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Abstract

Obtaining accurate 3D object poses is vital for numer-
ous computer vision applications, such as 3D reconstruc-
tion and scene understanding. However, annotating real-
world objects is time-consuming and challenging. While
synthetically generated training data is a viable alterna-
tive, the domain shift between real and synthetic data is
a significant challenge. In this work, we aim to narrow
the performance gap between models trained on synthetic
data and fully supervised models trained on a large amount
of real data. We achieve this by approaching the problem
from two perspectives: 1) We introduce P3D-Diffusion, a
new synthetic dataset with accurate 3D annotations gener-
ated with a graphics-guided diffusion model. 2) We pro-
pose Cross-domain 3D Consistency, CC3D, for unsuper-
vised domain adaptation of neural mesh models. In par-
ticular, we exploit the spatial relationships between fea-
tures on the mesh surface and a contrastive learning scheme
to guide the domain adaptation process. Combined, these
two approaches enable our models to perform competitively
with state-of-the-art models using only 10% of the respec-
tive real training images, while outperforming the SOTA
model by a wide margin using only 50% of the real train-
ing data. By encouraging the diversity of synthetic data
and generating the images with an OOD-aware manner, our
model further demonstrates robust generalization to out-of-
distribution scenarios despite being trained with minimal
real data. The code is available at https://github.
com/YangYY06/synthetic_3d.

1. Introduction

Object pose estimation is a fundamentally important task
in computer vision with a multitude of real-world appli-
cations, e.g., in autonomous driving, 3D reconstruction,
or in virtual and augmented reality applications. Pose es-
timation has been studied in depth on the instance level

[14, 17, 19, 25, 38], and on the category-level for very spe-
cific object classes like cars [11] and faces [26]. However,
it remains unclear how to learn category-level 3D pose es-
timation for general object categories. The main reason is
that current models require large-scale annotated data, but
annotating data with 3D poses is prohibitively expensive.

We aim to approach this problem by developing mod-
els that learn from limited manual annotation and large-
scale synthetic data with automated annotations. In partic-
ular, we build on recent results that develop a render-and-
compare approach to category-level pose estimation [17,34]
and demonstrated more efficient learning from few exam-
ples [35] compared to standard deep neural network-based
methods, due to their inherent 3D-aware network architec-
ture. However, these methods still suffer from lower pose
prediction accuracy when learned from few examples, com-
pared to models learned from large-scale annotated data.

In this work, we aim to close the performance gap be-
tween models trained on a limited number of annotated real
images and fully supervised models. To achieve this, we
first introduce diffusion-enhanced synthetic data with re-
alistic images coupled with accurate 3D annotations, and
second, we develop an unsupervised domain adaptation
method that achieves strong few-shot performance on both
in-distribution and out-of-distribution data.

The major obstacle that prevents the community from us-
ing generated data rendered using computer graphics is that
most current object pose estimation approaches [21, 30, 32,
41] are sensitive to domain shift. This means that their per-
formance degrades significantly when trained on synthetic
images and then evaluated on real-world images. To ad-
dress this issue, we create and develop P3D-Diffusion, a
diffusion-enhanced synthetic dataset with high-quality re-
alistic images and accurate 3D annotations with no man-
ual efforts. As outlined in Figure 1, the dataset generation
begins with the rendering the CAD models with a graphics-
based renderer. To narrow the gap between synthetic images
and natural images, we propose a graphics-guided style
transfer module that utilizes a pre-trained diffusion model
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Figure 1. Our approach learns 3D pose estimation from P3D-Diffusion where CAD models are rendered under randomly sampled view-
points. Additonally, we apply diffusion models to transfer the style of synthetic images while maintaining 3D consistencies. To address
out-of-distribution (OOD) challenges, our OOD-aware generation method breaks the spurious correlations between task-related semantic
information and domain-specific background features. Using P3D-Diffusion, we propose CC3D that allows for accurate 3D pose estima-
tion on real data, even in challenging domains considered to be out-of-distribution for standard benchmarks.

to produce high-quality images while maintaining 3D con-
sistency. We also introduce an out-of-distribution (OOD)-
aware generation design that can effectively break the spuri-
ous correlations between task-related semantic information
and domain-specific features. P3D-Diffusion can improve
model’s robustness in OOD scenes with only a negligible
degradation in in-distribution benchmark performance.

As a second contribution, we develop a domain robust
object pose estimation approach based on prior work on
neural mesh models [34] that use inverse rendering on dis-
criminative neural features for pose estimation. In particu-
lar, our approach represents an object category as a cuboid
mesh and learns a generative model of neural feature ac-
tivations at each mesh vertex for pose estimation via dif-
ferentiable rendering. The feature representations at each
vertex are trained to be invariant to instance-specific details
and changes in 3D pose using contrastive learning. We ex-
tend the model to achieve better domain generalization by
enhancing the consistency among vertex features across do-
mains, and reweighting predictions to depend more on reli-
able features. To better adapt our model to real-world image
domains, we fine-tune it on unlabeled real-world images us-
ing pseudo-labels from unlabeled data.

We summarize the contributions of our paper as follows:

• We create the diffusion-enhanced P3D-Diffusion
dataset by rendering CAD models in various poses and
lighting conditions, and then feeding the rendered im-
ages into a graphics-guided diffusion model to pro-
duce high-quality realistic images with 3D annota-

tions. As a result, models trained on P3D-Diffusion
dataset achieve better accuracy on real-world images
and generalize well to out-of-distribution scenarios.

• We introduce a novel training and inference process for
neural mesh models that enables them to perform un-
supervised domain adaptation via feature consistency.

• Our results show that our proposed model combined
with our synthetic data generalizes almost as well as
fully supervised models, when using only 50 training
samples per class. Using 10% of the annotated data it
can even outperform fully supervised models. More-
over, our model generalizes more robustly in realistic
out-of-distribution scenarios.

2. Related Works
Category-level 3D pose estimation. Category-level 3D
pose estimation estimates the 3D orientations of objects in
a certain category. A classical approach was to formulate
pose estimation as a classification problem [21, 32]. Subse-
quent works can be categorized into keypoint-based meth-
ods and render-and-compare methods [5, 36]. Keypoint-
based methods [24, 41] first detect semantic keypoints and
then predict the optimal 3D pose by solving a Perspective-
n-Point problem. Render-and-compare methods [5,36] pre-
dict the 3D pose by fitting a 3D rigid transformation to mini-
mize a reconstruction loss. Recently, NVSM [35] proposed
a semi-supervised approach and investigated pose estima-
tion in few-shot settings. Annotations of 3D poses are hard
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to obtain, and most previous works are largely limited by
the number and quality of 3D annotations on real images.
In this work, we propose to incorporate synthetic images
generated from CAD models to address this challenge.

Unsupervised domain adaptation. Unsupervised do-
main adaptation (UDA) leverages both labeled source do-
main data and unlabeled target domain data to learn a model
that works well in the target domain. One approach is to
learn domain-invariant feature representations by minimiz-
ing domain divergence in a latent feature space [20, 28, 31].
Another line of work adopts adversarial loss [15, 33] to ex-
tract domain invariant features, where a domain classifier
is trained to distinguish the source and target distributions.
Recent works have also investigated UDA in downstream
tasks, such as human pose estimation [4] and parsing de-
formable animals [22]. However, previous works often lim-
ited their scope to improving pose estimation or segmenta-
tion performance on i.i.d. data by involving synthetic im-
ages during training. In this work, we demonstrate that our
proposed approach can both effectively improve benchmark
performance on i.i.d. data, as well as enhancing model ro-
bustness in o.o.d. scenarios.

Self-training. Self-training has been found effective in
self-supervised settings where we utilize unlabeled target
domain data to achieve domain adaptation. Since gener-
ated pseudo-labels are noisy, several methods [10,18,42,43]
were proposed to address this problem. [42, 43] formu-
lated self-training as a general EM algorithm and pro-
posed a confidence regularized framework. [18] proposed
a self-ensembling framework to bootstrap models using un-
labeled data. Moreover, [10] extended the previous work
to unsupervised domain adaptation and investigated self-
ensembling in closing domain gaps. In this work, we in-
troduce an approach that leverages 3D cross-domain con-
sistency in a contrastive learning framework.

3. P3D-Diffusion Dataset
We generate realistic-looking synthetic images with 3D

annotations for training to reduce the domain generalization
gap. Given CAD models C = {Ci}Ni=1 and 2D background
images B = {Bj}Kj=1, our synthetic image generation can
be formulated as

Irender = R(Ci, ξ), Isynthetic = Irender ⊕Bj (1)

where ξ ∈ SO(3) represents a randomized object pose, R
is an off-the-shelf renderer, and ⊕ overlays the rendered ob-
ject image onto the background image Bj .

Although the image generation pipeline we employ
yields image samples with 3D annotations at no additional
cost, there is a significant domain gap between synthetic

and real images. This gap presents great challenges for deep
learning models to apply knowledge learned from synthetic
data to natural images. Moreover, the generation of syn-
thetic data is often biased towards the domain style of the
testing benchmark, leading to models trained on the abun-
dant synthetic data overfitting on domain-specific features.
The overfitting can result in a drop in performance when
evaluated on out-of-distribution (OOD) datasets.

To address these issues, we propose two novel designs
for our P3D-Diffusion dataset that improve both the in-
distribution and out-of-distribution performance. In Sec-
tion 3.1 we demonstrate how we utilize a graphics-guided
diffusion model to produce realistic synthetic data with ac-
curate 3D annotations. Then we show how we can improve
the out-of-distribution robustness of models trained on syn-
thetic data in Section 3.2.

3.1. Diffusion-Enhanced Synthetic Data

Rendering photo-realistic images from CAD models is
a challenging task, despite the plentiful CAD models avail-
able online and the technological advancements in modern
renderers. Achieving high levels of realism requires de-
tailed object materials and textures, which are not available
in most CAD models publicly available [3, 37]. Moreover,
simulating authentic lighting conditions demands profes-
sional expertise to set up various types of lights and largely
increases the rendering time of synthetic images. In fact,
modern generative models [29,39] are capable of generating
high-resolution, detailed images with realistic textures and
specular reflections. We propose to utilize such models to
generate high-quality training images with 3D annotations.

Therefore, we design a graphics-guided style transfer
module that can rapidly generate photo-realistic images
without relying on high-quality CAD models. As demon-
strated in Figure 1, we start by rendering the image Irender =
R(Ci, ξ) with the graphics-based renderer. Then we use a
Canny edge detector [2] to produce a 2D edge map E en-
coding the semantic and structural information of the ob-
ject C in the 2D lattice. The edge map is used to guide
the generation of a high-quality image I ′synthetic using a pre-
trained style transfer generative model Ψ [39]. The gen-
erative model Ψ takes an edge map as input and generates
a high-quality realistic image consistent with the semantics
provided in the edge map. By leveraging the edge map in-
put, our approach effectively retains the semantic and struc-
tural information of C, enabling us to obtain 3D annotations
for high-quality image I ′synthetic directly from the rendering
parameters. Formally this module is given by

Irender = R(Ci, ξ)

E = CannyEdge(Irender)

I ′synthetic = Ψ(E)⊕Bj (2)
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Figure 2. Top: Visualizations of the P3D-Diffusion. The naı̈ve ap-
proach yields textureless objects with similar colors. We promote
diverse textures and colors with 3D-consistent prior noise and sim-
ple prompt engineering. Bottom: Visualizations of 3D consistent
prior noise for diverse texture generation.

Note that the style transfer generative model can be trained
with abundant 2D images from the Internet. The high-
quality synthetic training data with 3D annotations come at
no extra cost with the help of our graphics-guided module.

Encouraging diverse outputs. Early experiments re-
vealed that the style transfer network exhibits mode col-
lapse, resulting in textureless objects with similar colors
(see Figure 2). We propose two approaches that address
this issue. First, to promote varied textures from the style
transfer generative model, we render the CAD models with
textures from the Describable Texture Dataset (DTD) [7].
This strategy introduces 3D-consistent prior noise into the
edge maps, which compels the model to generate a variety
of textures and colors. One the other hand, we adopt prompt
engineering when applying the style transfer network and
add random colors in the prompts in the form of “[color]
[category]”, e.g., “red car” and “green aeroplane”. This ap-
proach allows us to produce a wide range of colors while
maintaining 3D consistencies.

3.2. OOD-Aware Generation

From a causal perspective, the OOD robustness prob-
lem can be attributed to the spurious correlation between
task-related semantic features, such as object parts and
their locations, and domain-specific features, such as back-
grounds [16]. Models trained on real images would in-
evitably learn from such spurious correlation, resulting in
a high in-distribution benchmark performance (largely due
to overfitting) and poor OOD robustness. Previous meth-
ods struggled to break the spurious correlation in real im-
ages [12, 16], which involves complex data augmentations
or swapping features as a regularization.

The fully controllable generation of our synthetic dataset
allows us to disentangle task-related semantics of fore-
ground objects, including CAD models and poses, from
domain-specific features such as background images. To
this end, we collected 100 images from the Internet, and
during our synthetic data generation process, we fully ran-
domized the selection of Bj , independent of the fore-
ground object category. In Section 5.6, we demonstrate
that our OOD-aware design significantly enhances our
model’s OOD robustness while only marginally degrading
in-distribution performance.

4. Domain Consistent 3D Pose Estimation via
Render-and-Compare

Our work builds on and significantly extends neural
mesh models (NMMs) [34] that learn generative mod-
els for feature activations and solve object 3D poses with
analysis-by-synthesis. We propose a novel unsupervised
domain adaptation approach, Cross-domain 3D Consis-
tency (CC3D), that effectively adapt models trained on syn-
thetic images to real data. In Section 4.1, we provide a re-
view of neural mesh models, introducing the background
and mathematical notations. Then we present our unsuper-
vised domain adaptation methods in Section 4.2, where we
propose a cross-domain feature consistency loss.

4.1. Background: Neural Mesh Models

Neural Mesh Models (NMMs) represent objects as a
neural mesh N = {V, C} with a set of vertices that represent
a cuboid mesh V = {Vr ∈ R3}Rr=1 and learnable features
for each vertex C = {Cr ∈ Rc}Rr=1, where c is the num-
ber of channels and R is the number of vertices, and C is
learned with a running average of neural features collected
from training images. During training, we first extract fea-
ture map F = ΦW (I), where ΦW is the feature extractor
with weights W and I is the RGB image. The feature ex-
tractor is trained with the contrastive loss that increases fea-
tures’ spatial distinguishability from each other [1]:

Lcon(F ) = −
∑
i∈FG

(
∑

j∈FG\{i}

∥fi − fj∥2 +
∑
j∈BG

∥fi − fj∥2),

where FG and BG indicate pixels in the foreground or back-
ground and i, j traverse all 2D locations on the feature map.

At test time, we can infer the object pose m by minimiz-
ing the feature reconstruction error w.r.t. the pose m with
gradient descent

Lrec(F,N,m, b) = − ln p(F | N,m, b)

=−
∑
i∈FG

(
ln

(
1

σr

√
2π

)
− 1

2σ2
r

∥fi − Cr∥2
)

−
∑

i′∈BG

(
ln

(
1

σ
√
2π

)
− 1

2σ2
∥fi′ − b∥2

)
. (3)
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where FG and BG indicates pixels assigned as foreground
or background respectively, b is learnt features that repre-
sent backgrounds, and σ is the variance. Note that the corre-
spondence between the feature map vector fi and the mesh
vertex feature Cr is given by the 2D projection of neural
mesh N with camera parameters m. Lrec is also used in
training to train the neural features on the mesh.

4.2. Domain Consistency 3D Pose Estimation via
Render-and-Compare

Domain-consistency loss. Although the analysis-by-
synthesis design of NMMs leads to a superior perfor-
mance on in-distribution data, directly applying the mod-
els to a new domain presents great challenges. New
domain-specific features yield a domain shift on the fea-
ture representation F = ΦW (I), yet the model synthe-
size source-domain features from unchanged vertex features
C = {Cr ∈ Rc}Rr=1. Such shifts in feature space makes the
optimized 3D pose biased and inaccurate. Therefore, to im-
prove the domain generalization ability of the NMMs, we
require the features C to be invariant to the variations be-
tween synthetic and real images.

To achieve this, we introduce a domain-consistency loss
that encourages features in real and synthetic data to be-
come similar to each other:

Ldomain(C, {F̃}) =
R∑

r=1

∥f̃r − Cr∥2, (4)

where f̃r are corresponding features for the vertex r on the
neural mesh in F̃ . F̃ is the feature map of the real image.
The correspondence between the neural mesh N and the real
data is obtained with pseudo labels introduced below. Fi-
nally, our full model is trained by optimizing the joint loss:

Ljoint = Lcon + Lrec + αLdomain, (5)

with α being a weight parameter that ensures that both
losses are approximately on the same scale.

Unsupervised domain adaptation with pseudo labels.
The core challenge of our approach lies in finding the cor-
responding features for every vertex on the neural mesh in
the real data without access to any pose annotations. To
resolve this problem, we first train a neural mesh from syn-
thetic data where we have ground-truth annotations. We
train the parameters of the neural texture C through maxi-
mum likelihood estimation (MLE) by minimizing the neg-
ative log-likelihood of the feature representations over the
whole training set. The correspondence between the feature
vectors fi and vertices r in the synthetic data is computed
using the annotated 3D pose. To reduce the computational
cost of optimizing Equation 3, we follow [1] and update C
in a moving average manner.

Given a synthetically trained neural mesh, we start by
estimating the 3D poses {mest} of the unlabeled real data
by optimizing the pose parameters m to maximize the like-
lihood p(F | N,m, b). Since predicted pose labels are
noisy, we proposed a criteria which leverages the advan-
tage of render-and-compare method to do self-consistency
examination for the quality of the predicted labels. Specif-
ically, with unlabeled real image I , extracted feature map
F and predicted label mest, we project the neural mesh N
to the 2D lattice with mest to estimate the FG and to find
the corresponding Cr for each fi. Then we compute the
self-consistency confidence score Sconfidence

Sconfidence =
1

γ

∑
i∈FG

fi · Cr (6)

where γ is the sum of FG pixels. Note that all fi and
Cr are normalized. For each category, we choose 100 real
images with the highest Sconfidence and their predicted poses
as pseudo-labels. Finally, by utilizing these pseudo labels,
we fine-tune our model through optimizing Equation 5.

In the following section, we demonstrate that our pro-
posed unsupervised domain adaptation approach is highly
efficient at bridging the domain gap between real and syn-
thetic data, giving accurate predictions on real data without
using any real annotations, and outperforming state-of-the-
art models when fine-tuned with few annotated real data.

5. Experiments

In this section, we present our main experimental results.
We start by describing the experimental setup in Section
5.1. Then we study the performance of approach on 3D
pose estimation under unsupervised and semi-supervised
settings in Section 5.2 and 5.3. We also report experimental
results on out-of-distribution data in Section 5.4 to demon-
strate the generalization ability of our model.

5.1. Experimental Setup

Datasets. We first evaluate 3D pose estimation by our
model and baseline models on PASCAL3D+ dataset [37].
The PASCAL3D+ dataset contains 11045 training images
and 10812 validation images of 12 man-made object cat-
egories with category and object pose annotations. We
evaluate 3D pose estimation under 5 different settings –
unsupervised, semi-supervised with 7, 20, and 50 images
[35], as well as the fully-supervised setting. To investigate
model robustness in out-of-distribution scenarios, we eval-
uate our method on the OOD-CV dataset [40]. The OOD-
CV dataset includes out-of-distribution examples from 10
categories of PASCAL3D+ and is a benchmark to evaluate
out-of-distribution robustness to individual nuisance factors
including pose, shape, texture, context and weather.
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Metric ACCπ
6
↑ ACC π

18
↑ MedErr ↓

Num Annotations 7 20 50 Mean 7 20 50 Mean 7 20 50 Mean

Res50-General 36.1 45.2 54.6 45.3 14.7 25.5 34.2 24.8 39.1 26.3 20.2 28.5
StarMap [41] 30.7 35.6 53.8 40.0 4.3 7.2 19.0 10.1 49.6 46.4 27.9 41.3
NeMo [34] 38.4 51.7 69.3 53.1 17.8 31.9 45.7 31.8 60.0 33.3 22.1 38.5
NVSM [35] 53.8 61.7 65.6 60.4 27.0 34.0 39.8 33.6 37.5 28.7 24.2 30.1

P3D-Diffusion + NeMo 78.2 79.3 82.6 80.0 55.3 55.9 60.2 57.1 15.8 15.4 10.6 13.9
P3D-Diffusion + CC3D 79.1 80.6 83.5 81.1 56.6 57.2 61.9 58.6 16.2 15.0 9.7 13.6

NeMo Full Sup. [34] — — — 89.3 — — — 66.7 — — — 7.7

Table 1. Few-shot pose estimation results on 6 vehicle classes of PASCAL3D+ following the evaluation protocol in [35]. We indicate
the number of annotations during training for each category and evaluate all approaches using Accuracy (in percent, higher better) and
Median Error (in degree, lower better). We also include the fully supervised baseline [34] (Full Sup.) which is trained from the full dataset
(hundreds of images per category).

Evaluation. 3D pose estimation aims to recover the
3D rotation parameterized by azimuth, elevation, and in-
plane rotation of the viewing camera. Following previ-
ous works [34, 41], we evaluate the error between the pre-
dicted rotation matrix and the ground truth rotation matrix:

∆(Rpred, Rgt) =
∥log m(RT

predRgt)∥
F√

2
. We report pose esti-

mation accuracies under common thresholds, π
6 and π

18 .

Training Setup. We use an ImageNet [9] pre-trained
ResNet50 [13] as feature extractor. The dimensions of the
cuboid mesh N are defined such that for each category most
of the object area is covered. Which takes around 1 hour
per category on a machine with 2 RTX Titan Xp GPUs. We
implement our approach in PyTorch [23] and apply the ras-
terisation implemented in PyTorch3D [27].

P3D-Diffusion. We sample the synthetic training data us-
ing the CAD models provided in the PASCAL3D+ and
OOD-CV datasets. We use Blender [8] as our renderer to
generate the synthetic images. We sample 7000 images
per class and randomize the texture of the CAD model by
sampling textures from the describable texture database [6].
The background images are sampled from a collection of
100 images that we collected from the internet by search-
ing for the keywords “wallpaper”+[“street, jungle, market,
beach”]. We provide detailed statistics and examples of our
synthetic dataset in the supplementary materials.

Baselines. We compare our model to fully supervised
methods for category-level 3D pose estimation, including
StarMap [41] and NeMo [34] using their official implemen-
tation and training setup. Following common practice, we
also evaluate a popular baseline that formulates pose esti-
mation as a classification problem. We follow the imple-
mentation in [41] and trained a ResNet50 classifier, which

shares the same backbone as NeMo.

Few-shot Learning. We further compare our approach at
a recently proposed semi-supervised few-shot learning set-
ting [35]. In this setting, 7, 20, and 50 annotated images
from Pascal3D+ are used for training. We follow [35] and
evaluate 6 vehicle categories (aeroplane, bicycle, boat, bus,
car, motorbike) with a relatively even distribution of the az-
imuth angle. In order to utilize the unlabelled images, a
common pseudo-labelling strategy is used for all baselines.
Specifically, we first train a model on the annotated im-
ages, and use the trained model to predict a pseudo-label
for all unlabelled images in the training set. We keep those
pseudo-labels with a confidence threshold τ = 0.9, and we
utilize the pseudo-labeled data as well as the annotated data
to train the final model. The previous state-of-the-art model
in this few-shot setting is NVSM [35].

5.2. Few-Shot 3D Pose Estimation

Table 1 shows the performance of our approach and all
baselines at semi-supervised few-shot 3D pose estimation
on 6 vehicle classes of the PASCAL3D+ dataset. All mod-
els are evaluated using 7, 20, and 50 (per class) training
images with annotated 3D pose and a collection of unla-
belled training data (as described in Section 5.1). Among
the models trained without our P3D-Diffusion dataset, the
ResNet50 classification baseline and NeMo achieve a com-
parable performance using few annotated images. Notably,
NVSM is by far the best performing baseline when using
only 7 or 20 annotated images per object class. However,
when using 50 annotated images, the NeMo baseline out-
performs NVSM by a margin of 3.7%.

Using our P3D-Diffusion dataset, our proposed CC3D
outperforms all baselines across all few-shot data
regimes. Remarkably, our model constantly outperforms
the prior arts by a margin of > 20% in both π

6 and π
18 accu-
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Evaluation Metric ACCπ
6
↑ ACC π

18
↑ MedErr ↓

Res50-General 88.1 44.6 11.7
StarMap [41] 89.4 59.5 9.0
NeMo [34] 86.1 61.0 8.8

P3D-Diffusion + Res50 53.5 13.2 26.7
P3D-Diffusion + NeMo 71.8 39.5 17.6
P3D-Diffusion + CC3D 76.3 41.4 15.5

P3D-Diffusion + CC3D + 10% 86.7 62.4 8.4
P3D-Diffusion + CC3D + 50% 90.7 71.4 6.9

Table 2. Pose estimation results on PASCAL3D+. We evaluate all
models using pose accuracy and median pose error. We compare
the state-of-the-art fully supervised baselines (StarMap, NeMo,
Res50) to models learned on synthetic data and transferred to real
(P3D-Diffusion + Res50, P3D-Diffusion + NeMo, P3D-Diffusion
+ CC3D) and P3D-Diffusion + CC3D + fine-tuned with 10% and
50% of annotated data. CC3D outperforms other approaches when
trained without real annotations, and even outperforms the SOTA
methods with only 10% of the annotated data.

racy. We further observe that the NeMo model trained using
our P3D-Diffusion dataset (P3D-Diffusion +NeMo) and do-
main adapted as described in Section 5.1 also significantly
outperforms the original NeMo baseline, demonstrating the
effectiveness of our synthetic data. Nevertheless, it does
not match the performance of our proposed 3D-aware con-
trastive consistency approach. Finally, with only 50 anno-
tated images our CC3D model even performs competitively
to the fully supervised trailing it by only by 8.2%@π

6 and
8.1%@ π

18 , hence significantly closing the gap between fully
supervised models and models trained on synthetic data.

5.3. Comparison to Supervised Approaches

Table 2 summarizes our results when comparing to fully
supervised models trained on the full annotated dataset. In
the experiment P3D-Diffusion +CC3D, we first pre-train
with synthetic data and then use Ldomain for fine-tuning
with unlabeled real images. In experiments named “P3D-
Diffusion +CC3D+X%”, we additionally use labelled data
for a final fine-tuning, where X% denotes the number of
available real image labels. These real image samples were
randomly selected after shuffling the dataset.

When annotations of real images are not available, our
proposed CC3D outperforms the NeMo and ResNet50
baselines that use same training data (P3D-Diffusion +
Res50, P3D-Diffusion + NeMo) by a significant margin.
Notably, P3D-Diffusion + NeMo can bridge the synthetic-
to-real domain gap much better compared to P3D-Diffusion
+ Res50, outperforming it by > 10% at π

6 and π
18 . Our

CC3D further outperforms P3D-Diffusion + NeMo by 4.5%
and 1.9% at π

6 and π
18 respectively, while also reducing

the median prediction error by 2.1%. All these results
are achieved without access to any real image annotation,

which demonstrates the effectiveness of our proposed ap-
proach.

When annotations of real images are available, our pro-
posed CC3D widely outperforms the fully supervised
state-of-the art using only 50% of the annotated data that
is available to the fully supervised methods by 1.3%@π

6
and 10.4%@ π

18 . This shows that our method can effec-
tively leverage the accurate annotations in synthetic data to
learn a representation that benefits real data well. Remark-
ably, even when using only 10% of the data that is available
to the SOTA supervised methods, our approach can match
their performance and even outperform them in terms of the
finer π

18 accuracy by a fair margin. This demonstrates the
enhanced efficiency that our proposed CC3D approach en-
ables for 3D pose estimation.

5.4. Robust 3D Pose Estimation

In Table 3 we illustrate the performance of our CC3D
approach and several baselines at 3D pose estimation on the
OOD-CV dataset to investigate their their robustness under
domain shifts to shape, pose, texture, context, and weather.
We observe that the fully supervised ResNet50 baseline has
on average a similar performance under OOD shifts as the
NeMo model. We note that the NeMo model achieves a
higher accuracy on the Pascal3D+ data (Table 2) and hence
indicating less robustness compared to the ResNet50.

All models trained without real annotations achieve a
lower performance compared to the fully supervised base-
lines. However, the performance gap between the fully
supervised and unsupervised baselines is lower compared
to the PASCAL3D+ dataset. This can be attributed to the
much larger variability in the synthetic data regarding tex-
ture, context, pose and background. Notably, there only re-
mains a large performance gap in terms of OOD robustness
to texture and weather shifts in the data between supervised
and unsupervised models, indicating that the variability in
the texture of the synthetic data is not sufficiently realistic.
We also note that our CC3D achieves the highest OOD
robustness among the unsupervised models.

When fine-tuned with 10% of real data the performance
of the unsupervised models is enhanced significantly. No-
tably, our CC3D is able to close the gap to fully super-
vised models in terms of OOD robustness due to the large
variability in the synthetic data and its ability to transfer this
knowledge to real images.

We provide some qualitative results in the supplemen-
tary materials to visualize our model’s predictions on PAS-
CAL3D+ and OOD-CV.

5.5. Ablation Study

As shown in Table 4, we evaluate the contribution of
each proposed component. Specifically, we evaluate var-
ious settings on five categories (aeroplane, boat, car, mo-
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Evaluation Metric ACCπ
6
↑ ACC π

18
↑

Nuisance Context Pose Shape Texture Weather Mean Context Pose Shape Texture Weather Mean

Res50-General 50.6 20.8 48.5 64.6 57.5 46.9 12.3 0.2 12.1 23.3 23.2 14.3
NeMo [34] 53.3 37.5 51.1 62.1 57.8 51.6 23.7 7.1 21.6 39.1 33.8 24.5

P3D-Diffusion + Res50 37.2 32.8 33.5 32.5 37.3 33.5 6.8 5.3 6.3 6.7 9.9 6.3
P3D-Diffusion + NeMo 48.1 43.7 46.0 39.9 38.8 42.6 12.8 10.9 14.7 11.5 13.3 12.7
P3D-Diffusion + CC3D 54.6 45.8 52.3 51.0 44.5 48.2 12.1 12.3 16.1 16.6 16.3 14.8

P3D-Diffusion + Res50 + 10% 37.0 4.8 34.8 47.0 40.3 34.8 9.5 0.0 7.4 13.9 12.9 7.4
P3D-Diffusion + NeMo + 10% 62.2 42.5 62.0 60.4 56.5 55.2 25.3 13.0 29.5 35.2 31.6 26.3
P3D-Diffusion + CC3D + 10% 62.5 42.8 61.8 60.7 55.2 54.9 26.5 12.9 30.5 35.4 33.5 27.3

Table 3. Robustness of pose estimation methods on the OOD-CV dataset. We report the performance on OOD shifts in the object shape,
3D pose, texture, context and weather. We compare fully supervised baselines (NeMo, Res50) to models learned on synthetic data and
transferred to real (P3D-Diffusion + Res50, P3D-Diffusion + NeMo, P3D-Diffusion + CC3D) and when fine-tuning these models with
10% real annotated data. Note how our CC3D model achieves higher robustness compared to other models trained without real annotation.
When fine-tuned on 10% of the training data in OOD-CV (+10%) it performs on par at π

6
and outperforms all baselines at π

18
.

PASCAL3D+ ACCπ
6
↑ ACC π

18
↑ MedErr ↓

full model 79.2 (-0.0) 52.0 (-0.0) 14.1 (-0.0)

- style transfer 75.9 (-3.3) 47.8 (-4.2) 17.1 (+3.0)

- unsup adaptation 76.5 (-2.7) 49.0 (-3.0) 16.0 (+1.9)

- style transfer - unsup adaptation 70.6 (-8.6) 46.5 (-5.5) 23.6 (+9.5)

Table 4. Ablation study on the unsupervised domain adaptation
and graphics-guided style transfer module on the PASCAL3D+
dataset (aeroplane, boat, car, motorbike, and train).

torbike, and train) of the PASCAL3D+ dataset. We use
“P3D-Diffusion + CC3D” as the full model. The graphics-
guided style transfer, denoted “style transfer”, produced
high-quality synthetic data with diverse textures and colors
using a style transfer network. The unsupervised domain
adaptation, denoted “unsup adaptation”, adapts the synthet-
ically trained model to real data with a domain-consistency
loss on pseudo-labels (Eq 4).

5.6. Breaking Spurious Correlation with Domain-
Nonspecific Synthetic Data

From the causal perspective, the OOD robustness prob-
lem is mainly due to the spurious correlation between
domain-specific features and task-related semantic features
[16]. Our proposed OOD-aware generation can effectively
break such spurious correlation by generating synthetic
data with domain-nonspecific backgrounds and demon-
strate large improvements on OOD-CV dataset. As an
ablation study, we re-generate the synthetic dataset with
domain-specific backgrounds (e.g., cars have backgrounds
on roads), denoted P3D-Diffusion-Spurious. As shown in
Table 5, models trained on P3D-Diffusion achieves much
better OOD robustness with a negligible degradation on the
in-distribution benchmark (i.e., PASCAL3D+).

PASCAL3D+ ACCπ
6
↑ ACC π

18
↑ MedErr ↓

P3D-Diffusion +CC3D 76.3 (-0.0) 41.4 (-0.0) 15.5 (-0.0)

P3D-Diffusion-Spurious+CC3D 77.0 (+0.7) 42.8 (+1.4) 14.8 (-0.7)

OOD-CV ACCπ
6
↑ ACC π

18
↑ MedErr ↓

P3D-Diffusion +CC3D 48.2 (-0.0) 14.8 (-0.0) 37.0 (-0.0)

P3D-Diffusion-Spurious+CC3D 42.7 (-5.5) 16.4 (+1.6) 45.7 (+8.7)

Table 5. Ablation study on the OOD-aware generation with which
we can effectively break spurious correlation between domain-
specific features and task-related semantic features. Our method
with P3D-Diffusion demonstrate much better OOD robustness at
the cost of a small degradation on in-distribution dataset.

6. Conclusion

In this work, we narrowed the performance gap between
category-level 3D pose estimation models trained on syn-
thetic and real data. To bridge the domain gap, we proposed
diffusion-enhanced synthetic data with realistic synthetic
images and accurate 3D annotations. Moreover, we devel-
oped a new domain adaptation algorithm, CC3D, that lever-
ages the 3D mesh geometry to obtain consistent pseudo-
correspondences between synthetic and real images. Exper-
imental results demonstrate that CC3D can largely reduce
the domain gap to fully-supervised models when trained
without any real annotations, and performs competitively
with previous SOTA models when fine-tuned with very few
annotated real data. Lastly, we show that with the help of
our diffusion-enhanced synthetic data and our CC3D, we
can effectively improve model robustness in very challeng-
ing out-of-distribution scenarios.
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