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Abstract

The challenges of applying self-supervised learning to
3D mesh data include difficulties in explicitly modeling and
leveraging geometric topology information and designing
appropriate pretext tasks and augmentation methods for ir-
regular mesh topology. In this paper, we propose a novel
approach for pre-training models on large-scale, unlabeled
datasets using graph masking on a mesh graph composed
of faces. Our method, Mesh Graph Masked Autoencoders
(MGM-AE), utilizes masked autoencoding to pre-train the
model and extract important features from the data. Our
pre-trained model outperforms prior state-of-the-art mesh
encoders in shape classification and segmentation bench-
marks, achieving 90.8% accuracy on ModelNet40 and 78.5
mloU on ShapeNet. The best performance is obtained when
the model is trained and evaluated under different masking
ratios. QOur approach demonstrates effectiveness in pre-
training models on large-scale, unlabeled datasets and its
potential for improving performance on downstream tasks.

1. Introduction

Mesh is a widely-used data format in computer graphics
and has become a prevailing format for capturing continu-
ous underlying surfaces due to its capability of providing
an accurate, efficient, and irregular representation of three-
dimensional shapes. Many commonly used compute vision
datasets, such as ModelNet [63], ShapeNet [7], ScanNet [9],
and Pix3D [51], utilize meshes as the core or intermediate
representation format. Deep learning on meshes has applica-
tions of classification and segmentation [20], generation [17],
and animation [41].

Due to the fact that data labeling on 3D shape is labor-
intensive and resource-expensive, self-supervised learning

has emerged as a powerful technique for training machine
learning models using unlabeled data, either in a generative
way [1,22] or contrastive way [2,6,12,18,27,42,44,58-60].
Benefiting from the capability of new model architec-
ture [56], self-supervised learning has demonstrated state-of-
the-art performance in various domains, such as image [43],
video [61], and text [S]. More recently, self-supervised rep-
resentation learning has also been applied to 3D imaging,
primarily point cloud [23] and 3D voxel grids [39].

Despite the fruitful success that has been made in self-
supervised learning for 3D imaging, there have been limited
works that successfully apply self-supervised learning to
3D mesh. This research problem remains to be non-trivial
mainly due to the following challenges: (1) on the one
hand, the feature extractors of existing works are commonly
designed for those data formats derived from mesh (e.g.,
point cloud), which inevitably lose the inherent geometric
topology information within the mesh data to some extent.
Though recent work [36] proposes to extract patches from
the mesh and then feed them into transformers for learning
the mesh representations. In their approach, both a fixed
patch topology and a predetermined number of patches are
mandated, meanwhile the Transformer is based on global
self-attention that disregards the local connectivity of meshes.

Hence, how to explicitly model and leverage the inherent
geometric topology information is a key to learning expres-
sive representations on 3D mesh data; (2) on the other hand,
due to the irregular topology of 3D mesh, directly applying
existing self-supervised learning strategies for other 3D data
formats may easily lose their efficacy on meshes. It remains
unclear how to design appropriate pretext tasks including
both the augmentation method and self-supervised learning
objective on 3D mesh data for better exploiting the geometric
topology information.

In this paper, we propose to solve the 3D mesh self-
supervised learning problem from a graph learning perspec-

3303



tive. Specifically, we treat each face of the mesh as a node
and build a mesh graph to model each 3D shape. To learn the
3D shape representations without any semantic labels, we
innovatively develop a mesh-based self-supervised learning
framework, Mesh Graph Masked Autoencoder (MGM-AE),
which can be pre-trained on large-scale 3D imaging datasets.
Different from previous works [20, 57] that mimic regular
convolution to meshes, the encoder of MGM-AE adopts the
graph attention layer as the building block, which is able
to explicitly capture the irregular topology knowledge of
mesh graphs while attentionally considering the importance
of each node (face) during message-passing. In order to
improve the expressiveness of learned 3D mesh represen-
tations, we follow the recent advances in self-supervised
learning [22] and design a masked autoencoding pretext task
on the mesh graphs. Specifically, we randomly replace cer-
tain nodes’ features with masked features and perform node
feature reconstruction based on the representations learned
from the graph attention encoder. By the virtue of graph
attention encoder, the representation of each node on a mesh
not only encodes the information from its corresponding
face, but also captures the information from its neighboring
faces via multi-hop message passing. This way allows the
perturbed 3D meshes can be more effectively reconstructed
even with a lightweight decoder (i.e., MLP) during the de-
coding phase, such that expressive representations for 3D
meshes can be learned. Our simple yet effective framework
is compatible with size-varying meshes, which increases the
model flexibility for dealing with a variety of datasets. To
demonstrate the effectiveness of our method, we perform
a variety of experiments and show state-of-the-art perfor-
mance on different downstream tasks compared to other
mesh-based shape feature extractors. To summarize, the key
contributions of our work are as follows:

* We propose to solve the problem of self-supervised
learning on 3D mesh data from a graph learning per-
spective, which goes beyond the existing paradigm and
sheds light on the following research.

* We introduce a Mesh Graph Masked Autoencoder
(MGM-AE), a novel mesh-based masked encoding pre-
training framework that leverages the inherent topology
information of mesh data, thereby enhancing the ex-
pressiveness of mesh representations.

¢ Our comprehensive evaluations on various benchmarks
such as SHREC11, ModelNet40, and ShapeNetPart,
demonstrate that our MGM-AE model outperforms
prior mesh-based neural network models and achieves
state-of-the-art performance in supervised and self-
supervised classification as well as semi-supervised
segmentation tasks.

2. Related Work

Deep Learning on Meshes In general, deep learning on
polygonal meshes can be summarized in two main cate-
gories: (1) graph-based methods, and (2) manifold-based
methods. Graph-based methods try to process the mesh data
directly by extracting locally connected regions and con-
verting them into a graph form for subsequent graph neural
networks learning. For example, FeaStNet [57] proposes
a graphical neural network in which the neighborhood of
each peak for the convolution operation is not preset but
instead calculated dynamically. MeshCNN [20] utilizes the
particular property of edge in a triangle mesh to extract edge
features. Subsequent works, such as [10,35], that build upon
MeshCNN [20], similarly treat edges as nodes in a graph.
Specifically, FPCNN [35] opts for quadric error metrics over
learning-based pooling [20]. MEAN [10] introduces edge
attention to enhance edge-based graph convolution. Bend-
ing Graphs [47] use graph neural networks to incorporate
local and global graph information for shape matching prob-
lems. Our backbone model also draws inspiration from the
aforementioned methods but treats faces as nodes in a graph,
which better captures the manifold nature of meshes.

Most non-graph approaches treat meshes as manifolds
and develop methods to adapt convolution operations from
structured grids, like images, to unstructured ones, such as
meshes. Geodesic CNN [37], MoNet [40], and SplineCNN
[14] deal with the weight sharing problem by designing local
coordinate systems for the central vertex in a local patch.
Those methods apply a set of weighting functions to ag-
gregate the characteristics at the adjacent vertices and then
calculate a weighted mean of aggregated information. How-
ever, these methods are informatically expensive and require
pre-defined local coordinate systems. [54] first proposes a
transformer-based procedure for the efficient registration of
non-rigid 3D point clouds. Neural3DMM [4] uses a spiral
convolution to order vertices based on the shortest geodesic
path to a template reference. However, selecting a reference
for arbitrary shapes is challenging, and ambiguity arises
when adjacent vertices share the same path length. Tan-
gent convolution is introduced in [53], where a small neigh-
borhood around each vertex is utilized to reconstruct the
local function, upon which the convolution is applied. Cont-
Conv [65] employs continuous convolution over a geodesic
region of the mesh. However, determining a local coordi-
nate system and projecting neighbors onto this local system
can be ambiguous and computationally expensive. The
recently proposed MeshMAE method [36] splits a mesh into
patches, each with a fixed topology, and feeds a fixed num-
ber of patches into the Transformer [56]. Their method may
lose information during the remeshing of complex topology
meshes and highly relies on hand-crafted patch features to be
sufficiently informative. In contrast, our method emphasizes
attention among adjacent mesh faces, enabling it to handle
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Figure 1. Architecture of MGM-AE. MGM-AE is a masked autoencoder structure that extracts global information from mesh and decodes
the information into a point cloud. The structure interprets the mesh as a graph, and each node of the graph is a face on the mesh. For
the node that is selected as a masked node, its feature is replaced with the mask embedding. The features on the face node are passed
through multiple face graph attention layers. The layer aggregates the information from neighing nodes to the center node using an attention
mechanism (detailed in Section 3). MatMul, Scale, and SoftMax is defined in Equation 2. Then max-pooling is applied across each face node
and passes the global graph embedding to a point cloud decoder. Chamfer distance is computed between the decoded point cloud and the
points sampled from the surface of the mesh to train the autoencoder. For a detailed structure of the network, see Section 2 in the Appendix.

intricate topologies without information loss and obviating
the need for hand-crafted patch features as the fundamental
unit of analysis.

Self-Supervised Learning Self-supervised learning in-
volves defining pretext tasks directly from the data, using
these human-defined tasks to pre-train the model. It is used
in computer vision with pretext tasks such as predicting
order in time [60], finding missing pixels [44], location
of patches [12], image orientations [18], human-made ar-
tifacts [27], clusters of images [6], camera locations [2],
jaggle puzzle [42], color of videos [58], and tracking of
image patches [59]. These works demonstrate promising
results in transferring visual features from pretext tasks to
other tasks. Thus, defining pretext tasks that are related
enough to the downstream task is quite important [27].
Studies exploring self-supervised learning on 3D data
have been centered around point clouds. They use multi-
task learning [21], reconstruction [1], contrast learning [67],
restoring point cloud [48], point cloud autoregression [52],
the orientation prediction [19], and approximating convex
decomposition [15] to pre-train the model and achieve state-
of-the-art results on point cloud classification and segmen-
tation tasks. While there is an abundance of research on
self-supervised learning for point clouds, studies focusing
on meshes are limited. Recently, masked autoencoders,
which restore data from masked input, have gained traction
in self-supervised learning, particularly for images [22] and
graphs [68]. MeshMAE [36] integrates masked autoencoders

with meshes from a manifold perspective.

3. Method

MGM-AE is a masked autoencoder that interprets the
mesh as a graph, and each graph node is a face on the mesh.
The features on the face nodes are randomly masked first and
passed through multiple face graph attention layers. Then
max-pooling is applied to obtain the global graph embedding,
which is passed to a point cloud decoder for reconstruction
pre-training tasks.

Face descriptor is designed in our method to represent
faces in meshes. For face i in our graph, we include the
center of the face ¢; € R3, the normal direction of the face
n; € R3, the radius of the circle covering the triangle r; € R,
and normalized directions v1;,v2;,v3; € R? from the center
to three vertices sorted according to the degree of the inner
angle. These geometric features are sent through four linear
layers and concatenated together as the face descriptor.

by = fe(ei) | fu(mi) | £:(r) | £, 000) [ £o(20) || £u(v30) (1)

In our experiment, we set f. : R3 — RS, fo R3 —
R®, £, : R = RS, £, : R} — R® which is shared across
v1,v2,v3. And input to the face graph attention layer is
h® = (K0, R, ....h%} € RV*36 where N is the number of
nodes in the graph.

Masking on face graph is achieved by randomly se-
lecting nodes on the graph according to the masking ratio.
After one node is selected as the masked node, a learnable
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masking embedding hf,)1 € R takes the place of the original
embedding, which is extended from [11,22].

Face graph attention layer is the core of our network, as
shown in Figure 1. We take the kth layer as an example and
the architecture is composed of duplicates of the layer. The
kth layer takes a graph and the features R e RVXdTT of
the graph as input and outputs h* € RY xd" \where d*~! and d*
are the input and output dimension of the kth layer. For node i
in the graph, the layer first gathers its neighbors .4 according
to an adjacency matrix which could be an n-ring neighbor
adjacency matrix. We denote hli‘f1 as the input feature of the
face node i and H¥ ™' = {hlj‘»_1 cje M} eRNXT! where
N; is the number of neighboring nodes of node i, as the
gathered neighboring features of the root node. Three linear
layers fv, fp, and fx take hffl, Hf-‘_l, and hf-‘fl as input
to compute value Vf-‘ eR! X“I\{/, query Qé‘ e RV "Xdé, and key
K e R4 where d, dé, and d% are the dimensions of
the output with dé = dlk< and d{ﬁ = d*. We expand one extra

dimension in hffl in order to explain equation 2. In our
work, we keep dk, dg, and d,k( fixed to 64.

k kT
bt = softmax(Qii)V;‘ (2)

Vi
We use Equation 2 to get the output feature h;‘ of face node i
and the output of the kth layer is h* = {h%, b5, ... hX}. De-
tails of composing the layers into an encoder are in Section
2 in the appendix.

Reconstruction loss In the reconstruction loss function, a
reconstruction decoder is utilized. The input to this decoder
is the graph embedding of the mesh. The expected output is
the point cloud sampled from the mesh. Following [1], we
use a similar network architecture fp for decoding a point
cloud. So we choose the point cloud as the target for the
decoder to generate. And the loss function is the Chamfer
Distance (CD), as shown in Equation 3.

1 Y 1 ¥
Lep = — min —plF+ — min||p,, — pll? 3
cp N’;ﬁéf”pn pIIﬁMm;1 min| o —pl3 (3)

where s and § are the ground truth and predicted point sets.

M and N denote the number of points in the ground truth
and predicted point sets. p, and p,, are points sampled from
point set s and §.

4. Experiments and Results

In this section, we introduce experiments to validate the
effectiveness of our neural networks. First, we demonstrate
the effectiveness of the encoder part of our networks on two
supervised classification tasks. Then, we verify our work by
pre-training the network on an unsupervised classification

SHRECI11

Method: Split 16 Split 10
MeshGraphNet [50] | 28.9% 16.0%
MeshNet [13] 55.6% 44.7%
MeshCNN [20] 98.6% 91.0%
PD-MeshNet [38] 99.7% 99.1%
MeshWalker [31] 98.6% 97.1%
MeshNet++ [49] 100% 99.8%
ExMeshCNN [29] 100% 99.3%
SubdivNet [25] 100% 100%

MGM-AE(Ours) | 100% 100%

Table 1. Classification accuracy for SHREC11 dataset.

Method: ‘ ModelNet40

MeshNet [13] 88.9%
MeshWalker [31] 88.9%
MeshGraphNet [50] 89.8%
MeshNet++ [49] 91.6%
MeshMAE [36] 92.5%
ExMeshCNN [29] 93.0%
MGM-AE(Scratch) 93.0%
MGM-AE(Ours) 93.2%

Table 2. Classification accuracy for ModelNet40 dataset.

task and transferring the learned features for supervised clas-
sification. Finally, we conduct a semi-supervised experiment
for part segmentation on 3D shapes.

4.1. Supervised Classification

We first verify that our network’s encoder could outper-
form other networks. By using the designed mesh graph
attention encoder, we achieve state-of-the-art performance
on SHRECI11 and ModelNet40 with mesh inputs.

SHREC11 is a dataset introduced in [34] that contains 30
classes, with 20 3D objects in each class. We follow setups
in [20] which split 16 and 10 are the numbers of training 3D
objects in each class, making split 10 a harder classification
task than split 16. We use the meshes processed by [20]
and each mesh contains 500 faces. Our results are reported
in Table 1. We train our encoder 300 epochs with Adam
optimizer, [30] which is with 8 equal to 0.9 and 0.999, ¢
equal to 178, learning rate 0.0002 and weight decay equal to
0.0. We compare our mesh graph attention encoder against
eight methods that also take meshes as the input to their
networks. It turns out that our encoder is able to get 100%
accuracy on both setups.

Because SHRECI 1 is a relatively small dataset for super-
vised classification and some methods have reached 100%
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Figure 2. On the left, we show that the model converges faster when
training from the pre-trained model. On the right, we visualize
the Hinge loss landscape of the pre-trained model and randomly
initialized model when the classification head is an SVM.

accuracy, we further validate our mesh graph attention en-
coder on ModelNet40 [63].

ModelNet40 is a dataset that contains 40 classes, and
there are 9840 meshes for training and 2468 meshes for test-
ing. Because meshes in ModelNet40 have different numbers
of faces. To fit meshes onto GPU and to improve the GPU
utilization, we follow the method in [26] to first make the
mesh watertight, then simplify the meshes into 2048 faces.
We train our encoder 300 epochs with the same optimizer
settings as for SHREC11. The learning rate is decayed by a
multiplicative factor of 0.1 at steps 30 and 60. Our method
achieved 93.0% test accuracy on ModelNet40.

The results are reported in Table 2. We compare our
encoder with six mesh-based methods. Our results are on
par with state-of-the-art classification on ModelNet40 when
training the model from scratch. When we fine-tune the
model using our proposed mesh auto-encoding algorithm,
the results indicate that our pre-trained algorithm is capable
of providing superior starting points. We achieve an impres-
sive 93.2%. It’s important to note that we utilize the same
data for both pre-training and supervised training to ensure a
fair comparison between these two methods.

In Figure 2, we present two key observations. Firstly, our
pre-trained model not only converges more rapidly but also
settles at a relatively lower local minimum. Secondly, as
depicted on the right side of the figure, our pre-trained model
offers a decidedly better starting point for searching com-
pared to a model with randomly initialized weights. More
specifically, on the right side of Figure 2, we employ the
method from [33] to sample weights along the pre-trained
weights and randomly initialized weights. We then calculate
the Hinge Loss as the y-value to illustrate the landscape of
these two model weights. This visualization implies two
things: Firstly, our model offers a lower starting point, cor-
roborating the fact that our pre-trained model converges
more swiftly. Secondly, our model provides a flatter starting
point, which is recognized to have superior generalization as
mentioned in [24].

These experiments validate that our encoder could get

state-of-the-art performances on 3D shape classification
tasks. The next experiments are to validate the model’s
pre-training performance on downstream tasks.

Method ‘ Modality ‘ Accuracy
LGAN [1] Point 84.5
MRTNet [16] Point 86.4
PCGAN [32] Point 87.8
FoldingNet [64] Point 88.4
PointGrow [52] Point 85.8
NSampler [46] Point 88.7
3D-PointCapsNet [71] Point 88.9
Multi-task [21] Point 89.1
PointDist [48] Point 84.7
ACD [15] Point 89.8
PointOE [45] Point 90.8
PTv1 [70] Point 84.6
GSIR [8] Point 90.4
MAP-VAE [19] Point 90.2
PTv2 [62] Point 86.3
ContrastNet [67] Voxel 86.8
AnyPoint [69] Point+Voxel 86.4
SPH [28] Mesh 68.2
FeaStNet [57] Mesh 74.4
MeshCNN [20] Mesh 76.8
ContConv [65] Mesh 76.5
MeshMAE [36] Mesh 89.2
MGM-AE(Ours) |  Mesh | 908

Table 3. Accuracy of transfer learning methods for classification
on ModelNet40. We compare multiple methods taking different
modalities of 3d data, including point cloud, voxel, and mesh.

4.2. Transfer Learning for Classification

We process all the provided training data (57000 mod-
els across 55 categories) in ShapeNet [7] in the same way
as ModelNet40 and pre-train the model on the data. We
keep the pre-trained model’s weight and use it for classifi-
cation tasks. We do not perform fine-tuning when using the
pre-trained model for downstream tasks. After obtaining
the graph embedding, we use a linear Support Vector Ma-
chine (SVM) as the classification tool for classification on
ModelNet40.

The process of our self-supervised learning is stated as
follows. We first pre-train the masked autoencoder with
training data with the same training hype-parameter setting
as in Section 4.1. After pre-training the model, we pick
the model with the lowest Chamfer Distance on provided
validation data in ShapeNet. We use the best model to ex-
tract global embeddings from the training and test data in
ModelNet40, a vector with dimension 1024. Once we obtain
the global embeddings, we use linear SVMs to train on Mod-
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Figure 3. Visual results. The top part shows the training results of the semi-supervised part segmentation task. For each object, the label of
the face is computed from the face embedding. Then we project the face label from mesh to the provided point cloud to compute accuracy
and IoU. The predicted label for each point is in the middle, and the ground truth is on the right. The bottom part displays the test dataset
reconstruction results, showing the input mesh, ground truth, and predicted point clouds from left to right.

elNet40 training data’s global embeddings. We use 5-fold
cross-validation to compute the average validation accuracy
on the data split from training data. We also perform a loga-
rithm search on the regularization parameter C of SVM from
1 to 1000 with the number of steps equal to 10. Then we pick
the SVM model with the best average validation accuracy to
compute the test accuracy. In Section 1 in the appendix, we
visualize graph embeddings with t-SNE [55].

In Table 3, our method outperforms other mesh-based
neural networks on self-supervised pre-training on Model-
Net40. There are two reasons our method outperforms other
mesh-based methods. The first reason is our encoder utilizes
an attention mechanism to pick important points while ig-
noring the noisy information by assigning lower weights to
the noisy neighboring. The second reason could contribute
to the masking mechanism. It provides more data augmenta-
tion to our model and forces the model to focus less on the
details of the shapes than on the general information in the
graph. And [45] that performs on par with our methods is
a point cloud-based method. The possible reason could be
that data augmentation, like rotation [19], is not considered
when designing our framework. Adding rotation-invariant
or equivariant design components to our framework is worth
exploring in future work. For Point Transformers [62,70],
we leverage their pretrained weights on S3DIS [3]. Subse-
quently, we train a linear SVM to classify the point cloud,
utilizing the features extracted from these pretrained weights.

In Figure 3, we show the reconstruction results on Mod-
elNet40 test data. To some extent, the autoencoder ignores
the input mesh’s detailed features while preserving the in-
put mesh’s overall structure. Those detailed features, like

the airplane’s engine, the chair’s arm, and the leg style of a
table, are ignored during the reconstruction. Ignoring those
detailed features means that the encoder encodes the infor-
mation that is good for decoding into an average shape in
the class but forgets details. For reconstruction tasks, this
is not desired. But for classification, this process is like
cleaning redundant information from the input shape. More
reconstruction results are in Figure 5 in the appendix.

4.3. Part Segmentation

Part segmentation is a fine-grained point-wise classifi-
cation task that aims to predict each point’s part category
label in a given shape. In our work, we need to predict the
part category label for each face in a mesh. We evaluate
the learned point features on the ShapeNetPart dataset [66],
which contains 16,881 objects from 16 categories (12149
for training, 2874 for testing, and 1858 for validation). Each
object consists of 2 to 6 parts with a total of 50 distinct parts
among all categories. We use the mean Intersection-over-
Union (mloU) as the measurement calculated by averaging
the ToUs of the different parts occurring in one shape.

For the segmentation result, we follow the protocol from
[21]. The results are shown in Table 4. In the original dataset,
only point clouds and their corresponding point-wise labels
are provided. To get ground truth for meshes, we need to first
align the mesh with the point cloud by sampling points on
the mesh and align the centers of the sampled point clouds
with the provided point clouds. After the alignments, we
first sample points on the face uniformly for each face on
the mesh. Then we compute the nearest point in the ground
truth point cloud. After that, the face’s label is determined
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Model Fetrain data ‘ C.IoU LIoU Aero Bag Cap Car Chair Ear Gui Knife Lamp Lap Motor Mug Pistol Roc Skate Table
Multi-Task 5% 72.1 7117 78.4 67.7 78.2 66.2 85.5 52.6 87.7 81.6 76.3 93.7 56.1 80.1 70.9 447 60.7 73.0
MGM-AE-5 5% 69.5 785 718 66.4 46.8 69.4 81.7 50.4 83.8 66.5 70.2 925 57.0 80.4 74.2 47.0 65.4 81.9
MGM-AE-1 1% 493 725 715 31.3 0.0 61.6 80.1 28.3 843 36.3 552 91.6 0.0 65.9 61.5 342 0.0 80.2

Table 4. Comparison between our semi-supervised model and other model [21] on ShapeNetPart segmentation task. Average mloU
over instances (Ins.) and categories (Cat.) are reported. MGM-AE-5 stands for training the appended MLP with 5% of the training data.
And MGM-AE-1 stands for 1%. Ear: Earphone. Gui: Guitar. Lap: Laptop. Roc: Rocket.
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Figure 4. Visualization of test and validation accuracy under different training and test masking ratio on the graph. (a) plots the
curve of test accuracy, validation accuracy, and validation loss (with unit 10~3 ) by fixing the masking ratio at testing to 0 and varying the
training masking ratio from 0.1 to 0.9. (b) and (c) are the heat maps of test accuracy and validation accuracy. The lighter the color, the higher
the accuracy. The highest test accuracy (89.830%) is masked in bold in (b).

by the major vote of all the sampled points’ labels.

After the processing, we follow [71] to randomly use 5%
and 1% of the ShapeNetPart training data to evaluate the
segment part task in a semi-supervised setting. We use the
same pre-trained model to extract the face features of the
sampled training data, along with validation and test samples
without any finetuning. Following [21], We then train a 4-
layer MLP [2048, 4096, 1024, 50] on the sampled training
sets and evaluate it on all test data. The input feature to
the MLP is the concatenation of face node embeddings and
global graph embeddings which makes the input features
have a dimension size of 2048. We train the model with
Adam optimizer with a fixed learning rate of 0.002. This
training process takes 30 epochs and converges very fast.
Because the features are clear for the MLP to distinguish,
the entire process takes about 15 minutes, including the
testing after each epoch’s training.

During testing, we project the label computed on the
meshes’ faces back to the provided point clouds according
to the distance between the points and faces. Results shown
in Table 4 suggest that our method is able to perform on
par with the point cloud baselines and on ShapeNetPart
semi-supervised learning segmentation task. In Figure 3, we
show the visualization result of our semi-supervised learning
segmentation. More segmentation visualization results are
shown in Figure 4 in the appendix. In essence, our approach
demonstrates the effectiveness of using a pre-trained model
to extract face features, which are then used to train an MLP

for segmentation tasks. This method converges quickly and
performs on par with existing point cloud baselines.

5. Parameter Analysis

Analysis on Masking Ratio. In [22], the researchers pro-
posed a masked autoencoder model for transfer learning
tasks, where the input data is partially masked during train-
ing. The authors assumed that providing as much informa-
tion as possible to the trained model during testing is the best
choice and therefore, the test masking ratio was fixed at 0.
In this study, we investigate the impact of test masking ratios
on transfer learning tasks using a masked autoencoder model.
Unlike traditional approaches where the test masking ratio is
fixed, we treated it as a variable during the evaluation of the
pre-trained model. Through our experiments, we discovered
that the performance on the transfer learning task is affected
by the training masking ratio as seen in Figure 4 (a) where
we fixed the test masking ratio to 0.0 and varied the training
masking ratio from 0.1 to 0.9. Furthermore, by varying the
masking ratio during both training and testing in Figure 4
(b) and (c), we found that the maximum test accuracy was
achieved when the training masking ratio was 0.6 and the test
masking ratio was 0.1 or 0.3. This result suggests that a test
masking ratio of 0 is not mandatory when evaluating a model
trained with masking autoencoding and that the optimal test
masking ratio is dependent on the specific downstream task
and the chosen training masking ratio.
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Figure 5. Analysis of masking ratio. The test and validation accuracy heat map on the left is visualized as a 3D patch. In the middle, the
difference between validation and test accuracy is visualized in a heat map. The difference heat map is visualized on the right in a 3D patch.
And two sub-graphs show the curve of test accuracy (in blue) and validation accuracy (in yellow) by fixing test and training masking ratios.

For the convenience of delivery, we denote a 2D coordi-
nate (a,b) as the situation when the training masking ratio
is a, and the test masking ratio is b. In Figure 5, we inves-
tigate why the best test accuracy happens at (0.6,0.1) and
(0.6,0.3). We compute the difference between validation
accuracy and test accuracy. This difference is usually taken
as the symbol of overfitting or underfitting. It turns out that
in most cases, our model overfitted the task which means
that validation accuracy is larger than test accuracy. But
those maximum test accuracy points happen to be the points
that are less overfitting. Another point that exhibits such
property is (0.7,0.7) in the difference map. But at that point,
more information about the mesh is lost. Three regions on
the heat map in Figure 5 exhibit the less overfitting property.
The last one is at (0.2,0.6). But the testing ratio is too high
that the model is not overfitting but also extracts less useful
information. Even though in MaskMAE, 0.75 is the best
choice for masking, our 3D mesh dataset differs from the
image dataset. In 3D space, a lower training masking ratio
proves optimal, indicating that a mesh face in classification
is more significant than individual image pixels.

In this study, we found that the point at position (0.5, 0.5)
in our experiments resulted in the most overfitting of the
model. There are two potential explanations for this. First,
training with a masking ratio of 0.5 results in a model with
the highest capacity, making validation easier but testing
harder. Second, having the same masking ratio for both
training and testing may cause the model to rely too heavily
on finding information from the masking itself, rather than
the underlying features relevant to the classification task. On
the other hand, the point at (0.6, 0.1) had a more balanced
performance. The model was trained at a masking ratio
of 0.6, but tested at a masking ratio of 0.1. This helps to
remove redundant information unrelated to the classification
task, while also forcing the model to discard information on
masking and focus on the common details relevant to the

task. Additional accuracy curves under different training and
test masking ratios (ranging from 0.0 to 1.0 in increments
0.1) can be found in Section 3 of the appendix.

6. Conclusion

We propose a mesh-based self-supervised learning frame-
work that can be pre-trained on large-scale 3D imaging
datasets to learn face node and shape graph features on
meshes using graph masked autoencoding. We thoroughly
evaluated our model on mesh classification and segmenta-
tion benchmarks. The results suggest that the learned node
and graph features outperform prior state-of-the-art models.
For instance, in ModelNet40 transfer learning classification
tasks, our model achieved a state-of-the-art (among self-
supervised mesh encoders) accuracy of 90.8% and 93.2%.
We also find that different combinations of test and training
masking ratios in MGM-AE could provide varying informa-
tion to downstream tasks. In the ShapeNetPart segmentation
task, it achieved a mloU of 78.5, which outperforms the
state-of-the-art encoders.

Our work’s novelty lies in the unique approach of lever-
aging the inherent topology information of mesh data. Mesh
data, unlike other types of data, capture the spatial relation-
ships and geometric properties of objects in a more detailed
and structured manner. This inherent topology informa-
tion provides a rich source of features that can be exploited
for learning tasks. Our mesh-based masked encoding pre-
training framework is designed to capture and utilize this
information effectively, leading to improved performance in
downstream tasks.

We believe our work opens up a new direction for mesh
deep learning analysis and self-supervised learning on mesh
data by demonstrating the potential of mesh data and the
effectiveness of our approach.

3310



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40-49. PMLR, 2018.

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning
to see by moving. In Proceedings of the IEEE international
conference on computer vision, pages 37-45, 2015.

I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-
3D-Semantic Data for Indoor Scene Understanding. ArXiv
e-prints, Feb. 2017.

Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,
Michael Bronstein, and Stefanos Zafeiriou. Neural 3d mor-
phable models: Spiral convolutional networks for 3d shape
representation learning and generation. pages 7213-7222,
2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information
processing systems, 33:1877-1901, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning of
visual features. In Proceedings of the European conference
on computer vision (ECCV), pages 132-149, 2018.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository, 2015.

Haolan Chen, Shitong Luo, Xiang Gao, and Wei Hu. Unsuper-
vised learning of geometric sampling invariant representations
for 3d point clouds. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 893-903,
2021.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias NieBner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828-5839, 2017.

Jicheng Dai, Rubin Fan, Yupeng Song, Qing Guo, and Fazhi
He. Mean: An attention-based approach for 3d mesh shape
classification. The Visual Computer, pages 1-14, 2023.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. 2018.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsu-
pervised visual representation learning by context prediction.
In Proceedings of the IEEE international conference on com-
puter vision, pages 1422-1430, 2015.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and
Yue Gao. Meshnet: Mesh neural network for 3d shape repre-
sentation. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 8279-8286, 2019.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-
rich Miiller. Splinecnn: Fast geometric deep learning with
continuous b-spline kernels. pages 869—-877, 2018.

[15]

(16]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

3311

Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma,
Evangelos Kalogerakis, Liangliang Cao, Erik Learned-Miller,
Rui Wang, and Subhransu Maji. Label-efficient learning on
point clouds using approximate convex decompositions. In
Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part X 16,
pages 473-491. Springer, 2020.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Mul-
tiresolution tree networks for 3d point cloud processing. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 103-118, 2018.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d textured
shapes learned from images. Advances In Neural Information
Processing Systems, 35:31841-31854, 2022.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-
pervised representation learning by predicting image rotations.
2018.

Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias
Zwicker. Multi-angle point cloud-vae: Unsupervised feature
learning for 3d point clouds from multiple angles by joint self-
reconstruction and half-to-half prediction. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
10441-10450. IEEE, 2019.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Transactions on Graphics (ToG), 38(4):1-12,
2019.

Kaveh Hassani and Mike Haley. Unsupervised multi-task
feature learning on point clouds. In Proceedings of the
1EEE/CVF International Conference on Computer Vision,
pages 8160-8171, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dolldr, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000—
16009, 2022.

G. Hess, J. Jaxing, E. Svensson, D. Hagerman, C. Petersson,
and L. Svensson. Masked autoencoders for self-supervised
learning on automotive point clouds. arXiv, 2022.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neu-
ral computation, 9(1):1-42, 1997.

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong
Cai, Jiahui Huang, Tai-Jiang Mu, and Ralph R Martin.
Subdivision-based mesh convolution networks. ACM Trans-
actions on Graphics (TOG), 41(3):1-16, 2022.

Jingwei Huang, Hao Su, and Leonidas Guibas. Robust water-
tight manifold surface generation method for shapenet models.
arXiv preprint arXiv:1802.01698, 2018.

Simon Jenni and Paolo Favaro. Self-supervised feature learn-
ing by learning to spot artifacts. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rota-
tion invariant spherical harmonic representation of 3d shape
descriptors. 2003.



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

Seonggyeom Kim and Dong-Kyu Chae. Exmeshcnn: An
explainable convolutional neural network architecture for 3d
shape analysis. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages
795-803, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alon Lahav and Ayellet Tal. Meshwalker: Deep mesh under-
standing by random walks. ACM Transactions on Graphics
(TOG), 39(6):1-13, 2020.

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-
zos, and Ruslan Salakhutdinov. Point cloud gan. arXiv
preprint arXiv:1810.05795, 2018.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein. Visualizing the loss landscape of neural nets. Ad-
vances in neural information processing systems, 31, 2018.
7Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawa-
mura, Y Kurita, G Lavoua, P Dp Suetens, et al. Shape retrieval
on non-rigid 3d watertight meshes. In Eurographics workshop
on 3d object retrieval (3DOR). Citeseer, 2011.

Yagqian Liang, Fazhi He, Xiantao Zeng, and Baosheng Yu.
Feature-preserved convolutional neural network for 3d mesh
recognition. Applied Soft Computing, 128:109500, 2022.
Yagian Liang, Shanshan Zhao, Baosheng Yu, Jing Zhang, and
Fazhi He. Meshmae: Masked autoencoders for 3d mesh data
analysis. In European Conference on Computer Vision, pages
37-54. Springer, 2022.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and
Pierre Vandergheynst. Geodesic convolutional neural net-
works on riemannian manifolds. In Proceedings of the
IEEE international conference on computer vision workshops,
pages 37-45, 2015.

Francesco Milano, Antonio Loquercio, Antoni Rosinol, Da-
vide Scaramuzza, and Luca Carlone. Primal-dual mesh con-
volutional neural networks. Advances in Neural Information
Processing Systems, 33:952-963, 2020.

Chen Min, Dawei Zhao, Liang Xiao, Yiming Nie, and Bin Dai.
Voxel-mae: Masked autoencoders for pre-training large-scale
point clouds. arXiv preprint arXiv:2206.09900, 2022.
Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele
Rodola, Jan Svoboda, and Michael M Bronstein. Geometric
deep learning on graphs and manifolds using mixture model
cnns (2016). URL https://arxiv. org/abs/1611.08402.

James F Mullen, Divya Kothandaraman, Aniket Bera, and Di-
nesh Manocha. Placing human animations into 3d scenes by
learning interaction-and geometry-driven keyframes. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 300-310, 2023.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles (2016).
arXiv preprint arXiv:1603.09246, 2.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International conference on machine
learning, pages 4055—4064. PMLR, 2018.

[44]

[45]

[40]

(47]

(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

(561

(571

3312

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature learn-
ing by inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2536-2544,
2016.

Omid Poursaeed, Tianxing Jiang, Han Qiao, Nayun Xu, and
Vladimir G Kim. Self-supervised learning of point clouds via
orientation estimation. In 2020 International Conference on
3D Vision (3DV), pages 1018-1028. IEEE, 2020.

Edoardo Remelli, Pierre Baque, and Pascal Fua. Neuralsam-
pler: Euclidean point cloud auto-encoder and sampler. arXiv
preprint arXiv:1901.09394, 2019.

Mahdi Saleh, Shun-Cheng Wu, Luca Cosmo, Nassir Navab,
Benjamin Busam, and Federico Tombari. Bending graphs:
Hierarchical shape matching using gated optimal transport.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11757-11767, 2022.
Yi Shi, Mengchen Xu, Shuaihang Yuan, and Yi Fang. Unsu-
pervised deep shape descriptor with point distribution learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9353-9362,
2020.

Vinit Veerendraveer Singh, Shivanand Venkanna Sheshap-
panavar, and Chandra Kambhamettu. Meshnet++: A network
with a face. In ACM Multimedia, pages 4883-4891, 2021.
An Ping Song, Xin Yi Di, Xiao Kang Xu, and Zi Heng
Song. Meshgraphnet: An effective 3d polygon mesh recogni-
tion with topology reconstruction. /EEE Access, 8:205181—
205189, 2020.

Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang,
Chengkai Zhang, Tianfan Xue, Joshua B Tenenbaum, and
William T Freeman. Pix3d: Dataset and methods for single-
image 3d shape modeling. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2974-2983, 2018.

Yongbin Sun, Yue Wang, Ziwei Liu, Joshua Siegel, and
Sanjay Sarma. Pointgrow: Autoregressively learned point
cloud generation with self-attention. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 61-70, 2020.

Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent convolutions for dense prediction in 3d. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3887-3896, 2018.

Giovanni Trappolini, Luca Cosmo, Luca Moschella, Riccardo
Marin, Simone Melzi, and Emanuele Rodola. Shape reg-
istration in the time of transformers. Advances in Neural
Information Processing Systems, 34:5731-5744, 2021.
Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Fukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:
Feature-steered graph convolutions for 3d shape analysis. In



(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2598-2606, 2018.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio
Guadarrama, and Kevin Murphy. Tracking emerges by col-
orizing videos. In Proceedings of the European conference
on computer vision (ECCV), pages 391-408, 2018.
Xiaolong Wang and Abhinav Gupta. Unsupervised learning
of visual representations using videos. In Proceedings of
the IEEE international conference on computer vision, pages
2794-2802, 2015

Donglai Wei, Joseph J Lim, Andrew Zisserman, and
William T Freeman. Learning and using the arrow of time. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8052-8060, 2018

Dirk Weissenborn, Oscar Tackstrom, and Jakob Uszkor-
eit. Scaling autoregressive video models. arXiv preprint
arXiv:1906.02634, 2019.

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-
shuang Zhao. Point transformer v2: Grouped vector attention
and partition-based pooling. Advances in Neural Information
Processing Systems, 35:33330-33342, 2022.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:
A deep representation for volumetric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 1912-1920, 2015

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 206-215, 2018.

Zhangsihao Yang, Or Litany, Tolga Birdal, Srinath Sridhar,
and Leonidas Guibas. Continuous geodesic convolutions for
learning on 3d shapes. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pages
134-144, 2021.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer,
and Leonidas Guibas. A scalable active framework for region
annotation in 3d shape collections. ACM Transactions on
Graphics (ToG), 35(6):1-12, 2016.

Ling Zhang and Zhigang Zhu. Unsupervised feature learning
for point cloud by contrasting and clustering with graph con-
volutional neural network. arXiv preprint arXiv:1904.12359,
2019.

Sixiao Zhang, Hongxu Chen, Haoran Yang, Xiangguo Sun,
Philip S Yu, and Guandong Xu. Graph masked autoencoders
with transformers. arXiv preprint arXiv:2202.08391, 2022.
Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan
Misra. Self-supervised pretraining of 3d features on any
point-cloud. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10252-10263, 2021.
Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and
Vladlen Koltun. Point transformer, 2021.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico
Tombari. 3d point capsule networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1009-1018, 2019.

3313



