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Abstract
Convolutional neural network (CNN) based methods

have been the main focus of recent developments for im-
age denoising. However, these methods lack majorly in two
ways: 1) They require a large amount of labeled data to per-
form well. 2) They do not have a good global understanding
due to convolutional inductive biases. Recent emergence
of Transformers and self-supervised learning methods have
focused on tackling these issues. In this work, we address
both these issues for image denoising and propose a new
method: Self-Supervised denoising Transformer (SST-GP)
with Gaussian Process. Our novelties are two fold: First,
we propose a new way of doing self-supervision by incor-
porating Gaussian Processes (GP). Given a noisy image,
we generate multiple noisy down-sampled images with ran-
dom cyclic shifts. Using GP, we formulate a joint Gaussian
distribution between these down-sampled images and learn
the relation between their corresponding denoising func-
tion mappings to predict the pseudo-Ground truth (pseudo-
GT) for each of the down-sampled images. This enables
the network to learn noise present in the down-sampled im-
ages and achieve better denoising performance by using the
joint relationship between down-sampled images with help
of GP. Second, we propose a new transformer architecture
- Denoising Transformer (Den-T) which is tailor-made for
denoising application. Den-T has two transformer encoder
branches - one which focuses on extracting fine context de-
tails and another to extract coarse context details. This
helps Den-T to attend to both local and global information
to effectively denoise the image. Finally, we train Den-T
using the proposed self-supervised strategy using GP and
achieve a better performance over recent unsupervised/self-
supervised denoising approaches when validated on vari-
ous denoising datasets like Kodak, BSD, Set-14 and SIDD.

*This work was supported by NSF CAREER award 2045489.
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Figure 1. Visual Quality comparison. Rows 1-2: Comparisons
on noisy image with Poisson noise σ = 30. Rows 3-4: Compar-
isons on noisy image with Gaussian noise σ = 25. Red box corre-
sponds to the zoomed-in region. Our method (SST-GP) achieves
better performance than recent methods.

1. Introduction

Noise adversely affects the visual quality of images cap-
tured by camera sensor and thus has a detrimental impact
on the performance of downstream computer vision tasks
like classification, detection and segmentation. Hence, im-
age denoising is an important pre-processing task in many
computer vision applications. Denoising is classically for-
mulated as follows: Given a noisy image y, which is a cor-
rupted version of the clean image x with known or unknown
noise distribution n, the goal of denoising is to recover the
clean image x from y.

Denoising has been extensively studied in the literature
because of its importance in several applications. Some of
the early methods like BM3D [11], WNNM [16], etc. do
not require clean ground-truth images. These traditional ap-
proaches are computationally efficient, do not involve any
learning, and are based on natural image priors. However,
they require knowledge of the noise levels making it dif-
ficult to use them in the wild. Emergence of CNNs in ad-
dressing image denoising significantly improved the quality
of restored images. Many CNN methods like, RED30 [33],
U-Net [39], DnCNN [55], MemNet [42], N3Net [36], and
NLRN [28] address image denoising in a supervised fash-
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ion. Since these are data driven approaches, they need large
amounts of paired noisy-clean images to train the network.

The In-camera Signal Processing (ISP) pipeline in mod-
ern sensors are complicated which makes the noise in the
real-world difficult to model. This makes it really hard and
expensive to obtain labeled pairs of noisy and correspond-
ing ground-truth images which are essential for supervised
learning based methods. Hence, most of the existing fully-
supervised approaches [18,28,36,55] synthetically generate
the noisy images and train their network on these synthetic
data pairs. However, as discussed in [20, 21], when these
fully-supervised methods are tested on real-world noisy im-
ages, they tend to perform poorly because of the domain
gap between synthetic and real world noise.

To overcome this problem, especially in cases where we
do not have access to real-world ground-truth, Lehtinen et
al. [25] applied statistical reasoning in signal reconstruction
to CNNs to perform denoising. They demonstrate that it is
possible to learn to restore images by using only the cor-
rupted examples. However, they require multiple indepen-
dent noisy observation of a scene to train the network. This
requirement is not practical, since capturing multiple obser-
vations of the same scenes is quite challenging when there
are movements in the scene. Subsequently, approaches
like [21, 23, 48] were developed using a blind-spot network
(BSN) structures for learning a self-supervised model. Ad-
ditionally, [23, 48] employed Gaussian-Poisson noise mod-
els to further improve the performance. The main limita-
tion for these methods is that BSN is computationally ex-
pensive and suffers from relatively low accuracy. Moran et
al. [35] proposed a method that uses noiser-noisy pairs to
train the network, where they assume the prior informa-
tion about the noise model to obtain the denoised image.
These self-supervised methods assume prior information
about the noise model and although they perform well on
synthetic noise, they tend to under perform on real-world
noisy images. Recently, Huang et al. [20] proposed Neigh-
bor2Neighbor, where they down-sample the noisy image
into pairs to train the network. An additional regularizer
is used in the loss function to account for the differences
in the ground-truth of down-sampled images, and might not
exploit the joint relationship between the down-sampled im-
ages. On the other hand, traditional approaches like SS-
GMM [29] proposed a parametric approach to generate im-
age prior using Gaussian mixture model (GMM) that mod-
els the relationship between patches to estimate noise char-
acteristics like variance.

To this end, we propose a novel self-supervised tech-
nique based on Gaussian Process (GP) (note GP is a non-
parametric approach). In our proposed method, we first ob-
tain down-sampled images from the noisy image. Then we
perform random cyclical shift to these down-sampled im-
ages in order to increase the number of down-sampled im-

ages. Random cyclical shifts [10] are found to minimize
artifacts in denoised images helping us to generate better
quality pseudo-GTs. Further, based on the consideration
that these down-sampled images have the same noise char-
acteristics and image properties [20], we propose a pseudo-
GT generation approach using a Gaussian processes (GP)
to model a learnable joint distribution of the down-sampled
images. Note unlike, GMM based approaches GP is non-
parametric based approach that can formulate joint distri-
bution between infinitly many random variables. Specifi-
cally, we formulate a joint Gaussian distribution between
down-sampled images that learns joint relation of the de-
noising function mappings of the down-sampled images to
generate pseudo-GT for every down-sampled image. In
other words, the learnable joint distribution between down-
sampled images using GP, tries to model similar properties
among down-sampled images, and also accounts for the
difference between down-sampled images by learning co-
variance relation between the down-sampled images. Ad-
ditionally, by predicting pseudo-GT for given down-sample
image using other down-sampled images and their corre-
sponding denoised clean images, GP is modelling the joint
relation between the denoise function mappings of down-
sampled images to learn noise properties in the noisy image.
Hence, supervising the network weights using the pseudo-
GT obtained by GP, helps the network to learn the joint
relation between the down-sampled images and leverage
the noise characteristic information from the other down-
sampled images. In this way, network is trained in a self-
supervised way using GP to exploit the real noise distribu-
tion, and achieve a better denoising performance.

Transformers are currently being widely adopted for var-
ious computer vision tasks [13,17,31,44,52,58]. The major
improvements of transformers come from the lack of using
convolutions thus not inducing any convolutional inductive
biases [38]. This enables transformers to have a global un-
derstanding of the input. Recently, transformers have also
been used for many low-level vision tasks [6, 27, 46, 57].
In this work, we propose a new transformer architecture-
Denoising Transformer (Den-T) tailor-made for denoising
application. We note that for denoising we need a global un-
derstanding as well as attention to fine details to get the best
prediction. To this end, we propose having two branches
in the transformer encoder: one focusing to extract fine-
context information and another to extract coarse-context
information. The coarse context branch is built in a fine-to-
coarse way where the feature maps are taken to a lower spa-
tial resolution in the latent space. The fine context branch
is built in a coarse-to-fine way where the feature maps are
taken to a higher spatial resolution in the latent space. From
our experiments, we find that this design helps in improving
the denoising performance. More details on why this de-
sign works can be found in Sec 3. We train Den-T using the
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proposed self-supervised technique using GP and run ex-
periments on multiple denoising datasets like Kodak, BSD,
Set-14 and SIDD where we achieve better performance than
previous unsupervised/self-supervised denoising methods.
Figure 1 demonstrates that with the help of multiple down-
sampled images and the joint distribution modeling, the pro-
posed method is able to produce clearer and sharper outputs
as compared to [20, 25].

The key contributions of this paper are as follows:
• We propose a new self-supervised image denoising ap-

proach by modelling the joint distribution between down-
sampled images using Gaussian processes. This helps the
network to explicitly model the real noise distribution and
achieve a better denoising performance

• We propose Denoising Transformer (Den-T), a dual-
branch transformer based denoising network which ex-
tracts both coarse and fine details to perform denoising.

• We demonstrate the superiority of our proposed method
by conducting experiments on multiple synthetic denois-
ing datasets generated using Kodak, BSD, Set-14, and
real-world denoising dataset SIDD.

2. Related work

2.1. Supervised Denoising

Compared to the traditional approaches [7, 11, 16, 40],
CNN-based methods [5, 8, 28, 33, 36, 55] have achieved su-
perior performance for image denoising. Zhang et al. [55]
was among the first CNN-based approach and they em-
ployed a residual learning mechanism for effective denois-
ing. Later, methods like [2, 15, 18, 24, 42, 56] were pro-
posed that introduced either efficient training or novel ar-
chitectural modifications. These approaches follow a fully-
supervised paradigm and require large amounts of paired
noisy-clean images to train the network. However, it is
extremely challenging and expensive to collect real-world
paired noisy-clean images. This limits the use of supervised
methods on real images with unknown noise models.

2.2. Unsupervised and Self-supervised Denoising

Over the past years, image denoising algorithms like
NLM [4], BM3D [11], and WNNM [16] have been pro-
posed which make use of local or non-local structures of
the images. However, these methods require knowledge of
the noise levels. Soltanayev et al. [41] proposed a image de-
noising method for AWGN noise models using Steins unbi-
ased risk estimator (SURE) based method on noisy images.
Zhussip et al. [59] extended SURE further by training the
network using correlated pairs of noisy images.

Lehtinen et al. [25] proposed a self-supervised solu-
tion which avoids paired noisy-clean data, and instead uses
paired noisy-noisy images of the same scene to train the net-
work. Thereafter, in the self-supervised image denoising,
Noise2Void (N2V) [21], Noise2Self [3], Noise2Same [50],

Self2Self [37] and Noisier2Noise [35] are proposed that
uses only one noisy image per scene to train the network.
Methods like Probabilistic N2V [22], Laine et al. [23], and
MWCNN [48] propose an elegant way of modeling noise
and probabilistic inference to further improve the denoising
performance. Noise-as-clean (NAC) [51] addressed the im-
age denoising task by focusing on the cases where noise is
weak. Huang et al. [20] down-sampled the noisy image into
neighboring pairs of down-sampled images, and used them
to train the network, where the proposed loss accounts for
the difference in the ground-truth of the neighboring down-
sampled images.
2.3. Transformers for low-level vision

After Vision Transformer (ViT) [13] was shown to per-
form well for visual recognition tasks, transformers have
been widely adopted for various other computer vision ap-
plications [17, 31, 44, 52, 58]. Especially for low-level vi-
sion, Image processing transformer [6] shows how pre-
training a transformer on large-scale datasets can help in
obtaining a better performance for low-level applications.
U-former [46] proposed a U-Net based transformer archi-
tecture for restoration problems. Recently, Swin-IR [27]
adopted Swin Transformer [30] for image restoration.

3. Preliminaries
Problem setting. Given a set of only noisy images D =
{yi}Mi=1, our objective is to train Den-T fθ(.) and learn the
network weights θ to perform image denoising. We follow
Huanget al. [20] where only noisy images are used to train
the network in a self-supervised fashion. Given a noisy im-
age y ∈ D, we generate down-sampled images with cell-
size 2 × 2 (for more details about down-sampling please
refer [20]) and randomly shift them to obtain more down-
sampled images for y. Finally, using the proposed method
we compute pseudo-GTs for these down-sampled images,
and use them for training the network.

Motivation for Self-supervision with GP. Just mini-
mizing L2-Norm between noisy image pairs (in case of
N2N [25]) or minimizing L2-Norm between down-sampled
images with additional regularizer (in case of Neigh-
bor2Neighbor [20]) might not be beneficial for network in
learning the noise model. The additional regularizer [20]
accounts for the difference in the ground-truth of down-
sampled images but doesn’t help the network learn the re-
lationship between the down-sampled images or the noise
model. In contrast to [20], we believe that learning joint re-
lation between the down-sampled images is beneficial for
a self-supervised method to achieve better performance,
since the joint relationship between the down-sampled im-
ages leverages the noise information present in the down-
sampled images. In other words, formulating joint rela-
tionship between the denoising function f(.) mappings of
down-sampled images using GP, we can learn the noise
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Figure 2. Overview of the proposed method SST-GP. Given a noisy image y, we generate down-sampled images {yd
i }Ni=1(= Y ),

and pass them through Den-T to obtain Z and X̂ . Later, we model joint distribution between down-sampled images (Y ) using GP to
compute pesudo-GTs for each of the down-sampled image yd

i . We then train SST-GP using the proposed loss LGP and LM . L2 represents
L2-norm. Down-Sampler represents the down-sampling technique used in [20]. blue arrow denotes the path network denoised image
prediction (x̂d

i,pred), and grey arrow denotes the path for pseudo-Gt (x̂d
i,pseudo) prediction using Gaussian process.

information present in denoised images. To this end, we
propose a self-supervised technique based on Gaussian pro-
cess (GP) to learn pseudo-GT for each down-sampled im-
age while not requiring any paired noisy or clean images to
update the network weights.

Let y and s be two independent noisy images condi-
tioned on x, such that Ey|x(y) = x and Ez|x(z) = x + ε
where ε ̸= 0 and small. Thus, y = x+ n1, s = x+ ε+ n2,
where n1 and n2 are additive zero mean noises with vari-
ance σ2

y and σ2
s . If we approximate ε with a Gaussain dis-

tribution, i.e. ε ∼ N
(
0, σ2

ε

)
. Let ñ2 = n2 + ε, then,

y − x = n1, s− x = ñ2

P (n1, ñ2) = N
(
0,Σ2

)
, Σ2 =

[
σ2
y 0
0 σ2

z + σ2
ε

]
=⇒ P (y − x, s− x) = N

(
0,Σ2

)
=⇒ P (y − f(y), s− f(s)) = N

(
0,Σ2

)
=⇒ P (f(y) |s, f(s)) = N

(
µy,Σ

2
)

(1)

Since in optimal (ideal denoise network) case x ≈ f(y),
where f(.) represents the function for denoising network.
This allows us to formulate learnable joint distribution be-
tween function mappings(f(.)) of y and s with help of GP
where in learning this relation between f(y) and f(s), GP
learns the noise information present in y and s. By con-
ditioning this joint distribution between f(y) and f(s) (in
Eq. 1) with f(s) we can predict the denoised image for y
as µy . We can define µy in Eq. 1 as pseudo-GT for y and
learn the networks weights θ by minimizing the negative
log-likelihood of the conditional distribution as follows,

LGP = − logP
(
µy − f(y) | s, f(s)

)
(2)

In this way, we can learn the joint relation in y and s using
GP with help of learnable kernel functions which is benefi-
cial in modelling the similar properties y annd s and account
also for differences between them. Updating the network
weights using LGP using µy helps the network to leverage
noise present in s. We can extend this to multiple noisy
observations {yi} (where Eyi|x(yi) = x + εi, and εi’s are
small), and formulate joint Gaussian distribution using GP
to leverage noise information in {yi}’s and update the net-

work using following optimization:
P (f(yi) | {yj}j ̸=i, {f(yj)}j ̸=i) = N

(
µyi

,Σ2
i

)
LGP = − logP

(
µyi

− f(yi) | {yj}j ̸=i, {f(yj)}j ̸=i

) (3)

4. Proposed Method
Given a noisy image y, following Huang et al. [20]

we obtain neighboring down-sampled images. Then we
perform cyclical random shifts to these down-sampled
images in order to obtain more down-sampled images
for y. Note that [10] explained that random cyclical
shifts minimizes the artifacts and aliasing effects intro-
duced during down-sampling. Thus, for noisy image y,
we obtain a set of N down-sampled cyclically-shifted im-
ages, {yd1 yd2 , yd3 , . . . , ydN}. Next, we forward these down-
sampled images, {yd1 yd2 , yd3 , . . . , ydN} through the denoising
network and inverse-shift them to obtain the corresponding
denoised down-sampled images, {x̂d

1 x̂
d
2, x̂

d
3, . . . , x̂

d
N}. Fig-

ure 2 gives an overview of the proposed method where each
down-sampled image ydi is passed through the encoder to
obtain intermediate vector zdi = g(ydi , θe). The vector zdi is
then forwarded to a decoder followed by a inverse-cyclical
shift to obtain the corresponding denoised down-sampled
image, i.e x̂d

i = Inv(h(zdi , θd)). Here, Inv(.) represents
inverse-cyclical shift function. SST-GP is trained with two
losses: (i) LM , (minimizing the L2-norm between down-
sampled images), and (ii) LGP . The latter loss is con-
structed based on pseudo-GT predicted by the joint distri-
bution modeled with {x̂d

1 x̂
d
2, x̂

d
3, . . . , x̂

d
N} using Gaussian

processes. First, we explain the details of our transformer
network Den-T and then explain how we train it using our
proposed GP based self-supervised approach.

4.1. Denoising Transformer (Den-T)

We use a dual branch transformer based encoder and a
convolutional decoder for Den-T. The two branches of our
encoder are: 1) Fine Context Transformer Branch (FTB)
and 2) Coarse Context Transformer Branch (CTB).
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Figure 3. Overview of our proposed Den-T architecture. We
use two branches (FTB and CTB) in the transformer encoder to
extract both coarse and fine information to facilitate efficient de-
noising. We use a convolutional decoder to get the final prediction.
Fine Context Transformer Branch: To extract fine-
detailed information from the input image, CNN-based
methods like [45, 53] project the features to a high spatial
resolution. Inspired by these works, we apply the same pro-
cess on the self-attention features to extract fine-details. We
use three transformer blocks in this branch with upsampling
in between every transformer block. Performing self atten-
tion in a high spatial resolution latent space helps in attend-
ing to smaller information as the feature space . Upsam-
pling here is done using bilinear interpolation.
Coarse Context Transformer Branch: We use a generic
fine-to-coarse transformer branch to extract global features.
In this branch, we forward the input image through a series
of transformer and downsampling blocks.
Transformer Block: Each transformer block is equipped
with multi-head self-attention layers and feed forward net-
works to calculate the self-attention features. The feed for-
ward process inside a transformer block can be summarized
as, T (I) = FFN(MSA(I)+ I), where T () represents the
transformer block, FFN() represents the feed forward net-
work block, MSA() represents multi head self-attention,
I is the input. Similar to the original self-attention net-
work, the heads of queries (Q), keys (K) and values (V )
have same dimensions and the self-attention is calculated
as:

Attn(Q,K, V ) = softmax
(
QKT

√
d

)
V, (4)

where d represents the dimensionality. We use multiple at-
tention heads in each transformer block and that number
is a hyper-parameter which we vary across each stage in
the transformer encoder. More details regarding the hyper-
parameter settings can be found in the supplementary doc-
ument. The self-attention features are then passed to a FFN
block. In the FFN block, we use depth-wise convolution
to MLP inspired from [26, 47, 49]. Using depth-wise con-
volution here helps bring locality information and provides
positional information for transformers as shown in [49].
The computation in the FFN block can be summarized as
follows:
FFN(A) = MLP (GELU(DWC(MLP (A)))) +A,

where A corresponds to the self-attention features, DWC is
depth-wise convolution [9], GELU is Gaussian error linear
units [19], and MLP is multi-layer perceptron.
Decoder: We use a convolutional decoder with a series of
convolutional and upsampling layers to output the denoised

image. An overview of Den-T can be found in Figure 3.

4.2. Self-Supervision using GP

As we do not have the corresponding ground-truths for
the down-sampled images
{yd1 yd2 , yd3 , . . . , ydN}, we use GP to model the noise infor-
mation between the noisy down-sampled images. Specif-
ically, we use GP to generate the pseudo-GT’s and use
them for supervision. The primary intuition behind the
pseudo-GT generation is to formulate a joint relation be-
tween {yd1 yd2 , yd3 , . . . , ydN}, as they share same image prop-
erties and the corresponding input down-sampled images
share the same noise distribution. This motivates us to
formulate a learnable joint Gaussian distribution between
{ŷdi }Ni=1, and predict pseudo-GT for every down-sampled
image ydi using the denoised images of other down-sampled
images {x̂d

j}Ni ̸=j,j=1. In this way, we are learning a covari-
ance relation and also noise present in the down-sampled
images {ŷdi }Ni=1, to train the denoising network in a self-
supervised fasion.
Pseudo-GT: Given {yd1 yd2 , yd3 , . . . , ydN}, we forward them
through Den-T to obtain the corresponding intermedi-
ate vectors {zd1 zd2 , zd3 , . . . , zdN}. These intermediate vec-
tors are then passed through a decoder network and
inverse-shifted to obtain the corresponding denoised images
{x̂d

1 x̂
d
2, x̂

d
3, . . . , x̂

d
N}. The denoise function mappings be-

tween ydi and x̂d
i , i.e x̂d

i = f(ydi ), ∀i = 1, 2, 3, . . . , N
can be modelled using GP by formulating a joint Gaus-
sian distribution between these function mappings of down-
sampled images. Assuming these function mappingf(.)
form a Gaussian process (GP) which is an infinite collec-
tion of functions of which any finite subset of these function
mappings form a jointly Gaussian distribution. Then joint
Gaussian distribution for function f(.) mappings of down-
sampled images is formulated as follows:

f(yd1)
f(yd2)
. . .
f(ydN )

 ∼ GP




µd
1

µd
2

. . .
µd

N

 ,


κ
(
zd1 , z

d
1

)
κ
(
zd1 , z

d
2

)
. . . κ

(
zd1 , z

d
N

)
κ
(
zd2 , z

d
1

)
κ
(
zd2 , z

d
2

)
. . . κ

(
zd2 , z

d
N

)
...

...
. . .

...
κ
(
zdN , zd1

)
κ
(
zdN , zd2

)
. . . κ

(
zdN , zdN

)
+ σ2

ϵ I

 . (5)

Here, I denotes identity matrix and σ2
ϵ denotes the learnable

additive variance. We denote this joint distribution as:
P (f(yd)) ∼ GP(µd,K(Zd, Zd) + σ2

ϵ I), (6)
where, µd function value obtained using GP, and K(., .)
is the learnable kernel function that defines the covariance
relation among down-sampled images. K(., .) is Rational
quadratic (RQ[.]) based kernel function defined as follows,

K(Zd, Zd)p,q = κ
(
zdp , z

d
q

)
= α2

(
1 +

||zdp − zdq ||22
β2

)−0.5

(7)
Note that α, β, and σϵ are learnable parameters which
help in learning the covariance relation among the down-
sampled images.

Here, Z is constructed using the intermediate latent vec-
tors, i.e Z = {zdi }Ni=1. We use Z in order to compute
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covariance since intermediate latent vectors zd’s are more
informative than yd’s. Let, Y be a set of all down-sampled
images generated from y, i.e Y = {ydi }Ni=1, and X̂ be a
set of the corresponding function values, i.e X̂ = {x̂d

i }Ni=1.
We define Y c

j as a set of all down-sampled image exclud-
ing ydj , i.e Y c

j = {ydi : i = [1, N ] and i ̸= j}, similarly
X̂c

j = {x̂d
i : i = [1, N ] and i ̸= j}. Likewise, we define

Zc
j as a set of all intermediate vectors of the down-sampled

images excluding zdj , i.e Zc
j = {zdi : i = [1, N ] and i ̸= j}.

Using the joint distribution in Eq. 6, we can obtain condi-
tional distribution for f(ydj ) as the following Gaussain dis-
tribution given Y , Z and X̂c

j ,
P (f(ydj )|Y,Z, X̂c

j ) = N (µd
j ,Σ

d
j ), (8)

where
µd

j = K
(
zdj , Z

c
j

) [
K
(
Zc
j , Z

c
j

)
+ σ2

ϵ I
]−1

X̂c
j ,

Σd
j = K

(
zdj , z

d
j

)
−K

(
zdj , Z

c
j

) [
K
(
Zc
j , Z

c
j

)
+ σ2

ϵ I
]−1

K
(
Zc
j , z

d
j

)
+ σ2

ϵ I.
(9)

We use µd
j computed using GP in Eq. 9 as pseudo-

GT (x̂d
j,pseudo) for the down-sampled image ydj . For

every down-sampled image generated using input image
y, we compute network’s denoised down-sampled image
x̂d
j,pred = Inv(h(g(ydj , θe), θd)) = f(ydj , θ) and pseudo-

GT (x̂d
j,pseudo) computed using GP (here Inv(.) represents

the inverse-cyclical shifting fuction). Finally, we minimize
the L2-error between x̂d

j,pred and x̂d
j,pseudo to update the

network weights (θ), hence incorporating the modeled joint
distribution between down-sampled images that helps learn-
ing the noise information to perform image denoising. Fur-
ther, we gate the L2-error between x̂d

j,pred and x̂d
j,pseudo

with the inverse of the computed variance Σd
j in order to

obtain more accurate predictions. This gating ensures that
lesser importance is given to the uncertain predictions while
learning the network weights. Additionally, we minimize
the variance that helps GP model to learn the joint distribu-
tion more accurately, and obtain accurate pseudo-GT labels.
The proposed GP based loss on the down-sampled images
is as follows,
LGP = − logP

(
µd

yj
− f(ydj ) | Y, Z, X̂c

j

)
= 1

N

∑N
j=1

1

|Σd
j |

∥∥∥x̂d
j,pred − x̂d

j,pseudo

∥∥∥2
2
+ log

∣∣∣Σd
j

∣∣∣ .
(10)

L2-norm loss: Motivated by the loss proposed in
Noise2Noise [25] and Haug et al. [20], we use the following
objective function LM to exploit the down-sampled image
pairs:

LM = 1
N(N−1)

∑N
j=1

∑
i=[1,N ],i̸=j

∥∥∥(x̂d
j,pred − Inv(ydi )

)∥∥∥2
2

(11)
here, Inv(.) represents inverse-cyclical shift function.

Total loss: The overall loss function used for training the
SST-GP is defined as follows,

Ltotal = LM + λGPLGP, (12)
where λGP is a predefined weight that is set equal to 0.03.
We provide an ablation study for λGP in the supplementary
document. In our experiments, we use values for LM in the
order of 10−3 and the values of LGP in the order of 10−1.

4.3. Implementation details

We train our SST-GP network using Ltotal with Den-T
as base denoising network. We use Adam optimizer with
a learning rate of 0.0002 and batch-size of 4 to train SST-
GP for a total of 60 epochs. We decrease the learning rate
by a factor of 0.5 for every 25 epochs. During training,
the images are randomly cropped to the size of 256 × 256.
We set λGP = 0.03, cell size k = 2 in generating down-
sampled images using [20]. We shift each down-sampled
cyclical for 4 times, so N = 8 for every noisy image y.
Pseudo algorithm for training the SST-GP are provided in
the supplementary document.

5. Experiments and Results
In this section, we provide the results of various exper-

iments conducted to demonstrate the effectiveness of the
proposed approach. In addition, we also provide a com-
parison of the proposed method with existing methods on
both synthetic and real-world noisy datasets.

5.1. Dataset details

Synthetic datasets: For training SST-GP to perform ex-
periments using synthetic sRGB space, we use 50k clean
images from the validation dataset of ImageNet [12]. Crops
of 256× 256 are obtained from these 50k clean images and
used to generate noisy images by adding the following 4
different noise levels: (i) Gaussian noise with fixed stan-
dard deviation σ = 25, (ii) Gaussian noise with varied noise
level, σ = [5, 50], (iii) Poisson noise with fixed λ = 30, and
(iv) Poisson noise with λ = [5, 50]. Note that these σ, λ val-
ues correspond to pixel intensities in the range of [0, 255].
Synthetic test sets are created using the clean images from
Kodak [14], BSD [34], and Set-14 [54] datasets.
Real datasets: Authors of SIDD [1] collected real-world
noisy images of 10 static scenes using 5 smart phone cam-
eras in different lighting conditions. The authors grouped
the collected images into SIDD Medium Dataset for train-
ing, and use SIDD Validation and Benchmark Dataset in
RAW formats. Following the same protocol, we use the
SIDD Medium training Dataset to train SST-GP, and use
the Validation and Benchmark Datasets for evaluation and
comparisons.

5.2. Comparisons on synthetic test data

We use PSNR and SSIM to compare SST-GP against
the state-of-the-art (SOTA) methods. We train all the net-
works using ImageNet [12] following the steps mentioned
in the respective SOTA methods. We denote Laine19 [23]
with probabilistic post-processing as Laine-pme, and with-
out as Laine-mu. Table 1 shows comparisons on synthetic
Gaussian noise test sets, where our proposed method signif-
icantly outperforms the previous methods. Table 2 shows
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Table 1. PSNR/SSIM comparisons on synthetic test sets created using Gaussian noise. Higher number represents better performance.
Type of
Noise

Dataset N2C [39] N2N [25] CBM3D [11] DIP [43] N2V [21] Laine19-mu [23] Laine19-pme [23] DBSN [48] Huang et al. [20]
SST-GP
(ours)

Den-T w/ GP
oracle (ours)

Gaussian
σ = 25

Kodak 32.43/0.884 32.41/0.884 31.87/0.868 27.20/0.720 30.32/0.821 30.62/0.840 32.40/0.883 31.64/0.856 32.08/0.879 32.75/0.898 32.98/0.910
BSD 31.05/0.879 31.04/0.878 30.48/0.861 26.38/0.708 29.34/0.824 28.62/0.803 30.99/0.877 29.80/0.839 30.79/0.873 31.18/0.880 31.44/0.900
Set-14 31.40/0.869 31.37/0.868 30.88/0.854 27.16/0.758 28.84/0.802 29.93/0.830 31.36/0.866 30.63/0.846 31.09/0.864 31.68/0.872 31.96/0.896

Gaussian
σ = [5, 50]

Kodak 32.51/0.875 32.50/0.875 32.02/0.860 26.97/0.713 30.44/0.806 30.52/0.833 32.40/0.870 30.38/0.826 32.10/0.870 31.78/0.880 32.01/0.913
BSD 31.07/0.866 31.07/0.866 30.56/0.847 25.89/0.687 29.31/0.801 28.43/0.794 30.95/0.861 28.43/0.788 30.73/0.861 31.12/0.869 31.36/0.876
Set-14 31.41/0.863 31.39/0.863 30.94/0.849 26.61/0.738 29.01/0.792 29.71/0.822 31.21/0.855 29.49/0.814 31.05/0.858 31.38/0.871 31.56/0.886

Table 2. PSNR/SSIM comparisons on synthetic test sets created using Poisson noise. Higher number represents better performance.
Type of
Noise

Dataset N2C [39] N2N [25] Anscombe [32] DIP [43] N2V [21] Laine19-mu [23] Laine19-pme [23] DBSN [48] Huang et al. [20]
SST-GP
(ours)

Den-T w/ GP
oracle(ours)

Poisson
λ = 30

Kodak 31.78/0.876 31.77/0.876 30.53/0.856 27.01/0.716 28.90/0.788 30.19/0.833 31.67/0.874 30.07/0.827 31.44/0.870 31.99/0.879 32.16/0.884
BSD 30.36/0.868 30.35/0.868 29.18/0.842 26.07/0.698 28.46/0.798 28.25/0.794 30.25/0.866 28.19/0.790 30.10/0.863 30.84/0.897 31.04/0.910
Set-14 30.57/0.858 30.56/0.857 29.44/0.837 26.58/0.739 27.73/0.774 29.35/0.820 30.47/0.855 29.16/0.814 30.29/0.853 30.87/0.867 31.14/0.881

Posisson
λ = [5, 50]

Kodak 31.19/0.861 31.18/0.861 29.40/0.836 26.56/0.710 28.78/0.758 29.76/0.820 30.88/0.850 29.60/0.811 30.86/0.855 31.39/0.872 31.61/0.897
BSD 29.79/0.848 29.56/0.848 28.22/0.815 25.44/0.671 27.92/0.766 27.89/0.778 29.57/0.841 27.81/0.771 29.54/0.843 29.96/0.853 30.22/0.871
Set-14 30.02/0.842 30.02/0.842 28.51/0.817 25.72/0.683 27.43/0.745 28.94/0.808 28.65/0.785 28.72/0.800 29.79/0.838 30.22/0.848 30.56/0.867

comparison of the proposed method with several recent im-
age denoising approaches [20,23,25,39,43,48] on synthetic
Posisson noise test sets. Since the proposed method relies
on multiple down-sampled images and uses GP to perform
pseudo-label based supervision, it is able to achieve bet-
ter results as compared to the other methods by a signif-
icant margin. Note that in Table 1 and Table 2, we also
include the oracle performance i.e. when Den-T trained in
a fully-supervised manner with pairs noisy-clean images
along with proposed GP loss LGP . Figure 4 illustrates sam-
ple denoising results of SST-GP along with recent methods.
It can be observed that the results of our method is more
clearer and sharper compared to the predictions of other
methods [20, 23, 25, 39]. More quantitative comparisons on
other self-supervised methods [37, 50] are provided in sup-
plementary material.
5.3. Comparisons on real test data

We use SIDD [1] dataset to compare the performance of
SST-GP against other methods. We train all the networks
using SIDD Medium training dataset images, and follow
the steps mentioned in the respective SOTA methods. As
BM3D [11] requires prior information to denoise, we use
Anscombe for Poisson to estimate the priors. Results corre-
sponding to this experiment are shown in Table 3 and Fig-
ure 5 where we obtain a better performance compared to
other methods. In contrast to other methods [20,23,25,39],
we used down-sampled images and modelled joint distribu-
tion using GP, that helped the proposed SST-GP outperform
the other methods by a significant margin and it is able to
produce sharper images than the other methods. Note that
in Table 3, we also present the oracle performance i.e. when
Den-T trained in fully-supervised manner with pairs noisy-
clean images and GP loss LGP . Additionally, we compare
our method with SS-GMM, that computes noise character-
istics in self-supervised way and uses EPLL [60] to denoise
the image.
5.4. Ablation Study

Impact of using Den-T: To prove that Den-T is better than
CNN-based architectures, we train both U-Net and Den-T

0https://github.com/AbdoKamel/simple-camera-pipeline

in a fully-supervised way using the pairs of noisy-clean im-
ages with same losses (L2 and the proposed GP based loss
LGP ). In Table 4, we can see that Den-T outperforms U-
Net even while trained in a similar fully-supervised fashion
with comparably less number of parameters. Additionally
in Table 4, we compare computational complexity of Den-
T using Giga Multiply Accumulate(GMacs) operations per
second.
Impact of LGP: In Table 4, it can be observed that us-
ing LGP significantly improved the performance of both
U-Net and Den-T by ∼ 0.4dB while trained in a fully-
supervised. The main reason for this improvement is that
proposed pseudo-GT based GP approach learns the rela-
tion between the down-sampled images and updates the net-
works using LGP .
Impact of GP based self-supervision: We train both U-
Net and Den-T in self-supervised manner using only noisy
images with LM , we achieved 30.62dB annd 30.76dB in
PSNR for BSD test test with Gaussian noise(σ = 25). In
Table 4, we can observe that the proposed self-supervised
technique, i.e learning the joint relation between down-
sampled using GP and updating network weights using
LGP improves the performance of both U-Net and Den-T
by ∼ 0.42dB.
Impact of dual branches in Den-T: we conduct experi-
ments with and without FTB and CTB branches to under-
stand the contributions of individual branches. From Ta-
ble 5, we can observe that using both branches together help
us get a better performance.

Additionally, we compare the performance of Den-T
with existing state-of-the-art transformer based denoising
networks like SwinIR [27], and Uformer [46]. In Table 5,
we can observe that Den-T outperforms Swin-IR [27], and
Uformer [46].
5.5. Limitations

Training time of SST-GP with LGP is 1.5 times slower
when compared to training time of Den-T with L2−norm,
since LGP involves matrix multiplication for computing µ
and Σ (refer Eq. 9). Table 6 shows that Den-T w/ GP re-
quires higher memory during training, this is due to two
reasons: (i) matrix multiplication for computing µ and Σ
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Noisy Image N2C N2N Huang et al. Laine19-pme SST-GP Ground-Truth
Figure 4. comparions on noisy images, first row: Gaussian noise σ = 25, second row: Poisson noise λ = 30.

Table 3. PSNR/SSIM comparisons on real-world noise dataset SIDD [1] (Benchmark and validation). Higher number represents better
performance.

Methods N2C [39] N2N [25] BM3D [11] N2V [21]
Laine19-mu

[23](Poisson) DBSN [48]
Huang et al.

[20] SS-GMM [29]
SST-GP
(ours)

Oracle
(ours)

Network U-Net U-Net – U-Net U-Net DBSN RRGs – Den-T w/ GP Den-T w/ GP
Benchmark 50.60/0.991 50.62/0.991 48.60/0.986 48.01/0.983 50.28/0.989 49.56/0.987 50.76/0.991 48.22/0.984 50.87/0.992 51.00/0.994
Vaidation 51.19/0.991 51.21/0.991 48.92/0.986 48.55/0.984 50.89/0.990 50.13/0.988 51.39/0.991 49.84/0.987 51.57/0.992 51.68/0.994

Noisy Image N2C N2N Huanget al. Laine19-pme SS-GMM SST-GP(ours)
Figure 5. Comparisons on real-world noisy images from the SIDD Benchmark in RAW formats. For display purpose we use the code
provided by the authors of SIDD1to convert images from raw format to srgb.

Table 4. PSNR/SSIM comparisons for ablation study of LGP using BSD test set.

Dataset Method Fully-supervised Self-supervised
U-Net U-Net w/ GP Den-T Den-T w/ GP U-Net U-Net w/ GP Den-T Den-T w/ GP

Loss L2 L2+LGP L2 L2+LGP LM LM + LGP LM LM + LGP

BSD Gaussian σ = 25 30.96/0.878 31.22/0.881 31.09/0.887 31.44/0.900 30.62/0.869 30.94/0.877 30.76/0.878 31.18/0.884
Poisson σ = 30 30.35/0.868 30.84/0.887 30.61/0.903 31.04/0.910 30.11/0.859 30.67/0.880 30.41/0.886 30.84/0.897

Parameters (Miliion) 31 31 24 24 31 31 24 24
GMacs(Million) 55.8 61.6 16.0 20.5 55.8 61.6 16.0 20.5

in GP, and (ii) In FTB we are upsampling features to higher
resolutions.

6. Conclusion
In this work, we proposed a new method: Self-

Supervised Transformer with Gaussian Process (SST-GP)
for image denoising. We proposed a new self-supervised
technique where given a noisy image, we generate
multiple cyclically shifted noisy down-sampled images
and model a joint distribution between them using GP.
We also introduced a denoising transformer (Den-T)

which is a dual-branch network architecture to ex-
tract both coarse and fine details to perform denoising.
Table 5. PSNR/SSIM comparisons for ablation study of Den-T
using Kodak testset.

Dataset Method SwinIR [27] Uformer [46]
Den-T w/o FTB
w / L2 +LGP

Den-T w/o CTB
w / L2 + LGP

Den-T
w / L2 +LGP

Kodak Gaussian σ = 25 32.89 32.75 32.64 32.69 32.98
Poisson σ = 30 32.10 32.07 32.03 32.01 32.16

Table 6. GMacs comparison for image size 256× 256.
Method U-Net U-Net w/GP Den-T Den-T w/ GP
GMacs 9.38 12.75 16.02 20.49
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