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Abstract

Coarse or weak labels can serve as a cost-effective solu-
tion to the problem of visual representation learning. When
fine-grained labels are unavailable, weak labels can pro-
vide some form of supervisory signals to guide the represen-
tation learning process. Some examples of weak labels in-
clude image captions, visual attributes and coarse-grained
object categories. In this work, we consider the seman-
tic grouping relationship that exists within certain types of
weak labels and propose a group-wise contrastive bottle-
neck module to leverage this relationship. The semantic
group may contain labels that are related to a general con-
cept, such as the colour or shape of objects. Using the
group-wise bottleneck module, we disentangle the global
image features into multiple group features and apply con-
trastive learning in a group-wise manner to maximize the
similarity of positive pairs within each semantic group. The
positive pairs are defined based on the similarity of the la-
bels captured by each group. To learn a more robust repre-
sentation, we introduce a reconstruction objective where an
image feature is reconstructed back from the disentangled
features, and this reconstruction is encouraged to be con-
sistent with the feature obtained from a different augmented
view of the same image. We empirically verify the efficacy
of the proposed method on several datasets in the context of
visual attribute learning, fair representation learning and
hierarchical label learning. The experimental results indi-
cate that our proposed method outperforms prior weakly-
supervised methods and is flexible in adapting to different
representation learning settings.

1. Introduction

Self-supervised learning has received a lot of research
interest from the computer vision [3,4, 8, 10, 11] and nat-
ural language processing [!, 7] community, largely due to
its ability to extract generic representations from potentially

unlimited annotation-free data. Recent advances in self-
supervised learning have focused on two main approaches:
contrastive learning and masked reconstruction. In con-
trastive learning, positive pairs are defined or constructed,
and the learning objective is to maximize their similairity in
a shared representation space. On the other hand, masked
reconstruction applies random masking to the inputs and
learns to reconstruct the original inputs using a decoder. Af-
ter pretraining on large-scale training data, pretrained self-
supervised models can be transferred to a wide range of
downstream tasks and in some cases achieve performance
similar to or even surpass that of fully supervised models.

In this work, we consider the problem of visual repre-
sentation learning on small to medium-scale training data,
specifically by exploring how to incorporate additional in-
formation provided by weak/auxiliary annotations. In the
real world, images are often annotated with auxiliary labels
that are related to the visual content. For example, images
posted on social media are usually accompanied by hash-
tags consisting of keyword phrases to facilitate engagement
with other users. Such labels exist abundantly and are con-
tinuously growing as more content is being uploaded every
day, but they may be too noisy and require manual clean-
ing before they can be used as pretraining data [20]. An-
other form of weak labels are the visual attributes such as
the color and shape attributes. They required some manual
labeling but it is often much easier than identifying the ex-
act object class. For example, in the task of classifying bird
species, visual attributes such as the beak color can be in-
ferred without much thought compared to the species type,
which may require more specialized knowledge. While im-
precise, weak labels can still provide valuable training sig-
nals for learning better visual representations, especially in
scenarios where fully annotated data is limited.

Prior work in weakly-supervised representation learn-
ing has proposed to construct positive pairs for contrastive
learning using weak labels. One straightforward way is to
define positive pairs as instances having similar labels, e.g.,
using the spatial and time information from camera meta-

2246



data [23]. However, this approach may not be applicable to
cases where the labels are sparse and have a large dimen-
sion. Due to the sparsity, only a few instances will have
matching labels, resulting in fewer positive pairs. To miti-
gate this issue, clustering InfoNCE [3 1] ranks each class la-
bel by its entropy and selects the top-k classes to cluster the
data. Data points which share the same labels in the selected
top-k classes are assigned to the same cluster, and the pos-
itive pairs are then sampled from these clusters. Instead of
discarding potentially useful information, another approach
utilizes a similarity kernel (e.g. cosine similarity) to com-
pute the similarity score between two sets of labels [32].
The similarity scores are used to weight the loss for any
given pair of contrasting samples.

Although effective, prior approaches does not explic-
itly consider the semantic relationship between the class
labels. In a hierarchical relationship, class labels are or-
ganized in a tree-like structure, where the top-level class
subsumes the classes below it. This relationship has previ-
ously been explored in previous work [40], which adapted
the contrastive loss to a hierarchical setting. In this work,
we investigate another type of semantic relationship where
the labels are related to some attribute groups. For exam-
ple, the labels “red”, “green”, and “blue” belong to the
color attribute group, while the labels ”square” and “cir-
cle” belong to the shape attribute group. An image may
be annotated with labels from multiple groups, and two im-
ages may share similar labels in some of the groups (e.g.
a red square and a red circle share the same label in the
color attribute group but not the shape attribute group). To
model this relationship, we propose a group-wise bottle-
neck learning mechanism in which the global representa-
tion of an image is split into multiple group-specific repre-
sentations. Each group-specific representation is then pro-
jected into a sub-space corresponding to an attribute group.
As shown in Fig. 1, within each sub-space, positive pairs
are defined for contrastive learning based on the shared la-
bels that belong to the attribute group associated with that
sub-space. This ensures sufficient amount of positive pairs
within each group as the visual attributes are modeled on
a per-group basis. In addition, through a reverse map-
ping operation similar to how an autoencoder [ 18] works, a
global representation is reconstructed from the group-wise
representations. The reconstructed representation is com-
pared against another representation extracted from an aug-
mented view of the same image, and their discrepancy is
minimized through a mean square error loss. This pro-
duces a more robust representation and encourages learning
of residual features (i.e., unobserved attributes). We refer
to the proposed approach as CLRC (Contrastive Learning
with ReConstruction loss). The efficacy of CLRC is vali-
dated on multiple public datasets annotated with different
visual attributes. In addition, we also demonstrate how
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Figure 1. Illustration of the group-wise contrastive learning ap-
proach on a toy dataset. Each sample x in the minibatch is anno-
tated with a color and shape attribute. The features a are mapped
by group-specific projector h into projection vectors z. The dou-
ble ended arrows indicate positive pairings between two samples.

CLRC can be adapted for hierarchical labels and fair rep-

resentation learning. The experimental results show that

our proposed approach outperforms prior approaches and

is useful for mitigating the issue of subgroup bias by learn-

ing a fairer representation. The codes are made publicly

available at https://github.com/BPYap/CLRC.
The main contributions of this work are threefold:

1. We introduce a bottleneck module with group-wise
contrastive learning objective for weakly-supervised
representation learning. The proposed module sepa-
rately models the features based on label similarity in
different semantic groups.

2. We propose to integrate group-wise contrastive learn-
ing with a feature reconstruction objective to improve
the robustness of learnt representations.

3. We conduct extensive experiments to demonstrate the
effectiveness of our proposed CLRC method in learn-
ing representations from visual attributes, hierarchical
labels and sensitive attributes.

2. Related Work

Contrastive Learning. The goal of contrastive learning
is to minimize the discrepancy between two semantically
similar images while maximizing the discrepancy for se-
mantically different images. The notion of semantic simi-
larity depends on the availability and granularity of labels.
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Figure 2. Overview of the proposed approach. (a): Two augmented views (Z, Z') are generated from an input image x using transformations
sampled from 7. The global representation v obtained from an encoder f is disentangled into group-specific representation a through the
bottleneck module g. Using a set of small linear projectors (ommited in this diagram for brevity), a is separately projected into different
sub-spaces where the group-wise contrastive objective L4 is applied. The reconstructed global representation ¢ is encouraged to be
similar (via mean square error L,,s.) to the representation v’ obtained from the momentum encoder f’. (b): Details of the bottleneck
module. The reconstruction layers share the same weights as the disentanglement layers through the transpose of the weights of g.

In self-supervised setting where manually annotated labels
are not available, positive pairs of semantically similar im-
ages are typically generated from the same image through
image augmentations [4, 8, | 1]. In scenarios where some
form of supervisory signal is available, the positive pairs
can be defined as images sharing the same labels. For ex-
ample, in supervised contrastive learning [ 16], in addition to
the augmented images, different images with the same ob-
ject category are also treated as positive pairs. Other forms
of supervisory signal include visual attributes [3 1], hierar-
chical information [40], and camera metadata [23,25]. In
this work, our method utilizes the visual attributes and their
semantic grouping information for weakly-supervised rep-
resentation learning.

Weakly-Supervised Learning. To reduce the cost of ac-
quiring precise annotations, weakly-supervised learning
leverages weak labels that are imprecise or incomplete but
are often significantly easier to acquire. It has been exten-
sively studied in the literature of weakly-supervised seman-
tic segmentation where weaker annotations such as bound-
ing boxes [5,26,37] and image-level labels [14, 17,36] are
used in place of the costly pixel-wise segmentation masks.
Beyond segmentation tasks, attribute labels [31, 32] and
hash tags [20] have also been explored as a viable option for

weak labels to improve performance on fine-grained clas-
sification tasks. In contrast to prior work which does not
consider the semantic grouping of labels, our method ex-
plicitly models this relationship by disentangling the global
representation into different semantic sub-spaces.

Feature Disentanglement In computer vision tasks such
as image generation and image retrieval, learning represen-
tations that can be disentangled into interpretable compo-
nents is highly desirable. This allows for better control
in generating or retrieving images that meet certain cri-
teria, e.g. changing the hair color of a person in a gen-
erated image by manipulating the part of the representa-
tion associated with hair color. A common approach to
disentanglement learning is to train a separate classifier
for each interpretable component through the cross-entropy
loss [13,39,41]. Inspired by the idea of feature disentangle-
ment, this work investigates whether the semantic group-
ing of visual attributes is useful for weakly-supervised rep-
resentation learning and studies its synergy with the con-
trastive learning objective.

3. Methodology

An overview of the proposed method (CLRC) is pre-
sented in Fig. 2. CLRC involves disentangling the global

2248



representation of an image into different semantic groups
via a group-wise bottleneck module. Within each semantic
group, contrastive learning objective is used to maximize
the similarity of the projection vectors based on the shared
labels in that group (Fig. 1). Then, the global representation
is reconstructed from the disentangled representations and
its consistency is maximized to match the representation ex-
tracted from a momentum encoder. The details of each step
are described in the following sections.

3.1. Group-wise Contrastive Learning

This work considers datasets that are annotated with bi-
nary labels where each label indicates the presence of a vi-
sual attribute such as “blue feather vs. not blue feather” or
“has stripe vs. no stripe”. Naturally, some binary attributes
could be grouped into a broader semantic category. For
example, the attributes “blue feather vs. not blue feather”
and “red feather vs. not red feather” belong to a semantic
group related to the feather color. Based on this observation,
a group-wise bottleneck module is introduced to exploit
the semantic grouping information of binary attributes. As
shown in Fig. 2(b), the bottleneck module consists of disen-
tanglement and reconstruction layers. Given the global rep-
resentation, v, of an image, the disentanglement layers pro-
duce a set of group-specific representations, a', a2, ..., a™,
where M is the number of semantic groups. Concretely, the
disentanglement layers include two linear layers, in which
the first linear layer is followed by a Batch Normalization
layer [15] and a ReLU activation function (all three layers
will collectively be referred to as g1). g1 maps v, which has
a feature dimension of d, into an intermediate representation
w with a dimension of d; (d; < d), while the second linear
layer, g2, maps w into the group representation a with a di-
mension of do * M (dy < di). The group-specific features
are then obtained by splitting a into M equal-size vectors.

To learn disentangled features, group-wise contrastive
learning is proposed to separately maximize the similarities
of positive pairs in different sub-spaces. Within each group,
a light-weight linear projector is used to obtain the /5 nor-
malized projection vectors, z, and the contrastive learning
objective [4,33] is optimized:

log P (2] 2i/7) 7
> 1(i # k) exp (2] 21 /7)

where z; and z; is a positive pair, defined in a group-wise
manner as two instances that share at least one common at-
tribute in the group, N is the batch size, and 7 is a temper-
ature parameter. The group-specific contrastive losses are
then aggregated across all groups:
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where B is the minibatch and )\,, is a weighting factor
for the group-specific contrastive loss. An entropy-based
weighting scheme is proposed to give more weightage to
the more informative groups:
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where A,, is the set of binary attributes in the m-th group
and p,, is the ratio of samples having attribute « in the train-
ing dataset.

3.2. Feature Reconstruction

To increase the robustness of learnt representations, the
disentangled group representations are projected back to the
global representation space through the reconstruction lay-
ers. The reconstruction layers adopt the tied weights design
commonly used in autoencoders [34], where their weights
are the transpose of the weights of the disentanglement lay-
ers. The reconstructed feature, v is aligned with the target
feature v’ extracted from a momentum encoder [11,29] us-
ing a differently augmented input image. The weights of the
momentum encoder f’ are the exponential moving average
version of the image encoder weights f, and no gradient is
propagated to the momentum encoder during the computa-
tion of v’. The difference between ¢ and v’ is minimized
via the mean square error function:

‘Cmse (’07 UI) =
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where ¢ is a sigmoid function used to constrain the feature
values within the range of [0, 1], and 4 is an index into the
feature vector. We posit that the reconstruction loss also en-
courages preservation of unannotated attributes, as the rep-
resentations of important but unobserved attributes will be
implicitly distributed over the group representations.

3.3. Overall Loss Function

During training, two augmented views are generated
from each input image, and each view is involved in min-
imizing both £ and L,,,s.. The overall loss function is a
symmetrized version of the joint loss:

LY 4 Lonse(D1,05) + L2 + Lypse(D2,0])

ﬁclrc = 9 ’

®)

where L1, (resp. £2)) denotes the application of L., on the
minibatch of the first (resp. second) augmented views, 1
(resp. D) denotes the reconstructed representation from the
first (resp. second) augmented view, and v} (resp. v5}) de-
notes the target representation computed from the first (resp.
second) augmented view.
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Dataset Type #train-val  #test  #attribute #group #class
UT Zappos 50k [38] visual attributes 35,017 15,008 126 6 21
WIDER Attribute [19] visual attributes 6,871 6,918 14 14 30
CUB-200-2011 [35] visual attributes 5,994 5,794 312 28 200
Fitzpatrick17k [9] sensitive attributes 14,410 1,602 18 6 2
ImageNet-100 [6] hierarchical labels 128,743 5,000 13 2 100

Table 1. Details of the benchmark datasets. #class is the number of object classes in the downstream tasks.

4. Experiments

Three sets of experiments are conducted to evaluate the
efficacy of CLRC in handling different types of weak an-
notations, including grouped visual attributes, sensitive at-
tributes and hierarchical labels. The details of the bench-
mark datasets are summarized in Tab. 1. Unless otherwise
specified, the data preprocessing steps and image transfor-
mations follow the convention of previous works. The de-
tails are also included in the supplementary material.

4.1. Baselines

The proposed method is validated against a total of
eight baseline methods, including three representative self-
supervised methods (SimCLR [4], BYOL [8], SWAV [2]) to
establish the lower bound performance, a supervised con-
trastive method with direct access to the downstream la-
bels (SupCon [16]), and four baselines for weakly super-
vised learning. The first weakly supervised learning base-
line is the cross-entropy supervision, which is trained to
predict the concatenation of attribute vectors via the bi-
nary cross-entropy objective. The second baseline is based
on the Contrastive Multiview Coding (CMC) [30] method,
which involves maximizing the similarity between image
representation and the representation of the attribute vec-
tors obtained from a multilayer perceptron (MLP). The third
method, Cl-InfoNCE [31], constructs positive pairs for con-
trastive learning by forming clusters using subsets of com-
mon attributes. The fourth method, CCL-K [32] uses a co-
sine similarity kernel on pairs of attribute vectors to com-
pute the weights for the contrastive learning loss. For a fair
comparison, all baselines are implemented under the same
codebase using the PyTorch framework [24]. Our imple-
mentation produced different numbers than those reported
by Cl-InfoNCE, possibly due to the differences in dataset-
specific hyperparameters when training the linear classifier
layer, such as the number of warmup and training epochs.
As they were not explicitly stated in Cl-InfoNCE, we stan-
dardize the warmup and training epochs to 33 and 100, re-
spectively, for the benchmarks in UT Zappos 50k, WIDER
Attribute and CUB-200-2011. The full hyperparameter set-
tings are provided in the supplementary material.

4.2. Learning from Grouped Visual Attributes

Datasets. Three visual attributes datasets are considered:
1) UT Zappos 50k [38], 2) WIDER Attribute [19], and 3)
CUB-200-2011 [35]. For UT Zappos 50k and CUB-200-
2011, the semantic groupings of the attributes are provided
by the datasets. For WIDER Attribute, each binary attribute
is treated as an individual semantic group.

Experiment Setup. The training and evaluation setup fol-
low the protocols previously established in Cl-InfoNCE
[31]. Hyperparameters and the encoder backbone are fixed
for all experiments following the same settings in CI-
InfoNCE. For UT Zappos 50k, the encoder backbone is a
modified version of ResNet-50 [ 12] (following [3 1], the first
7x7 convolution kernel is replaced with a 3x3 kernel and the
first max pooling layer is removed), while the unmodified
version is used in WIDER Attribute and CUB-200-2011.
Each network is pretrained for 1000 epochs using the mo-
mentum SGD optimizer. Other hyperparameter settings are
provided in the supplementary material. For CLRC, the di-
mension d; in the bottleneck module is fixed at 1024 for
all datasets. The dimension ds is set to 128 for UT Zap-
pos 50k and WIDER Attribute, and 64 for CUB-200-2011.
For simplicity, the output size of the group-specific linear
projectors is set to half of the dimension of ds. The quality
of the learnt representation is validated via the linear evalu-
ation protocol, where a randomly initialized linear layer is
attached to the frozen pretrained encoder and fine-tuned on
the downstream object class labels.

Results. Tab. 2 compares the top-1 and top-5 accuracy on
the visual attribute datasets. Interestingly, the previously
overlooked cross-entropy baseline performs competitively
across all three datasets, and even achieves the best per-
formance in UT Zappos 50k. On the other hand, the pro-
posed CLRC approach attains the second-best top-1 accu-
racy in UT Zappos 50k and the best overall performance
in WIDER Attribute and CUB-200-2011. Notably, there
is a significant performance gap between CLRC and the
second-best methods in CUB-200-2011 (4.88% and 5.55%
gap in top-1 and top-5 accuracy, respectively). Compared to
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UT Zappos 50k [38]

WIDER Attribute [19]

CUB-200-2011 [35]

Method Top-1 Acc.  Top-5 Acc.  Top-1 Acc. Top-5 Acc. Top-1 Acc.  Top-5 Acc.
SimCLR [4] 82.18£0.05 99.114+0.01 39.28+0.10  69.27£0.14  24.794+0.23 52.49+0.19
BYOL [§] 84.594+0.08 98.46+0.16 44.29+0.22  73.12+0.29  28.714+0.23 55.38+0.17
SwWAV [2] 80.15+0.10 98.56+0.11 38.72+0.26  69.31+0.23  14.244+0.20 33.184+0.23
SupCon [16] 88.55+0.03 99.57+0.00 46.78£0.07  73.944+0.04  59.944+0.16 82.27+0.20
Cross-entropy 86.271+0.02 99.68+0.03 37.41+0.22 67.31+£0.20 40.39+0.42 66.65£0.17
CMC [30] 85.75+0.11 99.664+0.02 40.14+0.20  69.70+0.09  37.25+0.22 66.8640.20
Cl-InfoNCE [31]  85.19+0.05 99.51+0.02 43.74£0.12  73.76£0.08  26.48+0.16 52.58+0.02
CCL-K [32] 85.35+£0.07 99.59+0.03 8.80+0.09* 30.74£0.16% 34.244+0.17 64.78+0.13
CLRC (this work) 86.03£0.02 99.37+0.00 45.37+£0.48 74.08+0.13  45.274+0.12 72.41+0.07

Table 2. Top-1 and Top-5 classification accuracy (%) on the testing set of each dataset. The self-supervised methods (SimCLR, BYOL,
SwAV) and supervised contrastive learning on downstream labels (SupCon) represent the performance lower bounds and upper bound,
respectively. * is unable to converge, despite our best effort in adapting CCL-K to this dataset.

other datasets, CUB-200-2011 contains the most number of
binary attributes (up to 312 distributed across 28 semantic
groups), suggesting that CLRC is very effective in scaling
to a large set of attributes. In terms of parameter efficiency,
the number of learnable parameters in the auxiliary mod-
ules (i.e., modules excluding the base encoder) of CLRC for
UT Zappos 50k, WIDER Attribute and CUB-200-2011 is
2.9M, 4.1M, and 4M, respectively. This is in contrast to the
common MLP projector design (a three-layer MLP with the
configuration 2048-2048-128) used in the other contrastive
learning baselines, which consists of 8.7M learnable param-
eters. This illustrates the parameter efficiency of the pro-
posed group-wise bottleneck module and its flexibility in
scaling to different number of attribute groups.

4.3. Adaptation to Fair Representation Learning

Dataset. When deploying deep learning models, an im-
portant consideration is how the models will behave to-
wards different groups of people, especially those who are
underrepresented in the training data. This has led to the
study of fair representation learning, which aims to reduce
the disparity among different subgroups [21]. In this sec-
tion, an adaption of CLRC in the context of fair representa-
tion learning is demonstrated. Using the Fitzpatrick17k [9]
dataset as an example, we propose to treat the sensitive
skin type attributes as individual semantic groups. Fitz-
patrick17k consists of skin dermatology images annotated
with skin type and lesion labels. Following prior work [42],
the lesion labels are converted into a binary label ("benign”
vs. “malignant”). To adapt CLRC to Fitzpatrick17k, the
global representation is projected into six group-specific
feature vectors, where each group is assigned to a skin type
in the dataset. Within each group, the binary lesion label is
represented as a two-dimensional one-hot attribute vector.

A third attribute “ignored” is added to differentiate images
that does not belong to the assigned group, e.g., if the image
does not belong to the assigned group, its lesion label is ig-
nored and its one-hot vector will look like [0, 0, 1]. During
group-wise contrastive learning, two images are considered
as a positive pair if they have the same attribute label (”be-
nign”, “malignant”, or “ignored”). This encourages each
group to be specialized in learning subgroup-specific fea-
tures, and thereby prevent underrepresented subgroups from

being overwhelmed by the majority subgroups.

Experiment Setup. Following the protocol introduced
in MEDFAIR [42], the Fitzpatrick17k dataset is divided
into training/validation/testing sets with a proportion of
80/10/10. The base encoder is a ResNet-18 initialized with
weights pretrained on the ImageNet-1k [27] dataset. For
the baseline, the base encoder is fine-tuned on the training
set using the momentum SGD optimizer with a batch size of
1024. Training is stopped if the validation worst-case AUC-
ROC (i.e., AUC-ROC on the lowest performing subgroup)
does not improve for five epochs. In the rest of the exper-
iments, the base encoder is first pretrained for 50 epochs
using different pretraining objectives before the fine-tuning
step. For the bottleneck module in CLRC, the output size of
g1 and g9 is set to 512 and 128, respectively.

Results. Adopting the same evaluation metrics as MED-
FAIR [42], the fairness of the learnt representation is mea-
sured against three metrics: overall AUC-ROC (higher is
better), worst-case AUC-ROC (higher is better) and the gap
between the best- and worst-case AUC-ROC (lower is bet-
ter). Tab. 3 shows the results on the testing set of Fitz-
patrick17k. SimCLR and SupCon substantially improve the
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overall AUC-ROC but they significantly reduce the worst-
case performance and widen the gap between different skin
types. In other words, pretraining without considering the
sensitive attributes will negatively impact the performance
in underrepresented subgroups. Methods that are aware to
the sensitive attributes such as CMC and CLRC are able to
improve the subgroup performance. In particular, CLRC
significantly outperforms the other methods in terms of
worst-case AUC and AUC gap, showing its potential to
learn fairer representations.

Method Overall (1) Min. () Gap (])
Baseline 88.16 79.25 13.75
. 89.25 74.84 20.72

SimCLR [4] ( ) (441%)  (+6.97%)
91.67 74.84 21.64

SupCon [16] ( ) (441%)  (+7.89%)
87.59 80.29 12.63

el (0.57%)  (+1.04%)  (112%)
CLRC (this work) 3563 84.28 8.33

(+0.49%)  ( ) (-5.42%)

Table 3. AUC-ROC (%) on the testing set of Fitzpatrick17k [9].
The baseline is a ImageNet initialized ResNet-18 fine-tuned on the
binary lesion labels. Changes relative to the baseline are indicated
in the parentheses. (Overall: overall AUC-ROC across every skin
type, Min.: worst-case AUC-ROC, Gap: gap between the best-
and worst-case AUC-ROC)

4.4. Adaptation to Hierarchical Labels

Dataset. Hierarchical labels encode a subsumptive rela-
tionship between different labels and are usually repre-
sented as a tree or a directed acyclic graph. In the ImageNet
[6] dataset, images are organized according to the Word-
Net [22] hierarchy, where non-leaf nodes represent coarse-
grained labels of varying granularity, while leaf nodes rep-
resent fine-grained object classes. To adapt hierarchical
labels to CLRC, each level of the hierarchy could be in-
terpreted as its own group, and the group-wise contrastive
learning objective becomes a hierarchy-wise objective. As
a demonstration, the efficacy of CLRC in learning from hi-
erarchical labels is evaluated on ImageNet-100, a subset of
ImageNet-1k dataset [27] which contains 100 fine-grained
classes. For this experiment, the coarse-grained labels from
the 5-th and 6-th level of the WordNet hierarchy (the fine-
grained classes is at the 14-th level) are extracted, forming
two groups of coarse labels with a total of 13 classes.

Experiment Setup. The experiment setup is similar to the
setup described in Sec. 4.2 (more details are provided in
the supplementary materials). ResNet-50 encoders are pre-
trained on the coarse-grained labels before fine-tuning on
the fine-grained labels via the linear evaluation protocol.
For CLRC, the dimensions of g; and gy are respectively
2048 and 128.

Results. The results of hierarchical representation learn-
ing are given in Tab. 4. The results include an addi-
tional baseline, HiMulConE [40], which is proposed specif-
ically to utilize the hierarchical relationship in labels. Al-
though HiMulConE also performs contrastive learning in
a hierarchy-wise manner, there are two main differences
with regard to how the contrastive loss is implemented be-
tween HiMulConE and the proposed adaption of CLRC to
hierarchical labels: 1) HiMulConE enforces a hierarchy
constraint so that the losses towards the deeper levels are
larger than those at the shallower levels by weighting the
losses based on the depth of the tree; CLRC does not in-
corporate any hierarchical constraint and instead rely on the
hierarchy-specific entropies to weight the losses, 2) HiMul-
ConE uses a single MLP projector across all hierarchies
while CLRC uses a separate light-weight linear projector
for each hierarchy. CCL-K is excluded from this experi-
ment as it uses continuous labels extracted from a pretrained
vision-language model instead of hierarchical labels. In
terms of Top-1 and Top-5 accuracy, CLRC achieves the best
performance, with slight improvements over Cl-InfoNCE
and HiMulConE. The results suggest that CLRC is a very
competitive method to learn from hierarchical labels.

Method Top-1 Acc. Top-5 Acc.
SimCLR [4] 66.98 87.99
BYOL [8] 70.02 87.33
SupCon [16] 87.11 96.29
Cross-entropy 69.52 88.15
CMC [30] 74.52 91.08
Cl-InfoNCE [31] 75.29 91.90
HiMulConE [40] 76.14 91.73
CLRC (this work) 76.65 92.09

Table 4. Top-1 and Top-5 classification accuracy (%) on the test-
ing split of ImageNet-100. SimCLR and BYOL represent the per-
formance lower bounds while SupCon represents the performance
upper bound.

4.5. Ablation Study

Ablation studies are conducted on the ImageNet-100
benchmark. The results are tabulated in Tab. 5.
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Ablation Top-1 Acc.  Top-5 Acc.
Dimension d; = 1024 75.49 91.69
Dimension d; = 2048* 76.65 92.09
Dimension d; = 4096 77.44 92.04
Dimension ds = 64 76.07 92.37
Dimension d = 128* 76.65 92.09
Dimension dy = 256 77.38 924
Dimension dy = 512 77.12 91.92
shared projector 76.56 91.94
group-specific projectors* 76.65 92.09
uniform weighting in £, 75.51 91.54
entropy weighting in £.;* 76.65 92.09
L only (remove L, 5¢) 75.84 91.65

Table 5. Results of ablation study on CLRC in the ImageNet-100
benchmark. * is the default configuration.

Dimension of d;. g1 maps the global representation into
an intermediate representation with dimension d;, and is
analogous to the first layer of the MLP projector used in
prior contrastive learning approaches [4, | 1]. The com-
monly adopted output size is 2048, which matches the di-
mension of the representation extracted from a ResNet-50
encoder. Here, a lower dimension (1024) was tested and
was shown to perform worse than the default value of 2048.

Dimension of ds. dy controls the size of each group-
specific representation where the group-wise contrastive
learning objective is applied. A larger dimension (256/512)
was able to improve the representation quality while a
smaller dimension (64) was still able to yield a competitive
performance.

Shared vs. Separate Linear Projectors. The use of a
shared linear projector (to project the disentangled group-
specific features) across all semantic groups slightly re-
duces the Top-1 and Top-5 accuracy, which indicates that
a group-specific projector is not as important. Combined
with the study on the dimension of ds, the results suggests
that majority of the improvement in representation qual-
ity comes from the disentanglement layers and the group-
specific contrastive learning objective. Thus, a shared linear
projector might be a viable design to save memory cost.

Uniform vs. Entropy-weighted Contrastive Loss. Uni-
form weighting assigns an equal weight to each group-
specific contrastive loss (L4¢;). As demonstrated in Tab. 5,
this results in a degradation of the representation quality.
On the other hand, the proposed entropy-weighting scheme

provides an effective and tuning-free weighting method for
estimating the importance of each loss term through the
group entropies computed from the training data.

Removing Reconstruction Loss. As shown in the last
row of Tab. 5, removing the reconstruction loss term (L, s¢)
causes performance drop in both Top-1 and Top-5 accuracy.
This shows that the objective of maximizing the consistency
between the reconstructed representation and the represen-
tation from another augmented view can provide additional
training signals which encourage the learnt representations
to be robust to different augmentations.

5. Discussion

Through empirical experiments on various types of weak
labels, CLRC was shown to be very effective in learning
good representations under the weakly supervised setting,
assuming that the labels are discrete and can be grouped
into semantically related categories. One current limitation
of the proposed method is that it cannot be applied directly
to settings involving continuous labels such as text embed-
dings. Thus, an investigation on how to adapt the group-
ing and loss weighting mechanism of CLRC to the con-
tinuous setting would be a promising direction for future
work. Another interesting but orthogonal research direc-
tion would be to integrate the weakly-supervised pretraining
framework into the task of compositional zero-shot learn-
ing [28], where the learnt representations could potentially
provide additional benefits in terms of convergence speed
and downstream performance.

6. Conclusion

A pretraining framework for weakly supervised repre-
sentation learning is proposed in this work. Specifically,
a group-wise contrastive bottleneck module is presented
to leverage the semantic grouping information in the label
space. Two learning objectives consisting of a group-wise
contrastive loss and a reconstruction loss are introduced to
learn robust and transferable representations. Compared to
prior approaches, CLRC is more parameter-efficient and is
more flexible in adapting to various types of labels, includ-
ing visual attributes, sensitive attributes and hierarchical la-
bels. In terms of downstream performance, CLRC outper-
forms prior approaches in most benchmark datasets, further
closing the gap with fully supervised pretraining.
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