work [13, 22] appears less accurate for repre-
senting global styles because it is low-level statistical data
and is weighted by the area of different parts, as shown in
Fig. 4. Later experiments also show the advantage of our
w0 loss over color histogram loss [13, 22].
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Query point

Image Heatmap of VGG Heatmap of W0

Figure 5. Comparison of the heatmaps of VGG and W0 features
(brighter means higher similarity). Our W0 features better capture
local color.

We further extend w0 to a spatial-adaptive 2d format
W0 (i.e.,I = G′

θ′(I,W0)) and train a W-Encoder net-
work EW to predict W0 for an input image I . The W-
Encoder EW has a ResNet-18 backbone and outputs the
feature map W0 (with resolution 1/16) from layer3. W0 is
then resized to different resolution to constitute latent maps
{W 1,W 2, ...,Wn} of G′

θ′ . We calculate the L1 loss be-
tween I and the reconstructed image G′

θ′(I, EW(I)) to train
the W-Encoder EW, during which the generator G′

θ′ is fixed,
as Fig 3 shows.

We now demonstrate that W0 can characterize the color
features of local regions by visualizing the pairwise element
self-similarity heatmap of W0 for an image I , which con-
tains various types of objects in the same color. For a query
point i on I , its heatmap H is calculated by

H(j) = ⟨W0(i),W0(j)⟩ (3)

in which ⟨·, ·⟩ is the cosine similarity. Figure 5 shows that
regions with similar colors have closer W0s, indicating W0

characterizes the color of local regions. Therefore, W0 can
be used to regulate the color transfer of local regions.

Finally, we compare the heatmap of W0 to that of low-
level VGG features (i.e., relu2 2), which is often used to
build context loss [17] for color transfer in previous work.
As shown in Figure 5, the heatmap of VGG features only
focuses on the cloth without considering the car, which has
the same red color as the query. As VGG is trained for clas-
sification, the color information is dominated by semantic
and texture information.

3.4. Latent maps prediction by W-predictor

Given a pair of content-related but pixel-unaligned
source IS and reference IR, our goal is to predict an opti-
mal W that re-colorizes IS as IP = G′

θ′(IS ,W). The result
IP should satisfy the following requirements: 1) Semantic-
related regions in IP and IR should have close colors, 2)
IP and IR should have close global style, and 3) IP shall
have no artifact. Compared to 1d latent code prediction, 2d
latent map prediction is more challenging as the predicted
latent maps should also meet a continuity constraint to en-
sure that adjacent patches of an object with similar colors
are transformed similarly and smoothly; otherwise, there
will be severe artifacts, as shown in later experiments. To

achieve that, we propose a novel W-predictor network PW
to predict the optimal W for IS and IR: W = PW(IS , IR).
The structure of PW is shown in Figure 3. In subsequent
sections, we elaborate on the detailed design and training
strategy of PW.

3.4.1 Multi-source feature extraction

Different from previous works [4, 25] that use a shared
model to extract the color feature of IS and IR, we use dif-
ferent models for IS and IR separately. Specifically, we
use ES

C (ResNet-18) to extract multi-level color features
{C1

S , C
2
S , C

3
S} of IS (with resolution 1/4, 1/8 and 1/16 of

IS) and fixed EW to extract a single-level color feature W0R

(with 1/16 of IR) of IR. The last section has proved that
W0R characterizes the local color feature. By design, the
reference’s feature W0R only contains color information,
while the source’s features {C1

S , C
2
S , C

3
S} also carry fine-

grained semantics such as texture and boundaries for better
predicting W.

In addition to color feature maps of IS and IR, we use
Ew to extract latent code w from IS to IR, which can rep-
resent the global style difference between the two and help
better transfer the global style.

3.4.2 Hard sparse semantic correspondence

We extract vgg features (i.e., relu5 1) with a pretrained
VGG16 model to find semantic correspondence between IS
and IR. Let FS and FR denote the vgg features of IS and
IR, respectively. After feature extraction, FS , W0R , and
C3

S have the same size (1/16 of the original image). We first
calculate the cross attention matrix AC , a pairwise cosine
similarity matrix of FS and FR.

AC(i, j) = ⟨FS(i), FR(j)⟩ (4)

where i and j are the spatial indices of FR and FS .
To increase the task difficulty during training, we pro-

pose a random semantic masking method to mask some
patches of the reference image randomly. Specifically, we
mask the cross attention matrix AC instead of directly ze-
roing out patches of IR, which might be unrealistic. we
achieve this by element-wise multiplying each row of AC

with the random mask M (1× HW) as AC = AC ⊙ M .
Such random masking makes correspondence less accu-
rate and forces the model to combine the information from
neighboring patches to predict the required color transfor-
mation for the masked patch, increasing the model’s robust-
ness on content-different pairs during testing. The masking
is disabled at test time to enable more accurate dense corre-
spondence.

To avoid the smoothing and blurring effect (i.e., averaged
colors) mentioned in [7], we further convert the masked AC
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to a hard binary matrix Ah via hard activation operation,
which only preserves the location j with the highest simi-
larity while zeroing out weights of other locations.

Ah(i, j) =

{
1, j = argmax

k
AC(i, k)

0, else
. (5)

3.4.3 Multi-level latent maps prediction

To spatially align the color features from the source and ref-
erence, we matrix multiply W0R by Ah to obtain a warped
color feature W̃0R , which is expected to contain both ref-
erence’s color and source’s spatial information. The fea-
tures W̃0R , C

1
S and mask M are first concatenated channel-

wise and then fed into the first ASPP together with w to
predict W1. We replace the globally averaged feature in
ASPP with our w to better guide the global style transfer.
The output features of the first ASPP are concatenated with
C2

S and then fed into the second ASPP together with w to
predict W2. The same operation is repeated for the third
ASPP to predict W3. After that, we predict multiple-level
latent maps W = {W1,W2,W3} with resolution 1/16, 1/8
and 1/4, respectively, of the original image. These latent
maps are connected to different layers of the generator’s de-
coder for stylization: inspired by [18], W1 is resized to fill
W 1 − W 9, W2 to W 10 − W 12, and W3 to W 13 − W 20).
Multiple-level latent maps help colorization at finer scales,
and our customized ASPP module is used to increase the
receptive field.

3.4.4 Optimization

To train the W-predictor (PW), we adopt three losses: L1

loss (L1) , Lpips loss [28] (LLpips) and the proposed w0

loss (Lw0
) between IP and IR. L1 loss provides the most

fine-grained supervision, Lpips loss helps mitigate the dif-
ference between IR and IP in human perception, and w0

loss forces the global style of IP close to IR. The overall
loss for optimization is:

L = λ1L1 + λLpipsLLpips + λw0
Lw0

(6)

in which λ1, λLpips and λw0
are the weights for different

loss terms.

4. Experiments
4.1. Implementation details

4.1.1 Default settings

The default size of images in our experiments is 256×
256. The channel dimension for latent code/map is set
as 512. We use 1 NVIDIA RTX A4000 for experiments.
The optimizer we used is the Adam optimizer [11]. During

training, the parameters for the Adam optimizer are set as
α = 0.0025, β1 = 0, β2 = 0.99.

4.1.2 Training Details

We elaborate the training details of W-predictor. The details
of generator finetuning and W-Encoder training are docu-
mented in the supplementary. We use two types of paired
data to train W-predictor: (1) Image pairs from the Discover
dataset and (2) synthesized image pairs augmented from the
COCO dataset. With the help of segmentation annotations
in COCO, we perform random local and global color aug-
mentation to generate image pairs with different colors. The
method and parameters for color augmentation are the same
as in generator finetuning. The weights λw0 , λLpips, λ1 in
training loss (equation 6) are all set as 1. The batch size is
set as 8. It takes nearly 60k steps and 12 hours to train W-
predictor. To establish a curriculum that controls the train-
ing process from easy to difficult, a maximal mask ratio α is
initialized as 0 and increases gradually during training until
it reaches the upper bound of 0.95. We randomly select a
mask ratio from [0, α] at each training step.

4.2. Comparison with previous methods

4.2.1 Qualitative comparison

We compare our method to previous work, including
grayscale colorization methods Gray2color [13], TFcolor
[24] and photorealistic stylization methods such as Pho-
toWCT [12], WCT2 [25], MAST [7], PhotoWCT2 [4],
DNCM [9] and PCA-d [3]. For a fair comparison, segmen-
tation is not used in photorealistic stylization methods be-
cause our method does not require segmentation maps.

Figure 1 shows the qualitative re-colorization results
(with RGB source). For grayscale colorization methods
(i.e., Gray2color and TFcolor), the RGB sources are first
converted to grayscale. Compared with results from pre-
vious methods, ours have two significant advantages: (1)
superior consistency with the reference’s color and global
styles and (2) higher quality with the slightest artifacts
and more details, both of which benefit from our spatial-
adaptive latent space in representing more complex color
transformation and the effectiveness of our W-predictor.
For results from Gray2color and TFcolor, the color and
global styles are not consistent with reference as it keeps
luminance unchanged (especially for the 2nd and 4th rows,
where the luminance of the two colors has a huge differ-
ence). Photorealistic stylization methods can achieve sat-
isfying results in simpler scenes where different regions
share a similar style and color (the 1st row). However, for
more difficult scenes (e.g., the 3rd row), most of them suf-
fer from severe artifacts. Without an explicit segmentation
map, the same color transformation (i.e., get greener) is ap-
plied to both the sky and grass. Finally, results from MAST
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Table 1. Quantitative comparison of previous methods and our method. The first group is grayscale colorization, “Ours (gray)” means our
method with grayscale source inputs. The second group is re-colorization with RGB sources as input.

Methods Gray2color TFcolor Ours (gray) PhotoWCT WCT2 MAST PhotoWCT2 DNCM PCA-d Ours
MAE↓ 60.64 63.2 28.52 35.92 33.93 40.03 32.98 33.64 31.44 27.34

LPIPS↓ 0.3311 0.3642 0.2574 0.3418 0.3478 0.3169 0.2712 0.2455 0.2663 0.2264
Delta E↓ 22.82 23.44 16.71 18.49 24.72 17.97 18.57 27.58 20.55 17.20
PSNR↑ 12.4228 11.64 17.38 15.2565 16.0117 15.0397 16.197 16.74 16.72 17.928

Source Reference Gray2color TFcolor Ours (gray)

Figure 6. Qualitative comparison of grayscale colorization. “Ours
(gray)” is our method with grayscale sources as inputs.

look hazy and inconsistent with references, though it ap-
plies VGG to find semantic correspondence, demonstrating
the limitation of global stylization operations. Only with
additional segmentation maps can they reach a similar per-
formance as ours, which is presented in the supplementary.

Although our method focuses on re-colorization for col-
ored images, it can also be applied to grayscale images col-
orization as Gray2color [13] and TFcolor [24] to make a
more fair comparison. Figure 6 shows that our result with
grayscale source input still outperforms previous grayscale
colorization methods by achieving more consistent color
and style with reference, which verifies the advantage and
necessity of changing luminance.

4.2.2 Quantitative comparison

To make a more objective comparison, we conduct a quan-
titative evaluation of different methods based on the pro-
vided annotations of DPST. We adopt four metrics to eval-
uate: mean absolute error (MAE), LPIPS, PSNR, and Delta
E. LPIPS evaluates the difference between output images
and human perception. Delta E quantifies the difference be-
tween the color of the result and the ground truth. The quan-
titative result is shown in Table 1, in which the methods in
the first group are with grayscale sources as input, and the
methods in the second group are with RGB sources as input.
Results show that our methods outperform previous meth-
ods on these metrics by a large margin. Our results with
grayscale sources are slightly inferior to those with RGB
sources. We believe the reason is that the chromatic aberra-
tion of the source is vital to provide more details and estab-

Source Reference w/o mask W1 only W3 only

w/o ASPP shared EC w/o w w/o hard Ours

Figure 7. Qualitative ablation study on W-predictor’s design and
components. w/o mask: training without random semantic mask-
ing. W1 or W3 only: predicting only a single latent map with
1/16 or 1/4 of the original image’s resolution and resizing it ac-
cording to the required input resolution of the generator’s decoder
layers. w/o ASPP: replacing ASPP modules in W-predictor with
3× 3 convolution layers, which reduces the reception. shared EC :
EW is not used, instead, shared model EC is used for source and
reference. w/o w: Ew module is not used, and the feature w is re-
placed by the global average of the concatenated features (i.e., the
other input) in each ASPP module. w/o hard: The hard activation
operation is replaced by softmax.

lish more accurate correspondence.

4.3. Ablation Study

4.3.1 Structure of W-predictor

We first evaluate the effectiveness of the crucial design
and components of the W-predictor by dropping or vary-
ing one at a time. The qualitative results are shown in Fig-
ure 7. Specifically, training without random semantic mask-
ing leads to discontinuity in outputs as the model struggles
to handle pairs with unmatched contents. The W1 only
configuration results in block artifacts due to insufficient
resolution from W1 while W3 only configuration lead to
the inconsistent global style, which verifies the advantage
of multi-layer latent maps for W. Using a shared model
for source and reference or replacing hard activation by
softmax leads to inaccurate colorization at the local region
(i.e., cloud). In addition, for W-predictor without feature w,
styles of different regions in output are no longer consis-
tent. Replacing ASPP module by 3× 3 convolution layers
also leads to inconsistent global style due to the reduced re-
ception. We also conduct a quantitative ablation study in
Table 2. Among different settings, “Ours” achieves the best
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Table 2. Quantitative ablation study. The meaning of each setting is the same as that in Figure 7 and 8.

Methods w/o mask W1 only W3 only w/o ASPP shared EC w/o w w/o hard w/o Lw0 Lhistogram Ours
MAE↓ 33.73 29.92 35.28 29.19 28.49 29.42 29.94 30.06 29.71 27.34

LPIPS↓ 0.2871 0.2681 0.2570 0.2378 0.2412 0.2466 0.241 0.2541 0.2343 0.2264
DeltaE ↓ 17.69 17.78 19.75 17.74 17.21 18.09 17.3 18.39 17.86 17.2
PSNR↑ 15.74 17.1 16.24 17.67 17.41 17.32 17.2 17.34 17.18 17.93

Source Reference w/o Lw0 Lhistogram Ours

Figure 8. Qualitative ablation study on training loss of W-
predictor. w/o Lw0 : training without the proposed w0 loss.
Lhistogram: Replace w0 loss by color histogram loss.

Table 3. Reconstruct error for different generators.

Generator Gθ Gθ′ G′
θ′

Error(MAE)↓ 11.2 8.68 5.06

qualitative and quantitative performance, which verifies the
advantages of our design and the proposed components.

4.3.2 Training loss for W-predictor

We then evaluate the effectiveness of our proposed w0 loss.
We also compare it to the histogram loss used in previous
work. The quantitative result is shown in Figure 8, remov-
ing proposed w0 loss or replacing it with color histogram
loss will lead to inconsistent global style between result and
reference. And the quantitative ablation is also shown in
Table 2. “Ours” achieves the best qualitative and quanti-
tative performance, which verifies the effectiveness of our
proposed loss.

4.3.3 Effectiveness of latent space

To verify the advantage of our generator adaptation (i.e.,
finetuning and spatial-adaptive extension). We conduct the
experiment to evaluate the effectiveness of the latent space
of different generators (i.e., original SpaceEdit generator
Gθ, finetuned generator Gθ′ and spatial-adaptive finetuned
generator G′

θ′ ). We reconstruct 1,000 color-augmented im-
age pairs (which are generated with the same method dur-
ing finetuning but on the validation set of Discover) with
different generators. The reconstruction follows the online
scheme in SpaceEdit [20]. And we calculate the mean re-
construct error (MAE) for all image pairs, as shown in Ta-
ble 3. A lower reconstruct error means the generator has a
stronger latent space to represent more accurate color trans-
formations. The finetuned generator Gθ′ achieves lower

Source Reference W0R w′(α =1) w′(α =2) Both

Figure 9. Effectiveness of W0R and w in W-predictor.

MAE than the original Gθ. By converting Gθ′ to spatial-
adaptive format G′

θ′ , the MAE is reduced further, which
verifies the advantages of our generator adaptation.

4.3.4 Effectiveness of features in W-predictor

We evaluate the effectiveness of used features W0R and w in
W-predictor separately. To evaluate the effect of W0R , we
replace w by self-reconstruct code w0S of IS to eliminate
its effect. As the “W0R” of Figure 9 shows, the color of the
foreground (cloth) is correctly transferred. However, the
global style (contrast, brightness) in the background is not
so close to IR. To evaluate the effect of w, we replace W0R

by self-reconstruct map W0 of IS (i.e.,W0S ) to eliminate its
effect. We also try to enlarge the effect of w by interpolation
with w0S (i.e., w′ = w0S +α(w−w0S ), and α is to used to
control the strength). As “w′(α = ...)” of Figure 9 shows,
with α increasing, the global style is closer and closer to
IR; however, the color of the cloth does not change. When
combining W0R and w, both the local color and global style
of the result are consistent with IR.

5. Conclusion

In this paper, we exploit the idea of exemplar-based im-
age re-colorization via spatially-adaptive SpaceEdit. We de-
sign a novel and effective network to predict proper latent
maps to colorize accurately. We then delve into the property
of latent self-reconstruction code in conditional StyleGAN
and utilize it to construct novel losses to improve perfor-
mance further. Finally, our method achieves SOTA perfor-
mance among both colorization and photorealistic styliza-
tion methods.
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