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Abstract

Existing machine learning research has achieved
promising results in monaural audio-visual separation
(MAVS). However, most MAVS methods purely consider
what the sound source is, not where it is located. This can
be a problem in VR/AR scenarios, where listeners need to be
able to distinguish between similar audio sources located
in different directions. To address this limitation, we have
generalized MAVS to spatial audio separation and proposed
LAVSS: a location-guided audio-visual spatial audio sepa-
rator. LAVSS is inspired by the correlation between spa-
tial audio and visual location. We introduce the phase dif-
ference carried by binaural audio as spatial cues, and we
utilize positional representations of sounding objects as ad-
ditional modality guidance. We also leverage multi-level
cross-modal attention to perform visual-positional collab-
oration with audio features. In addition, we adopt a pre-
trained monaural separator to transfer knowledge from
rich mono sounds to boost spatial audio separation. This
exploits the correlation between monaural and binaural
channels. Experiments on the FAIR-Play dataset demon-
strate the superiority of the proposed LAVSS over existing
benchmarks of audio-visual separation. Our project page:
https://yyx666660.github.io/LAVSS/.

1. Introduction

Auditory and visual characteristics can convey important
semantic and spatial information, which plays a crucial role
in audio-visual separation [76]. The well-known cocktail
party problem [2] is a classical task of sound source separa-
tion [11,56,71] and localization [45,46]. It aims at separat-
ing the target source audio from the given audio mixture. A
popular line of work for audio-visual separation is to encode
visual information as guidance for resolving sound ambigu-
ity from mixed audio sources [66, 73, 77]. For instance, lip
motion [14,30] and facial expression [26] information were
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Figure 1. Our LAVSS can separate individual binaural sounds for
sounding objects (piano and guitar) from a binaural audio mixture.

applied to separate speech sounds from different speakers.
Motion [70, 78] and gesture [9] appearance features were
exploited to guide music sound separation. Other meth-
ods utilize instrument category [4, 13] or multimodal atten-
tion [5, 59, 60] to leverage the association between visual
and audio modalities.

Predominant audio-visual separation (AVS) methods
have typically been designed for monaural audio-visual
separation (MAVS). However, scenarios limited to single-
channel audio lack the capacity for perceiving 3D visual
scenes accompanied by spatial audio. Although being at-
tempted earlier in [12], researches on audio-visual spatial
audio separation (AVSS) (see Fig. 1) are highly limited. For
example, audiences can discern the orientation of the piano
and guitar since they hear the mixed spatial audio with vary-
ing acoustic intensities for each ear [12]. Unlike MAVS,
AVSS provides listeners with a more immersive perceptual
experience, thus making it a novel and challenging task.

Existing spatial audio-visual works have mainly focused
on spatial audio generation [12, 29, 39, 67]. This involves
converting standard monaural audio into binaural or am-
bisonic sounds. Sep-stereo [74] regards MAVS as a specific
case of binaural audio reconstruction at the cost of artifi-
cially rearranging visual information. However, these meth-
ods lack sufficient audio-visual modeling and still exhibit a
domain gap when it comes to spatial audio separation.

In this paper, we address the audio-visual spatial audio
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separation task by simultaneously considering what and
where the sounding object is. In an effort to overcome
current limitations, we introduce a new Location-Guided
Audio-Visual Spatial Audio Separation (LAVSS) method.
We first detect sounding objects to obtain regional visual
embeddings (what). Then we encode the spatial location of
the sounding objects explicitly. The positional embeddings
can be another guidance to reveal the spatial information
(where), which benefits separating individual audio in dif-
ferent directions. How does this correspond to audio? Since
binaural audio carries spatial information cues, we consider
the inter-microphone phase difference (IPD) [63,64], which
is commonly used in multi-microphone speech segregation
and separation [41, 52, 68]. The IPD information repre-
sents the established spatial feature between the left and
right channel. We force the network to learn the synchro-
nization and correlation between the spectra-spatial audio
feature and the visual-positional representations. Moreover,
we propose a multi-scale attention-based fusion network to
integrate the visual, positional, and audio features. All con-
stituent modalities work in concert to benefit AVSS.

Additionally, to leverage the correlation between monau-
ral and binaural channels, we employ a pre-trained separa-
tor. This aids in the knowledge transfer from rich mono
sounds, thereby enhancing spatial audio separation. By uti-
lizing the extensive video data with monaural sounds avail-
able in the MUSIC-21 dataset, we accomplish effective pre-
training. Experiments on the binaural FAIR-Play dataset
can validate the efficacy of LAVSS. It achieves state-of-
the-art performance, particularly in scenarios where similar
acoustic sources are positioned in different directions.

Our contributions are as follows: i) We put forward a
multi-modal framework to address the AVSS task. ii) We
take advantage of the correlation between the IPD and po-
sitional features, which respectively represent the spatial
properties of binaural audio and the explicit location cues of
the sounding objects. iii) We pre-train the separator on an
external mono dataset to facilitate AVSS network learning
by leveraging the correlation between monaural and binau-
ral channels. iv) Experiments demonstrate the superior im-
provement and generalizability of our LAVSS over state-of-
the-art audio-visual separation approaches.

2. Related Work
Audio-Visual Learning Audio-visual learning has
gained considerable interest in recent years, with re-
searchers achieving promising results in a variety of fields.
These include self-supervised learning [6, 10, 42], audio-
visual speech recognition [21,22,30,40,48], visually guided
spatial audio generation [12,29,67,74], audio-visual speech
and music separation [11, 26, 58, 71] and localization [44,
55, 57, 65, 72], as well as environment acoustics learn-
ing [28, 31, 35]. Unlike these prior works, we make the

first attempt to tackle audio-visual spatial audio separation
by incorporating visual positional features as an additional
modality and employing the cross-modal attention.

Audio-Visual Source Separation Sound source separa-
tion is a crucial part of speech front-end research and music
processing. Traditional signal processing methods usually
exploit filtering to strengthen source separation [1,7,16,25,
54,62] and localization [45,46]. Machine learning methods
like end-to-end speech separation [18, 32, 33] aim at per-
forming waveform transformation in the time domain. The
well-known cocktail party problem [2] is a classical task
of sound source separation [11, 56, 71]. Recently the self-
supervised visually guided audio-visual source separation
has obtained significant attention [13,56,66,71,73,77]. For
one aspect, most works exploit appearance features as vi-
sual guidance. From the whole image frame [11, 71] to de-
tected sounding object regions [13, 56], these works focus
on how to obtain precise visual features. Other visual ap-
pearances such as motion [70], gestures [9,49] are exploited
to capture the body movement postures of players. Recent
works regard the human and instruments as nodes to build
the graph relationships between them [3, 4]. For another
aspect, some researchers optimize the architecture of the
separation network [56, 66, 77] and try to fuse visual-audio
modality in an effective manner [73]. For recent studies, vi-
sion transformers [5,38,49,78] and attentions [6,59,60] are
widely used in multi-modal collaboration. From 2D to 3D,
active sound separation [34, 36] for AR/VR scenarios has
become promising future research. However, methods ba-
sically conducted for mono audios have limited capabilities
with spatial ones in real scenarios. Different from MAVS
approaches, we propose to relate spatial cues of audio and
sounding objects to resolve AVSS.

Audio-Visual Spatial Audio Generation Audio-visual
cross-modality generation aims to generate audio from vi-
sual signals [8,10,12,19,24,29,69,75]. For instance, Zhou
et al. [75] utilize the synchronization of visual cues and
encoders to generate natural sound for videos in the wild.
Zhou et al. [10] and Gao et al. [12] adopt a U-Net to encode
monaural input and decode binaural counterpart through vi-
sual guidance at the bottleneck. Sep-stereo [74] put forward
an associative pyramid structure to better fuse audio and vi-
sual modalities for generation stereo. Other methods [8,24]
generates audio samples conditioned on text inputs, motion
key points, and position information [15, 43], respectively.
Other works concentrate on 360° audio generation and spa-
tialization. Scene-aware audio [27] can be converted from
a single-channel microphone and transformed into spatial
audio. Morgado et al. [39] take real spatial audio as self-
supervision for ambisonic audio generation. Different from
these works, our main focus lies in spatial audio separation.
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Figure 2. An overview of the proposed architecture. Video pre-processing includes object detection and source mixing. Vision extraction
network encodes the visual regions of detected objects; position network simultaneously encodes regional coordination features; VP Cross
Attention module aggregates visual and positional representations; sound separation network exploits the fused feature as guidance to
separate binaural sounds. Note that all the operations are depicted for only one video (piano), the other remains the same during training.

3. Proposed Method
3.1. Overview

Given an unlabeled video segment V and its correspond-
ing spatial audios xL(t) and xR(t), the detected audible
objects are defined as O = {O1, ..., ON} for each video
frame. Our spatial audio separation task aims to separate
the individual audio of each sounding object from the mixed
audio: xL(t) =

∑N
n=1 x

L
n(t), x

R(t) =
∑N

n=1 x
R
n (t), where

xL
n(t) and xR

n (t) represent the time signals received at both
ears of corresponding object sources.

As depicted in Fig. 2, our LAVSS training architecture
consists of four parts: the video pre-processing module, a
vision and position network, and a multi-modal sound sep-
aration backbone. During video pre-processing, we utilize
two sets of solo videos and their synchronized spatial au-
dios {V1, x1(t)}, {V2, x2(t)} with sounding objects O1, O2

in both videos [56], we artificially mix two binaural sounds:
xL
m(t) = xL

1 (t) + xL
2 (t), x

R
m(t) = xR

1 (t) + xR
2 (t). Then

we perform object detection to obtain the object bounding
boxes and the corresponding coordinates of the objects. The
vision network encodes the detected objects to produce vi-
sual features. For the position network, we conduct posi-
tional encoding for each pixel in the visual object region.
The visual and positional features represent the semantic
and spatial information of the sounding object, respectively.
Both features are mapped into a common embedding space
and performed attention-based fusion.

The binaural audio mixture is transformed into the time-
frequency domain and passed to an encoder-decoder sound
separation network, which is pre-trained on an external
monaural dataset. We creatively introduce the inherent IPD

between the left and right channels for spatial audio sep-
aration. The IPD feature and magnitude spectra are con-
catenated to leverage both spatial and spectral cues of au-
dio, which correspond to the visual and positional features
of the object. All features are fused through a multi-scale
attention-based fusion module and transformed into time-
discrete space. Finally, we obtain the estimated binaural
audios x̂L

n(t), x̂
R
n (t) of individual objects. More details of

our LAVSS are provided in the supplementary material.

3.2. Vision-Position Embedding Framework

Vision network In order to precisely localize the audi-
ble objects, we choose the widely used detector Faster R-
CNN [51] trained on labeled Open Images dataset [23] used
in [13,56]. All potential objects P = {P1, ..., PN} for each
video are detected. Given a video frame V , detections of all
objects consist of four items {(Mn

V , C
n
V , P

n
V , B

n
V )}

N
n=1 =

FRCNN (V ), which represent the frame index M , instru-
ment category C ∈ C, detection confidence probability P
and bounding box B for each detected object. Then we
screen out one object with the highest confidence score
among all detected ones as the audible object for each solo
video frame (top two for duet video).

The visual image region for the selected object is of
size 3 × Hb × Wb, where Hb,Wb denote the height and
width of the detected bounding box. For visual feature
extraction, objects are resized and passed to a pre-trained
ResNet-18 [20] network. We obtain the visual embedding
Fv ∈ RCv×H×W before the last fully-connected layer,
where H

′

b,W
′

b represent the resized image shape. H =

H
′

b/32,W = W
′

b/32, Cv = 512 denote the feature map
size and channel dimension of Fv , respectively.
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(a) VP Cross-attention module (b) Multi-Scale Audio Fusion Network

Figure 3. Two basic blocks of multi-attention modules. (a) VP Cross-Attention, in which the vectors of visual and positional features are
integrated through Cross-Modal Attention (CMA) block; (b) The architecture of multi-scale audio fusion network, which consists of the
multi-scale fusion, VP/AVP cross-attention modules to introduce the interactions between vision, position and audio modalities.

Position network Going beyond the general MAVS strat-
egy, one of the critical innovations of our method is special-
izing in spatial audio separation. Specifically, we leverage
positional representations as a new constituent modality and
demonstrate the association with spatial distribution embed-
ded in spatial audio. Inspired by the positional encoding
in Transformer [61] and NeRF [37], we consider how to
encode positional representations of audible object regions
into a higher dimensional space. We leverage a 2D posi-
tional encoding for spatial coordinates of detected objects,
thus forcing our positional network to approximate a higher
frequency function and guide spatial audio separation. Here
the function γ(·) represents a mapping function from low-
dimensional space into a higher one,

γ(x, y) =
(
sin(20πx), cos(20πx), sin(20πy), cos(20πy), . . . ,

sin(2D−1πx), cos(2D−1πx), sin(2D−1πy), cos(2D−1πy))
(1)

This sinusoidal function is applied simultaneously to 2D co-
ordination in (x,y) (which are normalized to range [−1, 1]
[37]) for expanding to higher dimensions via gamma en-
coding. In our experiments, we set D = 16 for γ(x, y) to
encode each pixel in the detected object region relative to
the whole video frames of size 1280× 720. Then we obtain
a tensor of size Ce×Hb×Wb by Eq. (1), where Ce = 64 de-
notes the dimension of the encoded positional embedding.
For position feature extraction, the encoded features are per-
formed adaptive max pooling followed by multi-layer per-
ception (MLP). Finally, the positional feature is converted
to Fp ∈ RCp×H×W , where Cp is equal to the vision feature
dimension Cv in the previous section.

VP Cross Attention Module For multi-modal modeling,
the VP cross-attention module is implemented to integrate
the visual and spatial position embeddings. As illustrated in

Fig. 3 (a), the VP Cross-Attention module is composed of a
CMA block and a convolutional layer. For instance, given
an input query M ∈ RHm×Wm×D and N ∈ RHn×Wn×D,
CMA(M,N,N) performs cross-modal attention over the
first and second axes of N , yielding an output tensor of
shape Hm ×Wm ×D,

α = LN(MHA(MQ, NK , NV ) +M)

CMA(M,N,N) = LN(FFN(α) + α)
(2)

where MQ is the query vector of M , NK , NV are key
and value vectors of N . MHA, FFN , LN denote the
multi-head attention, feed-forward layer, and layer normal-
ization, respectively. The Fv and Fp are first passed to
the CMA block. Then the visual-positional feature Fvp ∈
RCvp×H×W can be obtained after a convolutional layer to
halve the channel dimension. The core part of the module
is given by,

Fvp = Conv(CMA(Fv, Fp, Fp)⊕ CMA(Fp, Fv, Fv)) (3)

where ⊕ and Conv denote the concatenate operation and
point-wise convolution, respectively.

3.3. Multi-modal Sound Source Separation

Audio Embedding Network We follow the widely
used mix-and-separate [71] method and manually mix two
video sounds. The time-discrete binaural audio waveform
xL
m(t), xR

m(t) are first converted to time-frequency spectro-
grams XL

m, XR
m through STFT [17] transform. Several pre-

vious MAVS works [13, 56, 71] take only log power spec-
tra as the input of the network. In terms of spatial audio,
sound source locations are determined by time differences
between the sound sources reaching each ear [12,50], which
can be measured by the inter-microphone phase difference
(IPD) between the left and right channels. IPD increases the
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feature discrimination of location information and indicates
the spatial acoustic characteristics of the room. Alterna-
tively, it reveals the different directions of the same sound-
ing objects. The IPD can be calculated as follows,

IPD = cos(∠XL
m − ∠XR

m) (4)

where ∠ represents the phase angle of the complex spec-
trogram. One way of utilizing such multi-channel inputs is
to feed the network with both log power spectra and IPD
features [68]. We concatenate both features and obtain the
audio embedding of size 2×T ×F for each channel, where
T and F represent the time and frequency dimensions, re-
spectively. In this manner, the input of the sound separation
network contains both the acoustic spectra (what) and spa-
tial cues (where) carried by the binaural audio.

Then a U-Net [53] backbone is used for encoding the
composed spectrograms and IPD feature into semantic rep-
resentations. The architecture is composed of N down- and
up-convolutional layers followed by a BatchNorm layer and
Leaky ReLU. At the bottleneck, the multi-scale audio fu-
sion network performs multi-modal modeling over the au-
dio, vision, and position features. Note that the sound sep-
aration network parameters are shared across left and right
channels during training and testing.

Multi-Scale Audio Fusion Network To establish the re-
lationship between the spectra-spatial audio feature and the
visual-positional representations, we put forward a multi-
scale audio fusion network visualized in Fig. 3 (b). For
multi-scale feature fusion, three feature tensors FN−i

a (N =
7, i = 0, 1, 2) extracted by the last three down-sample con-
volutional layers are reshaped to Ca×QN−i

a by multiplying
the time and frequency dimension. Then fConcat(·) per-
forms concatenation along the query dimension to generate
audio queries Fa ∈ RCa×Qa ,

Fa = fConcat(F
N
a , FN−1

a , ..., FN−i
a ), i = 0, 1, 2 (5)

The audio feature Fa is fed into the AVP cross-attention
module to adaptively interact with the visual-positional fea-
ture Fvp. The output audio embedding Favp ∈ RCa×T

S ×F
S

(S denotes stride of audio feature map) is computed by

Favp = f2(CMA(Fa, Fvp, Fvp)⊕ f1(CMA(Fvp, Fa, Fa)))

(6)
where ⊕ is the concatenate operation, f1(·) denotes the one-
dimensional convolusion, f2(·) means dimensional expan-
sion and two-dimensional convolution operation. The fea-
ture vector Favp is regarded as guidance for audio separa-
tion and passed to the decoder up-sample layers of U-Net.
Finally, we obtain the predicted magnitude binary masks
M̂L

n ,M̂R
n , which are multiplied by the original mixture

spectrogram XL
m, XR

m to produce the final estimation of out-
put spectrograms. The estimated audios x̂L

n(t), x̂
R
n (t) are

obtained after ISTFT. More specifically,

x̂B
n (t) = ISTFT (M̂B

n ⊙XB
m)

MB
gt,n(u, v) = [XB

n (u, v) ≥ XB
m(u, v)]

(7)

where ⊙ denotes element-wise multiplication, (u, v) rep-
resents time-frequency dimension, B ∈ [L,R], n ∈ [1, 2]
(number of the objects). The ground truth of binary masks
MB

gt,n are created by the ratio between the source spectro-
grams XB

n and the mixture spectrograms XB
m.

Overall learning Objective We optimize our LAVSS
framework training objective by jointly minimizing a com-
bination of both frequency and time reconstruction losses.
For the frequency domain loss, we measure the linear com-
bination between the L1 and L2 losses over the predicted
ratio masks and ground-truth in Eq. (8). Furthermore, we
introduce the loss between the target audio xB

n (t) and re-
constructed audio x̂B

n (t) over the time domain. Formally,

Lfreq =

N∑
n=1

∑
B∈L,R

∥M̂B
n −MB

n ∥1 + α∥M̂B
n −MB

n ∥2

Ltime =

N∑
n=1

∑
B∈L,R

∥x̂B
n (t)− xB

n (t)∥1

Lbinaural = Lfreq + βLtime

(8)

3.4. Transfer learning by external monaural dataset

Due to the complexity of the binaural attributes, the
framework designed for spatial audio is complicated for
training directly. To alleviate this issue, we choose a widely
used mono dataset MIT MUSIC to perform transfer learn-
ing for two reasons. First, the binaural FAIR-Play dataset
contains much scarce training data due to the recording dif-
ficulty. In contrast, the MUSIC dataset includes more in-
strument categories and videos, which can mitigate the dif-
ficulty of AVSS and make the training more robust. Some of
the instrument types overlap, which makes the sound sep-
aration between similar acoustic characteristics mutually
beneficial. Second, considering the relationship between
mono and binaural audio, we can transfer knowledge from
rich mono sounds to boost spatial audio separation perfor-
mance. Thus, a pre-trained monaural separator is adopted
by training on the MAVS network backbone in [12].

Similar to the training process in Fig. 2, we pre-process
the videos in MUSIC dataset. Then we take the monau-
ral mixtures and detected RGB image regions into the U-
Net separation and visual network, respectively. Both fea-
tures are fused by multi-scale attention-based fusion at the
bottleneck. Note that the monaural audios do not possess
the spatial location information. The IPD and position fea-
ture will not be considered as input to the network. After
training, the separation network can be a good separator for
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most mixture audios of different instruments, which simul-
taneously alleviates network learning for training binaural
audios. Finally, we load pre-trained parameters both of the
U-Net separation and visual network as initial weights and
perform complete position-guided audio-visual separation
network training on the FAIR-Play dataset. More details of
pre-training are revealed in the supplementary material.

4. Experiment and Results

4.1. Experimental Settings

Datasets In our experiments, both monaural and spatial
datasets are used for training. To perform monaural sep-
arator pre-training, we use MUSIC dataset [71], which is
a commonly used dataset for MAVS. It contains 685 solo
and duet videos with 11 instrument categories: accordion,
acoustic guitar, cello, clarinet, erhu, flute, saxophone, trum-
pet, tuba, violin, and xylophone. We utilize 520 mono solo
videos and split them into train/val/test sets with 468/26/26
for pre-training.

For spatial audio separation, we use the FAIR-Play
dataset [12]. The instrument type contains cello, gui-
tar, drum, ukelele, harp, piano, trumpet, upright bass, and
banjo. We use 1039 10s solo videos with spatial audio dur-
ing training and testing. To evaluate the proposed LAVSS
model conditioned on the detected object coordination,
we randomly split it into train/val/test sets: 728/103/208.
Moreover, we evaluate the separation ability of LAVSS for
separating multiple sources. We take 418 duet videos to
perform testing as illustrated in Fig. 1.

Metrics To measure the quality of separation [47], we
adopt the widely-used mir eval library metrics: Signal-to-
Distortion Ratio (SDR) measures both interference and arti-
facts, Signal-to-Interference Ratio (SIR) measures interfer-
ence. Higher values indicate a better degree of separation.

Implementation Details We train our LAVSS frame-
work with the implementation of PyTorch. We re-sample
the audio at 11025Hz to get approximately 5.9s clip for each
video. Then we perform STFT frame length of size 1022
and hop length of 256 [12, 71] to convert the time domain
signal into 2D magnitude spectrogram of T, F = 256 after
re-sampling to a log-frequency scale. We set the frame rate
as 8fps and randomly select one frame per 5.9s video. We
resize and crop the detected bounding boxes to 224 × 224
as the input of the ResNet-18 network. The MLP consists
of two layers of 256, 512. All the attention modules are set
of 8 heads and 2 decoder layers. In Eq. (8) the α and β
are set to 0.5 and 0.25, respectively. We apply Adam op-
timizer with β1 = 0.9 and a weight decay of 1e-4. Since
the MAVS and AVSS tasks are mutually related, we need to
learn good initial models for AVSS. We start by pre-training

on the MUSIC dataset to train the vision and sound sep-
aration network. Secondly, we introduce the IPD feature
and co-learn the position network on FAIR-Play initialized
with the pre-trained weights. The evaluation details are il-
lustrated in the supplementary material.

4.2. Audio-Visual Sound Separation

Comparison with State-of-the-Art To evaluate the per-
formance of our LAVSS framework on audio-visual sound
separation, we compare it to two baselines most related
to binaural audio separation and generation: 2.5D Sepa-
ration [12] and Sep-Stereo [74], and recent state-of-the-art
methods: SoP [71], Co-separation [13], and CCoL [56].

Note that five methods are evaluated for fair compari-
son on the FAIR-Play binaural dataset (including audio pre-
processing) as ours. Since those methods are specialized in
MAVS, we take the left and right channels into the network
separately for training (after pre-training on the MUSIC)
and evaluation. The SDR and SIR quantitative analysis
are illustrated in Tab. 1. The results show that our LAVSS
model outperforms its closest competitor, Sep-Stereo [74],
by an obvious superiority of 0.65 dB on SDR and 2.82 dB
on SIR for binaural channels. Notably, our LAVSS boosts
the SDR and SIR metrics by 0.80dB and 1.23dB compared
to the most recent baseline CCoL [56]. The above MAVS
methods mainly utilize appearance-based visual informa-
tion, which cannot generalize to AVSS. In contrast, our
LAVSS simultaneously considers what and where the ob-
ject is, thus demonstrating competence for the AVSS task.

Method
Left Channel Right Channel Average

SDR↑ SIR↑ SDR↑ SIR↑ SDR↑ SIR↑

SoP [71] 3.98 7.03 3.96 6.99 3.97 7.01
2.5D [12] 4.44 8.20 4.47 8.26 4.45 8.23

Co-Sep [13] 4.61 7.93 4.64 8.00 4.63 7.97
Sep-Stereo [74] 5.27 7.34 5.31 7.40 5.26 7.37

CCoL [56] 5.05 8.89 5.17 9.02 5.11 8.96

LAVSS (Ours) 5.89 10.08 5.93 10.30 5.91 10.19

Table 1. Comparisons of methods for source separation results on
FAIR-Play test set. Higher is better for all metrics.

Models Cello Drum Guitar Harp Piano Trumpet
SoP -2.12 -1.88 -2.69 -1.77 -2.35 -1.78

2.5D-sep -0.93 0.86 -2.00 -1.49 0.35 -2.55
CCoL -1.75 -1.48 0.19 -0.55 -0.90 -0.54

Sep-Stereo -1.32 0.34 1.68 -0.41 1.38 0.73
mix-gt 0.58 0.25 0.67 0.47 1.17 1.51

LAVSS(ours) 1.53 2.67 3.72 1.83 3.13 3.12

Table 2. The average separation results for both channels of the
same instrument types from FAIR-Play in terms of SDR.
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Figure 4. A set of solo separation results on FAIR-Play test set. Predicted spectrograms of SOTA methods and LAVSS are depicted for
both channels. Red boxes illustrate the difference between the predicted spectrogram and the ground truth.

Figure 5. A set of duet separation results on FAIR-Play. Predicted spectrograms (cello and guitar) of SOTA methods and LAVSS are
depicted for both channels. Red boxes indicate a comparison of separation ability between LAVSS and benchmarks.

Separating Sources of the Same Type The source type
is one of the critical factors affecting the performance of the
separation. When two sounds have similar acoustic prop-
erties, separation becomes more complicated. In this case,
the appearance features can not provide useful cues regard-
ing similar images, while the location information guidance
is particularly critical. Consequently, we select instruments
of the same category from the FAIR-Play dataset and com-
pare the separation performance of LAVSS with the MAVS
methods. SoP [71] and CCoL [56] are mainly based on ap-
pearance guidance, 2.5D-sep [12], and Sep-Stereo [74] are
associated with binaural audio generation. Furthermore, we
illustrate a comparison result called ”mix-gt” to intuitively
measure the mix spectrogram with the ground truth.

Table 2 demonstrates the averaged SDR results of both
channels for cello, drum, guitar, harp, piano, and trum-
pet categories. The ”mix-gt” baseline shows relatively bet-
ter results in most cases, which indicates the challenges in
monaural appearance-based models for spatial audio sep-
aration. Our method outperforms all MAVS baselines for
all categories. The CCoL specifies the combinations of in-
struments selected for different types during training. The
Sep-Stereo artificially rearranges the visual images and ig-
nores the original location in the video frame. Fig. 6 shows
a case of separating the sound mixture of the same type in
different locations. Our method confirms that the relation-
ship between object position and spatial phase cues brings
significant improvement in separating similar sources.
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4.3. Ablation Study and Performace Verification

Ablations of modality configurations We conduct ab-
lation study to evaluate the effectiveness of IPD, position
representation, and monaural transfer learning. We choose
SoP and 2.5D-sep as baselines for verifying the versatility
on benchmark applications. Note that the fusion strategy in
Fig. 3 are applied for both baselines. Tab. 3 demonstrates
the best scores when all ablation variants are applied, which
confirms that the combined setup can be applied to any ex-
isting MAVS benchmarks to boost generalization ability.

One of the essential strategies we perform to strengthen
AVSS is to explore position representation as a new modal-
ity for guidance. Rows 2 and 9 in Tab. 3 overwhelmingly
point out the effectiveness of position encoding. Inter-
estingly, we observe that the combination of the position
feature and IPD are mutually beneficial since the network
learns spatial location from both binaural audio and visual
object. As a result, excavating the spatial properties of bin-
aural audio brings 1.42dB and 2.03dB improvement in SDR
and SIR, respectively. We also explore the contribution of
transfer pre-training on the external mono dataset. “*” de-
notes without fine-tuning on the FAIR-Play dataset. Rows
4-6 and 11-13 confirm that it definitely brings about 45%
overall performance improvement on both metrics.

Figure 6. Illustration of the result for separating sound sources of
the same type from the FAIR-Play dataset.

Ablations of multi-modal module design Ablation re-
sults of multi-scale audio fusion network design on FAIR-
Play dataset are shown in Tab. 4. “Tile-Concat” means the
vanilla structure of replicating Fvp to fit the audio feature
Fa at the bottleneck and performing concatenation through
channel dimension. “w/o VP/AVP atten.” means remov-
ing the CMA block. Row 2 and 3 demonstrate that multi-
modal fusion based on cross attention promotes stable and
improved performance of sound source separation. “w/o
multi” indicates that Fa is only composed of tensor ex-
tracted by the last down-sample convolutional layer. No-
tably, multi-scale feature extraction increases the discrimi-
nation of audio representations and yields good results.

Baseline
Model

Position
Guidance

IPD Monaural
Pre-train

Left Channel Right Channel
SDR↑ SIR↑ SDR↑ SIR↑

SoP

% % % 3.34 6.45 3.29 6.42
! % % 4.00 7.31 4.02 7.27
! ! % 4.32 7.90 4.38 7.86
% % !* 4.22 7.84 4.23 7.88
% % ! 4.79 8.36 4.82 8.39
% ! ! 5.14 8.57 5.15 8.55
! ! ! 5.32 8.71 5.36 8.73

2.5D-sep

% % % 3.85 7.24 3.73 7.44
! % % 4.90 8.38 4.82 8.48
! ! % 5.27 9.27 5.25 9.28
% % !* 4.67 8.02 4.70 8.03
% % ! 5.03 8.56 5.08 8.59
% ! ! 5.53 9.14 5.59 9.18
! ! ! 5.89 10.08 5.93 10.30

Table 3. Ablation study of two benchmarks on FAIR-Play test set.

Architecture Left Channel Right Channel Average

SDR↑ SIR↑ SDR↑ SIR↑ SDR↑ SIR↑
LAVSS (Ours) 5.89 10.08 5.93 10.30 5.91 10.19
w/o VP atten. 5.27 9.34 5.16 9.37 5.22 9.36

w/o AVP atten. 5.04 8.63 5.05 8.65 5.04 8.64
w/o multi. 4.90 8.38 4.82 8.48 4.86 8.43

Tile-Concat 4.83 8.41 4.81 8.38 4.82 8.40

Table 4. Ablations on the design of multi-modal attention module.

Qualitative evaluation Specifically, both solo and duet
video separation performances are illustrated in Figs. 4
and 5. Our separated spectrogram is distinctly and com-
pletely restored for both channels compared to SoP, 2.5D-
sep, and CCoL. For the duet case, the separation results of
MAVS hardly show any difference. More qualitative sepa-
ration results are revealed in the supplementary material.

5. Conclusion
In this work, we present LAVSS, a novel location-guided

audio-visual spatial audio separator. We break through
the limitation of MAVS methods and put forward AVSS.
Our network exploits the synchronization between phase
attributes of spatial audio and position embeddings of ob-
jects. We leverage location representations of objects and
perform fusion with the visual information to consistently
guide AVSS. Furthermore, we demonstrate the correlation
of monaural and binaural channels by pre-training on exter-
nal mono dataset for network transfer learning, which out-
performs SOTA methods on FAIR-Play. Discussions and
future works are provided in the supplementary material.
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