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Abstract

Few-shot learning often assumes that base classes are
abundant and diverse with plentiful well-labeled samples
for each class. This ensures that models can general-
ize effectively from a small amount of data by leverag-
ing prior knowledge learned from base classes. This as-
sumption holds for 2D few-shot learning since the bench-
mark datasets are large and diverse. However, 3D point
cloud few-shot benchmarks are low in magnitude and di-
versity. We conduct experiments and show that many exist-
ing methods overlook this issue and suffer from overfitting
on base classes, which hinders generalization ability and
test performance. To alleviate the overfitting issue, we pro-
pose a simplified manifold mixup, referred to as the Sim-
pliMix, which mixes hidden representations and forces the
models to learn more generalized features. We incorpo-
rate SimpliMix into existing prototype-based models, per-
form experiments on ModelNet40-FS, ModelNet40-C-FS
and ScanObjectNN-FS datasets, and improve the models by
a significant margin. We further conduct cross-domain few-
shot classification experiments and show that networks with
SimpliMix learn more generalized and transferable features
and achieve better performance. The code is available at
https://github.com/LexieYang/SimpliMix

1. Introduction
Relying on the well-labeled large datasets, deep

learning-based methods have made significant strides in
various tasks, e.g. image classification, object detection, and
semantic segmentation. To alleviate the burden of labor-
intensive data labeling, few-shot learning (FSL), which
aims to quickly generalize to new tasks given only a
few labeled data, has become increasingly popular [6, 13,
15, 22, 25, 26, 35, 37]. In the area of few-shot 2D im-
age classification, many excellent methods have been pro-
posed [7, 16, 22, 26, 29]. Among them, the framework of
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Figure 1. The general workflow of SimpliMix. A 5-way-1-shot-1-
query task is presented with classes represented by different col-
ors. The c and w represent the feature dimension and the number
of points, respectively. λ controls how many points are mixed
from the other sample. After mixing, the mixed samples continue
to be processed by the remaining layers in the network. Finally,
the mixed query vectors are forced to be close to the classes of the
samples they get mixed from. We only draw one query vector and
two prototype vectors for simplicity.

meta-learning has been widely adopted [7, 22, 25] to solve
the few-shot classification problem. One category of meta-
learning is metric-based methods [22, 25, 29], which aim to
learn a transferable distance function over samples. In gen-
eral, metric-based methods consist of a backbone, such as
ResNet-12 [10] and WRN-28-10 [39], and a distance met-
ric. The backbone extracts features, and the distance metric
learns how to compare and classify examples in the feature
space. ProtoNet [22] is one of the widely used methods con-
sidering its simplicity and effectiveness. ProtoNet extracts
image features with a convolutional neural network (CNN),
then computes the prototypes for each class by taking the
mean of features of all support samples from the same class,
and finally computes the Euclidean distance among query
samples and prototypes in the feature space to classify the
query samples.

Compared to few-shot image classification, however,
few-shot 3D point cloud classification is still under-
explored, and most of the existing works [1, 5, 35, 37, 38]
adopted the idea of ProtoNet [22]. More specifically, 3D
point cloud classification networks, such as DGCNN [31]
and PointNet [19], can be utilized to extract features, and
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prototype representations of each class can be computed
and used for classifying query samples. In [37], it is demon-
strated that ProtoNet also works in the field of few-shot
point cloud learning by replacing the CNN with DGCNN.
Based on such a framework, existing methods [5, 37]
achieve promising results. However, these methods over-
look the significant size difference between 2D few-shot
datasets [2, 20, 29] and 3D point cloud datasets [24, 27, 33],
which leaves room for improvement. To put it more pre-
cisely, the success of few-shot image classification can be
largely attributed to the substantial size and remarkable di-
versity of 2D image datasets, such that networks trained on
the base classes can generalize well to the never-before-seen
classes. On the contrary, 3D point cloud datasets used for
few-shot learning are relatively small in size and lack di-
versity. To verify our hypothesis, we conduct experiments
and show that existing few-shot point cloud classification
methods [5,37] suffer from overfitting to base classes in the
training stage (more details are provided in Sec. 3.1), which
hinders their generalization ability and test accuracy. There-
fore, we propose SimpliMix, which works as a regularizer
to alleviate the overfitting issue.

Inspired by the manifold mixup [28], we adapt the idea
of linearly interpolating samples in the feature space to
enhance model generalization. The key structure of Sim-
pliMix is shown in Fig. 1. Overall, we adopt meta-learning
for few-shot classification with a feature extractor Fθ(·),
where Fθ(·) denotes the feature extractor parameterized by
θ consisting of L layers, and a prototype-based few-shot
head. In each episode, we have a support set, which con-
tains N × K samples, where N is the number of classes
and K is the number of support samples per class, and a
query set, which includes N ×M samples, where M is the
number of query samples per class. Therefore, each episode
has N × (K+M) input samples in total. Then, for the fea-
ture extractor Fθ, we randomly select a layer l for mixup.
Each sample in the episode, regardless of whether it is a
support or a query sample, is mixed with another random
sample in the same episode. Different from the manifold
mixup, SimpliMix controls the level of mixup by a parame-
ter λ sampled from a uniform distribution, i.e. λ ∼ U(0, 1).
Manifold mixup [28], on the other hand, adopts a Beta
distribution with a hyperparameter α adjusted for different
datasets to achieve the best performance. The mixed query
samples are classified based on their distance to the mixed
prototype embeddings. Finally, we compute cross-entropy
loss twice for each mixed query sample, since it is a com-
bination of two samples. This is the second difference of
SimpliMix from manifold mixup, which constructs soft la-
bels as targets so that the network learns a smoother deci-
sion boundary. We use sample mixup as a way of adding
noise and forcing the network to capture the underlying
class-relevant features for classification. For example, if

the two target labels for the mixed query sample are “air-
plane” and “bed”, after mixup, this query sample is pushed
towards both “airplane” and “bed” classes. Our insight is
that two contradictory objectives make the learning process
more difficult, which consequently leads to better general-
ization. Even if the two target labels for the mixed query
sample are the same, the network is forced to learn bet-
ter representations under the supervision of doubled cross-
entropy loss in Eq. (6). The SimpliMix is only performed
during training, so we do not increase the testing complex-
ity. We apply SimpliMix to multiple few-shot point cloud
learning methods and improve their performance by a sig-
nificant margin on the ModelNet40-FS, ModelNet40-C-FS
and ScanObjectNN-FS datasets. Furthermore, we conduct
cross-domain few-shot learning and show that networks em-
ploying SimpliMix achieve higher accuracy than networks
without SimpliMix. This shows that networks with Sim-
pliMix have better generalization ability and transferability.
The main contributions of this work include the following:
• We demonstrate and draw attention to the effect of size

disparity between 2D image and 3D point cloud few-
shot datasets on FSL performance, along with the over-
fitting issue that arises from overlooking this crucial dis-
tinction.

• We propose a simplified manifold mixup, called Sim-
pliMix, which mixes all samples in each training episode
to alleviate the overfitting issue and improve the net-
works’ generalization ability, while forcing a mixed
sample to be close to the class(es) it is mixed from.

• We conduct extensive experiments, including intra-
domain and cross-domain few-shot classification, and
improve the performance of many prototype-based
methods by incorporating SimpliMix.

2. Related Work
2.1. Few-shot Point Cloud Classification

With the increasing availability of powerful computing
resources and large-scale annotated datasets, deep learn-
ing methods have found widespread use in various real-
world applications. Few-shot learning (FSL) techniques
have been devised to handle never-before-seen classes with-
out the need for retraining. Yet, it is noteworthy that the
majority of existing FSL approaches primarily focus on 2D
perception, while the domain of FSL for 3D point cloud
classification remains conspicuously and relatively under-
explored.

Ye et al. [37] firstly applied ProtoNet [22] to few-shot
point cloud classification as a strong baseline, and pro-
posed a cross-instance adaption (CIA) module for updat-
ing features, which includes two attention modules, namely
the self-channel interaction (SCI) module and the cross-
instance fusion (CIF) module. With the assistance of CIA,
the features are more discriminative. Following [37], Yang
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et al. [35] proposed a network that extracts features of point
cloud data using DGCNN [31] and features of the depth im-
ages using ResNet-18 [10]. Prototypes from two sets of fea-
tures are obtained individually, and Euclidean distances be-
tween query features and prototype features are computed
for point cloud features as well as for depth image fea-
tures. Predictions are made by taking the average of the
distances. Chen et al. [5] point out that point-based back-
bones are sensitive to issues of real-world captures of 3D
point clouds, such as point cloud data being affected by oc-
clusions or having missing points. In comparison, depth
images, which are obtained by projecting point cloud data
onto planes from different view angles, are more robust to
these issues. Therefore, Chen et al. [5] proposed ViewNet,
a 2D projection-based backbone, which extracts features
from depth images. ViewNet can be employed together
with different few-shot classification heads, such as Rela-
tionNet [25] and ProtoNet [22]. Chen et al. [5] show that
ViewNet with SCI and CIF modules and prototype-based
classification method achieves the best performance.

2.2. Mixup

Zhang et al. [40] introduced the concept of mixup as an
innovative data augmentation technique, demonstrating its
ability to enhance accuracy of image classification. They
showed effectiveness of mixup in increasing the robust-
ness of neural networks, particularly in scenarios involving
learning from corrupted labels or facing adversarial exam-
ples. They also proved that mixup serves as a valuable data
augmentation for stabilizing the training process of Gen-
erative Adversarial Networks (GANs), contributing to im-
proved convergence and generation quality. The formula-
tion of mixup is illustrated in Eq. (1), where xi and xj rep-
resent the unprocessed input vectors, yi and yj correspond
to the one-hot label encodings, and λ is sampled from a Beta
distribution.

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(1)

Drawing upon the mixup framework, diverse enhancements
focusing on specific tasks have been introduced. Notably,
for tasks such as image classification [8, 34], model robust-
ness [14,18], domain generalization [4,30,36] and GAN ap-
plications [9, 32], distinct refinements have been put forth.

2.3. Manifold Mixup in Few-shot Learning

Manifold mixup [28], which is an extension of
mixup [40], is a feature-space regularizer that linearly in-
terpolates hidden representations of data and their one-hot
labels. With mixed hidden representations of data and
their soft labels as training signals, it improves the gen-
eralization of the neural networks by smoothing the deci-
sion boundary and flattening the class-representations. It
is worth mentioning that manifold mixup randomly selects

an eligible layer in the neural network to perform mixup,
and reduces to input mixup [40] when mixing at the in-
put layer. Manifold mixup has been proven to be effec-
tive in improving the generalization performance in 2D
FSL [17, 21]. Mangla et al. [17] firstly trained a back-
bone model with self-supervised loss and classification loss,
and then adopted manifold mixup to fine-tune the backbone
model to learn a more general-purpose representation. Ex-
periments showed that manifold mixup can boost the few-
shot accuracy, but the two-step training process is tedious.
Roy et al. [21] adopted manifold mixup to mix base sam-
ples and novel samples to address the data scarcity issue
in FSL. However, the training process is even more com-
plex. It includes six stages to train the model, pseudo-label
and filter the whole base dataset, generate and select new
samples by mixing novel data and base data, and finally re-
train the model with the generated data. In contrast, our
SimpliMix can be directly incorporated into the feature ex-
tractor and trained end-to-end without extra training/pre-
training stages.

3. Proposed Method
In this section, we first provide our motivation, and then

introduce the preliminaries of few-shot learning and our
proposed method, SimpliMix.

3.1. Motivation

Better performance of 2D FSL methods [6,15,22,25,26]
can be attributed to the assumption that number of base
classes are large and classes are diverse, with sufficiently
well-labeled examples, so that networks can better gen-
eralize to novel classes with a few labeled data during
testing. This assumption is reasonable in few-shot im-
age classification, since image datasets, such as miniIm-
ageNet [29], tieredImageNet [20] and CIFAR-FS [2], are
larger and more diverse than 3D point cloud datasets, such
as ModelNet40 [33] and ScanObjectNN [27], which are of-
ten re-splitted and used for few-shot point cloud classifica-
tion [5,37]. More specifically, following the standard evalu-
ation protocols [11,26], there are 351 base classes in tiered-
ImageNet, 64 base classes in miniImageNet and CIFAR-
FS. As in [5, 35], ModelNet40 [33] is divided into only
30 base classes while ScanObjectNN [27] is re-splitted and
only contains 10 base classes. We present Fig. 2 to provide a
comprehensive comparison of 2D image and 3D point cloud
few-shot datasets in terms of the number of classes and the
number of samples per class. We argue that few-shot point
cloud classification networks trained with such low num-
bers of base classes are more prone to memorize and overfit
on the base classes, which leads to low testing accuracy. To
prove our hypothesis, we adopt DGCNN [31] as the feature
extractor and ProtoNet as the few-shot head, and conduct
experiments to demonstrate that low number of base classes
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Figure 2. The comparison of the number of base classes and the
number of samples per class for 2D image and 3D point cloud
datasets.

# of base classes test acc. (%)
Exp. 1 first 10 classes 68.93
Exp. 2 first 20 classes 70.83
Exp. 3 30 classes 71.65

Table 1. The experimental results on ModelNet40 [33]. We adopt
DGCNN [31] as the feature extractor and ProtoNet [22] for few-
shot classification. We sorted the class IDs in ascending order,
and take the first 10 classes, the first 20 classes and 30 classes for
experiments. The results show that the greater the number of base
classes, the higher the testing accuracy.

does affect the generalization ability of the network. As il-
lustrated in Tab. 1, the few-shot testing accuracy increases
as the number of base classes increases. Moreover, we vi-
sualize the embeddings of the base samples with IDs from
0 to 4 and novel samples with IDs from 30 to 34 as shown
in Fig. 3. The base class embeddings from Exp. 1 (Fig. 3
(a)) cluster more tightly than the embeddings from Exp. 2
(Fig. 3 (b)) and Exp. 3 (Fig. 3 (c)). Nonetheless, the novel
class embeddings from Exp. 1 are not well-clustered (Fig. 3
(d)) and clusters in Fig. 3 (f) (corresponding to Exp. 3) are
better separated as anticipated. Taking both results in Tab. 1
and Fig. 3 into consideration, we can conclude that models
trained with lower numbers of base classes are more prone
to overfit on the base classes and have worse model gen-
eralization. So, how can we alleviate the overfitting issue
without collecting and labeling new data or generating syn-
thetic data using generative models? To address this issue,
in this work, we propose SimpliMix, which is a simplified
and modified manifold mixup and works as a regularizer for
improving generalization ability of FSL networks.

3.2. Preliminaries

Before introducing our method, we first define the N -
way-K-shot-M -query few-shot point cloud classification
problem. Each input data is a set of 3D points, P =
{p1, p2, · · · , pw} (w is the total number of points) and
each point pi is represented by (xi, yi, zi). For each meta-
training task, input data is constructed by a support set, S =

{(PS
i ,YS

i )}
N×K
i=1 and a query set Qi = ({PQ

i ,YQ
i )}N×M

i=1

with all data sampled from base classes, Cb. There are
N × K samples in the support set and N × M samples
in the query set, where N is the number of classes, and K
and M are the number of support samples and query sam-
ples, respectively, for each class. The models are trained
on a bunch of meta-training tasks with different support and
query sets, and tested on support and query sets constructed
from novel classes, Cn. The overlap between Cb and Cn is
empty, i.e. Cb ∩ Cn = ∅.

ProtoNet. ProtoNet [22] is a popular meta learning-
based few-shot image classification method. Suppose that
the input image is denoted by x and its label is y. It includes
a convolutional feature extractor, Fϕ, with learnable param-
eters ϕ. The feature extractor computes a D-dimensional
feature vector for each sample, hi ∈ RD. For samples in
the support set, their feature vectors belonging to the same
class are averaged to get the class prototype, ck:

ck =
1

K

∑
(xi,yi)∈Sk

Fϕ(xi), (2)

where k represents class k. Then, it computes softmax over
distances between each query sample x and the prototypes.
The distribution over classes for query x is

p(y = k|x;ϕ) = exp(−d(Fϕ(x, ck))∑
k′ exp(−d(Fϕ(x, c′k))

, (3)

where d is a distance function, such as Euclidean distance.
ProtoNet can be quickly modified for few-shot point

cloud learning by replacing the convolutional feature ex-
tractors with point cloud feature extractors.

3.3. SimpliMix

Given a meta-training task, the batch of all inputs, s =

{(Pi,Yi)}N×(K+M)
i=1 includes N ×K support samples and

N × M query samples. Suppose that the feature extrac-
tor Fθ (θ will be ignored in the following expressions for
simplicity) consists of L layers, and we select a layer l
with equal probability. This may include the input layer
F0(Pi) as in manifold mixup [28]. We then feed the in-
put samples to the feature extractor and process them un-
til reaching layer l. Then, we randomly shuffle representa-
tions of all samples and get a new batch of representations,
{F l(P ′

i)}
N×(K+M)
i=1 . Each mixed data Ĥ is defined as

Ĥi = Mixλ(F l(Pi),F l(P ′
i)), (4)

where λ is sampled from a uniform distribution, i.e. λ ∼
U(0, 1). Suppose that F l(Pi) ∈ Rc×w, where c and w rep-
resent the feature dimensionality and the number of points,
respectively. For the operation Mixλ(·, ·), we randomly se-
lect a subset of points from feature representations F l(Pi)
with the size of (⌊λ × w⌋) , and a subset of points from
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Figure 3. The t-SNE visualization of the base and novel class embeddings from models trained with different number of base classes.

F l(P ′
i) with the size of (w − ⌊λ × w⌋). The mixed repre-

sentation Ĥi is constructed by taking the union of the two
selected subsets. We repeat the mixing process for each
data to get a mixed batch. Later, the mixed batch will be
fed to the remaining layers in the network and get a pre-
diction Ŷi for each mixed query data. Then, we compute
the loss. Each mixed query data is a combination of two
samples with labels Yi and Y ′

i . Therefore, we compute the
cross-entropy loss as follows:

L = −
NM∑
i=1

Yi · log(Ŷi)−
NM∑
i=1

Y ′
i · log(Ŷi). (5)

When the labels Yi and Y ′
i are different, enforcing the

mixed query to be close to both class prototypes regularizes
the network. However, when the labels Yi and Y ′

i are the
same, the mixed query contains partial points from each of
two point clouds. The network is forced to learn representa-
tions that are more robust, since only partial points are pre-
sented. Moreover, the loss reduces to Eq. (6) when Yi and
Y ′
i are the same, and provides a stronger supervision, since

the difference between the predicted label and the ground
truth is magnified.

L = −2×
NM∑
i=1

Yi · log(Ŷi) (6)

Algorithm 1 and Algorithm 2 show the pseudocode of Sim-
pliMix based on PyTorch.

We now explain other design choices and why we choose
to mix in the way used in SimpliMix. First, we employ uni-
form distribution while sampling λ instead of the Beta dis-
tribution (λ ∼ Beta(α, α) where α is a hyper-parameter)
used in the manifold mixup. Considering that our goal is to

Algorithm 1 SimpliMix(x, y, λ) in PyTorch style.
function SimpliMix(x, y, lam)

▷ Compute the mixed data. Return mixed inputs, pairs of
targets, and lambda

batch size = x.shape[0] ▷ Get batch size
indices = randperm(batch size) ▷ Random

permutation of indices
mixed x = Mix X(x, x[indices], lam) ▷ Compute

mixed inputs
y a, y b = y, y[indices] ▷ Create pairs of targets
return mixed x, y a, y b, lam

end function

Algorithm 2 Mix X(x1, x2, λ) in PyTorch style.
function Mix X(x1, x2, lam)

w = x1.shape[2] ▷ Get the number of points
npoints x1 = floor(lam× w)
npoints x2 = w − npoints x1
new x2 = x2[:, :, : npoints x2]
new x1 = x1[:, :, : npoints x1]
mixed x = concat(new x1, new x2, dim = −1)
return mixed x ▷ Return mixed x

end function

introduce more randomness to prevent the network remem-
bering base classes, the uniform distribution with a fixed
range is sufficient and eliminates the trouble of additional
hyperparameter tuning. Second, we do not create soft la-
bels as done in manifold mixup, and instead, assume that the
mixed data belongs to both classes. Our goal is to prevent
the model from memorizing base samples. The combina-
tion of point features from two point clouds and the combi-
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nation of two losses force the network to learn class-relevant
representations for both classes. In the extreme cases of λ
being close to 0 or 1, the difficulty of the task increases,
since the network needs to extract more robust features that
are not greatly affected when only a few points are provided
from that class. Third, there are two other possible ways
of performing the mixing: (1) only mixing the query sam-
ples and leaving the support samples unchanged (named as
QMix), (2) mixing support samples first and then mixing the
query samples based on the way supports are mixed (named
as SQMix), since we classify query samples based on their
distance to the prototypes in the embedding space. These
two options are also capable of improving accuracy, but per-
form slightly worse than SimpliMix. Moreover, the second
option (SQMix) is more complex in terms of implemen-
tation. Since all mixing approaches involve some degree
of randomness and increase the data variability, they can
prevent a model from memorizing and overfitting to base
classes. Yet, SimpliMix introduces more randomness and
has higher entropy between inputs and labels. It randomly
mixes samples with any other samples in the same batch
without considering if the other samples are from support
set or query set, or considering if samples from the same
class have consistent mixed labels. Therefore, it is more
difficult for the model to remember the base classes and the
model does not get over-confident. Supporting experimen-
tal results are provided in Sec. 4.5.1 and the pseudocode for
QMix and SQMix is provided in the supplementary mate-
rial.

4. Experiments
4.1. Datasets and Setup
Datasets ShapeNetCore [3] is a richly-annotated and
large-scale point cloud benchmark. It covers 55 object cat-
egories with about 52,000 CAD models. ModelNet40 [33]
is also a 3D dataset containing 12,311 CAD models from
40 categories (e.g. airplane, bed, plant, sink). All CAD
models in ModelNet40 are well-segmented, and noise-free.
In real-world applications, however, 3D point clouds are
often corrupted. To analyze the corruption robustness of
existing point cloud classification models, Sun et al. [24]
constructed ModelNet40-C [24] dataset with 15 types of
meticulously designed corruptions added to the objects in
ModelNet40 to mimic the real-world point cloud distor-
tion. Therefore, ModelNet40-C contains the same num-
ber of object categories and 3D CAD models as Model-
Net40. ScanObjectNN [27] is a more challenging real-
world dataset, consisting of objects from 15 categories,
which suffers from partial occlusion.

Intra-domain Few-shot Learning Setup We run ex-
periments on three datasets, namely ModelNet40-FS,
ModelNet40-C-FS and ScanObjectNN-FS, which are ob-
tained from ModelNet40 [33], ModelNet40-C [24] and

ScanObjectNN [27] datasets, respectively, by re-splitting
the training and testing sets.

Following the data preparation process in [5], we
split ModelNet40 [33] into 4 folds, with 10 classes in
each fold, based on class IDs to build ModelNet40-
FS. The same split is applied to ModelNet40-C to con-
struct ModelNet40-C-FS benchmark. We split ScanOb-
jectNN [27] into 3 folds with 5 classes in each fold to build
ScanObjectNN-FS benchmark as in [5]. We perform 3-fold
cross-validation on ScanObjectNN-FS, and 4-fold cross-
validation on ModelNet40-FS and ModelNet40-C-FS.
Cross-domain Few-shot Learning Setup For the cross-
domain experiments, we choose base classes from a
synthetic dataset and novel classes from the real-world
ScanObjectNN dataset. For the target domain dataset,
ScanObjectNN, we use all 15 classes as novel classes. For
source domain datasets, we construct ModelNet40-XFS,
ModelNet40-C-XFS and ShapeNetCore-XFS from Mod-
elNet40, ModelNet40-C and ShapeNetCore, respectively.
The classes included in ModelNet40-XFS, ModelNet40-C-
XFS and ShapeNetCore-XFS do not overlap with classes
in ScanObjectNN. More specifically, both ModelNet40-
XFS and ModelNet40-C-XFS contain 26 base classes and
ShapeNetCore-XFS includes 44 base classes. More details
about the setups are provided in the supplementary ma-
terial. Overall, we perform three cross-domain few-shot
learning experiments, ModelNet40-XFS → ScanObjectNN,
ModelNet40-C-XFS → ScanObjectNN and ShapeNetCore-
XFS → ScanObjectNN.

4.2. Implementation Details

Training: We train the networks with SimpliMix on base
classes via Adam [12] optimizer with a learning rate of
0.0001, and for 110 epochs for all datasets. Each epoch
contains 400 randomly sampled episodes. In each episode,
15 query point clouds per class are sampled for all experi-
ments.
Evaluation: We randomly sample 600 episodes from the
set of novel classes and report the mean classification accu-
racy with the 95% confidence interval. The results of net-
works without SimpliMix are from [5].

4.3. Baselines

To show the effectiveness of our method, we compare
the performance of three models, CIA [23], ViewNet [5]
and ProtoNet [22] with and without SimpliMix. In CIA,
point cloud data is fed to DGCNN [31] to extract features.
Then, these features are updated by a self-channel interac-
tion (SCI) module and cross-instance fusion (CIF) module
in sequence, and used for calculating squared Euclidean dis-
tance for matching and classification. In contrast to point-
based feature extractors, ViewNet is a 2D projection-based
feature extractor. Chen et al. [5] show that using ViewNet
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Method 5-way 1-shot 5-way 5-shot
fold0 fold1 fold2 fold3 Mean fold0 fold1 fold2 fold3 Mean

ProtoNet 85.42±0.64 79.46±0.76 70.06±0.39 70.73±0.42 76.42±0.55 93.99±0.29 88.65±0.54 84.76±0.51 85.56±0.48 88.24±0.45
CIA 89.97±0.63 83.46±0.83 74.08±0.95 76.13±0.86 80.91±0.82 94.61±0.30 89.15±0.50 85.00±0.51 86.71±0.50 88.87±0.47

ViewNet 92.57±0.52 82.68±0.80 75.28±0.90 80.95±0.75 82.87±0.74 96.23±0.26 89.64±0.55 85.74±0.51 90.18±0.45 90.45±0.44
ProtoNet SimpliMix 88.38±0.52 80.06±0.74 69.18±0.81 76.16±0.76 78.45±0.71 (↑2.03) 96.09±0.22 89.46±0.53 86.45±0.47 89.59±0.40 90.40±0.41 (↑2.16)

CIA SimpliMix 92.88±0.45 85.36±0.75 74.96±0.85 81.65±0.78 83.71±0.71 (↑2.8) 96.87±0.20 90.47±0.49 87.09±0.46 90.31±0.39 91.19±0.39 (↑2.32)
ViewNet SimpliMix 93.26±0.43 84.43±0.71 76.94±0.83 83.07±0.72 84.43±0.67 (↑1.56) 97.04±0.20 90.70±0.47 88.14±0.45 91.30±0.35 91.80±0.37 (↑1.35)

Table 2. Few-shot classification results on ModelNet40-FS.

Method 5-way 1-shot 5-way 5-shot
fold0 fold1 fold2 fold3 Mean fold0 fold1 fold2 fold3 Mean

ProtoNet 81.29±0.71 75.83±0.79 61.76±0.84 69.83±0.84 72.18±0.80 90.97±0.39 86.21±0.50 76.99±0.65 83.19±0.51 84.34±0.51
CIA 85.70±0.75 79.67±0.90 65.68±1.0 74.32±0.94 76.34±0.89 92.07±0.36 86.81±0.56 76.11±0.71 83.71±0.51 84.68±0.54

ViewNet 89.47±0.58 81.05±0.78 69.56±0.89 76.29±0.85 79.09±0.78 94.95±0.31 88.75±0.49 81.53±0.60 86.78±0.46 88.00±0.47
ProtoNet SimpliMix 85.51±0.58 77.41±0.77 65.70±0.87 72.77±0.78 75.34±0.75 (↑2.88) 93.55±0.31 87.60±0.47 80.61±0.62 86.12±0.43 86.97±0.46 (↑2.63)

CIA SimpliMix 90.41±0.58 82.02±0.74 70.61±0.97 75.57±0.85 79.65±0.79 (↑3.31) 95.00±0.25 88.52±0.47 81.23±0.65 87.44±0.42 88.05±0.45 (↑3.37)
ViewNet SimpliMix 91.32±0.53 81.27±0.73 71.35±0.86 79.10±0.78 80.76±0.73 (↑1.7) 96.19±0.23 88.71±0.44 83.20±0.61 89.03±0.37 89.28±0.41 (↑1.28)

Table 3. Few-shot classification results on ModelNet40-C-FS.

Method 5-way 1-shot 5-way 5-shot
fold0 fold1 fold2 Mean fold0 fold1 fold2 Mean

ProtoNet 50.81±0.73 60.46±0.67 58.72±0.78 56.66±0.73 68.42±0.54 70.20±0.52 68.76±0.49 69.13±0.52
CIA 50.58±0.82 62.17±0.68 62.59±0.74 58.45±0.75 62.94±0.51 71.31±0.45 70.21±0.48 68.15±0.48

ViewNet 60.90±0.76 66.48±0.60 64.10±0.77 63.83±0.71 73.66±0.48 74.77±0.45 77.46±0.46 75.30±0.46
ProtoNet SimpliMix 52.64±0.70 62.41±0.51 68.09±0.72 61.05±0.64 (↑4.39) 68.76±0.44 72.54±0.38 83.43±0.33 74.91±0.38 (↑5.78)

CIA SimpliMix 56.54±0.73 63.58±0.67 72.11±0.77 64.08±0.72 (↑5.63) 69.43±0.43 73.26±0.37 85.06±0.32 75.92±0.37 (↑7.77)
ViewNet SimpliMix 65.98±0.69 68.94±0.65 69.98±0.66 68.30±0.67 (↑4.47) 78.38±0.40 78.63±0.38 81.13±0.38 79.38±0.39 (↑4.08)

Table 4. Few-shot classification results on ScanObjectNN-FS.

as the backbone, then applying SCI and CIF modules to up-
date features and finally computing prototypes for matching
achieves better performance. Thus, we also adopt such a
framework for ViewNet in our experiments.

4.4. Discussion of Results
4.4.1 Intra-domain Few-shot Learning Results

We conduct 5-way 1-shot 15-query and 5-way 5-
shot 15-query experiments. The results on ModelNet40-
FS, ModelNet40-C-FS and ScanObjectNN-FS are shown
in Tables 2, 3 and 4, respectively. We incorporate
our SimpliMix into ProtoNet, CIA and ViewNet, and
name them as ProtoNet SimpliMix, CIA SimpliMix and
ViewNet SimpliMix. The results show that SimpliMix con-
sistently improves the performance of all the networks.
Among the three methods, SimpliMix boosts the accuracy
of CIA the most. This can be attributed to the fact that
features extracted by the DGCNN become more distin-
guishing by incorporating SimpliMix. Hence, when these
features are further processed by SCI and CIF modules,
which aim to increase the inter-class difference and de-
crease intra-class variance, the performance can be taken
to a higher level. Among the three datasets, adopting Sim-
pliMix yields more performance gains on ScanObjectNN-
FS. It is because ScanObjectNN-FS has the lowest num-
ber of base classes and the overfitting issue is more severe.
On ModelNet40-C-FS, we also perform Singular Value De-
composition (SVD) of the class representations from well-
trained ProtoNet and ProtoNet SimpliMix. For the first
three classes in ModelNet40-C-FS, ProtoNet SimpliMix

greatly reduces the largest singular value. For class ID=0,
we obtain 639.18 with ProtoNet versus 100.54 with Pro-
toNet SimpliMix. For class ID=1, we obtain 505.45 with
ProtoNet versus 61.55 with ProtoNet SimpliMix. For class
ID=2, we obtain 660.07 with ProtoNet versus 81.98 with
ProtoNet SimpliMix. We plot the second to ninth largest
singular values in Fig. 4. ProtoNet SimpliMix results in
smaller singular values. This means reduced variance in
some directions and flattened representation, which leads to
better generalization [28].

4.4.2 Cross-domain Few-shot Learning Results

For cross-domain experiments, we also report 5-way 1-shot
15-query and 5-way 5-shot 15-query results as illustrated
in the Tab. 5. We train on the source domain and test on
the target domain without fine-tuning. All methods achieve
higher accuracy when SimpliMix is incorporated, which
proves that networks with SimpliMix lead to more gen-
eralized representations. We further visualize some class
representations of ScanObjectNN in Fig. 5. The CIA and
CIA SimpliMix are trained on ModelNet40-XFS and we
use the well-trained models to extract features. For both
models, the embeddings of classes “display” and “door”
are clustered better than the classes of “shelf”, “bed” and
“sofa”. We believe it is because the classes of “shelf”,
“bed” and “sofa” have higher intra-class variations. Hav-
ing said that, the embeddings for classes “shelf”, “bed” and
“sofa” obtained with CIA SimpliMix are better clustered
than CIA, and the clusters for classes “display” and “door”
from CIA SimpliMix are more compact.
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Figure 4. The Singular Value Decomposition (SVD) on the class-specific representations from ProtoNet and ProtoNet SimpliMix. We
only plot the second largest value to the ninth largest value for classes with ID from 0 to 2.

ShapeNet-XFS → ScanObjectNN ModelNet40-XFS → ScanObjectNN ModelNet40-C-XFS → ScanObjectNNMethod 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet 44.39±0.80 62.12±0.72 53.04±0.91 65.53±0.75 53.70±0.89 65.81±0.76

ProtoNet SimpliMix 51.91±0.81 68.94±0.68 56.83±0.90 72.71±0.69 56.80±0.89 71.82±0.69
CIA 49.29±0.90 64.37±0.77 55.59±1.01 65.61±0.74 57.07±0.94 66.29±0.76

CIA SimpliMix 55.53±0.91 70.88±0.67 60.95±0.98 73.84±0.67 58.56±0.96 73.42±0.69
ViewNet 48.00±0.75 65.90±0.70 58.19±0.89 73.59±0.71 57.48±0.88 72.06±0.69

ViewNet SimpliMix 55.45±0.84 70.95±0.71 64.54±0.93 76.68±0.65 64.20±0.95 75.71±0.66

Table 5. The cross-domain few-shot classification results.

Method 5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 fold 3 Mean fold 0 fold 1 fold 2 fold 3 Mean

ProtoNet 81.29±0.71 75.83±0.79 61.76±0.84 69.83±0.84 72.18±0.80 90.97±0.39 86.21±0.50 76.99±0.65 83.19±0.51 84.34±0.51
SimpliMix 85.51±0.58 77.41±0.77 65.70±0.87 72.77±0.78 75.34±0.75 93.55±0.31 87.60±0.47 80.61±0.62 86.12±0.43 86.97±0.46

SQMix 83.53±0.64 77.03±0.74 63.91±0.88 71.77±0.78 74.06±0.76 94.21±0.28 87.52±0.44 79.49±0.61 85.77±0.44 86.75±0.44
QMix 84.05±0.66 75.81±0.74 63.04±0.84 70.2±0.79 73.28±0.76 93.38±0.36 87.5±0.45 78.67±0.60 84.16±0.44 85.93±0.46

Table 6. Experimental results on ModelNet40-C-FS with different mixing methods.

Figure 5. The t-SNE visualization of the class representations from
CIA and CIA SimpliMix.

4.5. Ablation Studies
4.5.1 Comparison of Different Mixing Methods

As introduced in Sec. 3, there are various ways of mixing
samples while SimpliMix is the easiest one to implement
and performs the best. We choose ProtoNet as the baseline
and incorporate different mixing methods into ProtoNet to
prove the effectiveness of SimpliMix. We conduct experi-
ments on ModelNet40-C-FS dataset and report the results
in Tab. 6. As expected, all mixing methods outperform Pro-
toNet and SimpliMix performs best in the 1-shot setting.
For the 5-shot setting, SimpliMix and SQMix perform com-
parably. Overall, SimpliMix is favorable, since it is easier
to implement.

4.5.2 Analysis of Mixing Coefficient (λ)

In SimpliMix, we sample λ ∼ U(0, 1), which is equiva-
lent to sampling λ ∼ Beta(α, α) when α = 1. We also
experiment with different Beta distributions by taking var-
ious values of α on ModelNet40-C-FS. Tab. 7 shows that

5-way 1-shot
fold 0 fold 1 fold 2 fold 3 Mean

α=0.1 83.64±0.65 76.11±0.75 64.87±0.85 71.43±0.80 74.01±0.76
α=0.5 84.05±0.60 76.87±0.73 65.32±0.81 71.29±0.79 74.38±0.73
α=1.0 85.51±0.58 77.41±0.77 65.70±0.87 72.77±0.78 75.34±0.75
α=2.0 84.40±0.62 76.76±0.78 65.39±0.82 72.01±0.79 74.64±0.75
α=4.0 83.8±0.64 76.73±0.73 66.33±0.80 72.61±0.81 74.86±0.75

Table 7. Experiments on the value of α.

sampling λ ∼ U(0, 1) achieves better average performance
than sampling from smaller values of α and slightly better
results than sampling from larger values of α. Therefore,
we choose to sample λ ∼ U(0, 1) for simplicity.

5. Conclusion
In contrast to large-scale image datasets, few-shot 3D

point cloud datasets are comparatively small in size and
lack diversity. We have first shown that few-shot point
cloud testing accuracy increases with increasing number of
base classes, indicating that few-shot point cloud classifi-
cation networks trained with low numbers of classes are
more prone to overfit to the base classes. To alleviate over-
fitting and improve model generalization, we have proposed
an adapted manifold mixup method, SimpliMix. Our pro-
posed approach mixes representations of two samples to
get a mixed sample, regularizes the network and forces the
network to learn more robust representations. We have
conducted intra-domain and cross-domain few-shot point
cloud classification experiments and shown that incorporat-
ing SimpliMix into different models consistently improves
their performance by significant margins.
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