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Abstract

As a type of distribution shift, label shift occurs when the
source and target domains have different label distributions
P(Y ) but identical conditional distributions of data given
labels P(X|Y ). Under a Bayesian framework, we propose
a novel Maximum A Posteriori (MAP) model and a novel
posterior sampling model for the label shift problem. We
prove the MAP objective admits a unique optimum and de-
rive an EM algorithm that converges to the global optimum.
We propose a novel Adaptive Prior Learning (APL) model
to adaptively select prior parameters given data. We use the
Markov Chain Monte Carlo (MCMC) method in our poste-
rior sampling model to estimate and correct for label shift.
Our methods can effectively resolve class imbalance prob-
lems on large-scale datasets without fine-tuning the classi-
fier. Experiments show that our model outperforms existing
methods on a variety of label shift settings. Our code is
available at https://github.com/ChangkunYe/MAPLS/.

1. Introduction
In supervised learning tasks, the performance of a Neu-

ral Network classifier can decrease considerably under dis-
tribution shift between source and target domain [20]. As a
type of distribution shift, label shift occurs when label dis-
tributions P(Y = ·) are different in the source and target
domain while the data distribution conditioned on the label
P(X = x|Y = ·) is preserved [22].

Under label shift, an optimal classifier on the source do-
main may no longer be optimal on the target domain [10].
Class imbalance problems can be modelled as label shift
problems [36]. One extreme case is Long-Tailed classifi-
cation, where P(X = x|Y = ·) is preserved while the train
set has a Long-Tailed label distribution and the test set has
an unknown label distribution. The classifier trained on the
source domain has to be adjusted for optimal performance
on the target domain [6,28,36]. Label shift studies the gen-
eral case of arbitrary source and target label distributions,

Figure 1. The label shift estimation problem (left) and our pro-
posed Bayesian approach (right). We construct the analytical
Bayesian posterior of target label distribution given data and prior.
Then based on our proposed APL model that adaptively learns
prior parameters given data, we derive a MAPLS algorithm to ob-
tain a MAP estimate of π and propose a posterior sampling model
that uses MCMC to obtain samples from the posterior.

including the Long-Tailed classification case.
Three important problems arise due to label shift: detec-

tion — detect if label shift has occurred, estimation — esti-
mate the target label distribution and correction — align the
classifier to the target domain [10]. Here, we focus on es-
timation of the target domain label distribution. Estimation
is usually based on labelled data from the source domain, a
blackbox classifier and unlabelled target domain data [22].

Despite the good performance of existing label shift esti-
mation approaches [2,22,32], two shortcomings hinder their
application to real world problems. (1) Existing models are
usually tested using source domains with uniform label dis-
tribution [1], the more realistic settings of long-tailed dis-
tributions [24] are rarely analyzed. (2) Effectiveness of ex-
isting models on large-scale datasets with many classes is
rarely studied. Most evaluate on small scale datasets like
CIFAR10 or MNIST [22, 34].
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In this work, we observe that existing label shift estima-
tion models may not perform well on large-scale datasets
with large numbers of classes or highly imbalanced label
distributions. To tackle this problem, we propose a novel la-
bel shift estimation model under a Bayesian framework. We
construct the Bayesian posterior of the target label distribu-
tion parameters given data and a prior. We derive a novel
EM algorithm to obtain an MAP estimate of the target la-
bel distribution. We further propose: a novel Adaptive Prior
Learning (APL) model that adaptively chooses the prior pa-
rameters given data; and a posterior sampling model that
uses MCMC to draw i.i.d samples from the posterior. To
the best of our knowledge, Bayesian analysis has never been
used in previous label shift estimation works.

We conduct extensive experiments on train and test set
pairs with different label distributions. In contrast to pre-
vious methods that mainly focus on MNIST and CIFAR10,
we evaluate our model on the CIFAR100, ImageNet, Places
datasets and Long-Tailed versions of each dataset. For tar-
get label distributions, as well as evaluating under previous
label shift estimation settings [22] with Dirichlet shift, we
also introduce Long-Tailed benchmark test set shifts pro-
posed in Long-Tailed classification [16]. Experimental re-
sults show that our model consistently outperforms exist-
ing models, particularly, obtaining better accuracy when the
train set is highly imbalanced. These results demonstrate
the applicability of our model to real world label shift tasks.

The contributions of our paper are as follows:
1. We propose a novel label shift model under a Bayesian

framework to estimate and correct label shift without
retraining the classifier. We construct the posterior of
the target label distribution given data and a prior.

2. We derive a novel EM algorithm that computes the
maxima of the posterior (MAP estimate) by minimis-
ing a strictly convex objective. We propose a novel
Adaptive Prior Learning (APL) model to determine the
parameters of the prior adaptively given data.

3. We propose a novel posterior sampling model to es-
timate and correct label shift based on i.i.d samples
drawn from the posterior via MCMC.

4. Experiments show that our model consistently outper-
forms previous label shift estimation models in a va-
riety of label shift settings on CIFAR100, ImageNet,
Places and the Long-Tailed version of each dataset.

2. Related Works

2.1. Label Shift

Label Shift Estimation The problem of estimating tar-
get label distributions based on source domain data and un-
labelled target domain samples is called label shift estima-
tion [10]. Earlier works [8,33,42] require explicit modelling
of the conditional probability P(X = x|Y = y), which

is not feasible for high-dimensional data like images. Guo
et al. [11] propose to construct a marginal distribution of
data P(X = x), the target label distribution is estimated by
matching the constructed distribution with a ground truth
target domain distribution estimated by the unlabelled data.

In 2002, for high dimensional datasets, Saerens et
al. [32] proposed an EM algorithm to obtain Maximum
Likelihood Estimates (MLE) of the target label distribution,
referred as Maximum Likelihood Label Shift (MLLS) [10].
Although MLLS is an old method, recently, Alexandari et
al. [1] and Garg et al. [10] have shown its effectiveness over
BBSE related methods on CIFAR10 and MNIST datasets.

More recently, Lipton et al. [22] proposed BlackBox
Shift Estimation (BBSE) to first model the correlation be-
tween predicted labels from a blackbox classifier and the
ground truth labels. The target label distribution is then
predicted with the correlation and the unlabelled target
samples. Based on BBSE, Tachet et al. [34] add non-
negative constraints to the optimization objective of BBSE.
Similarly, Azizzadeneshel et al. [2] developed Regularized
Learning under Label Shift (RLLS) as a constrained BBSE
model. Wu et al. [40] extend BBSE to a continuous learning
setting with a target label distribution evolving with time.

Existing label shift estimation models focus more on
the theoretical perspective of the problem rather than real
world applications. Moreover, none of these works utilize
Bayesian analysis in their models.

Label Shift Correction If the target domain label distri-
bution is given, label shift correction models help align the
existing classifier to the target domain. The approach can
be performed either online during training or offline with-
out retraining. Saerens et al. [32] propose an offline label
shift correction (LSC) method to adjust the decision bound-
ary of the classifier and correct for label shift avoiding the
need for retraining. On the other hand, BBSE [22] and re-
lated methods also adopt an importance-weighted Empirical
Risk Minimization (ERM) approach to retrain a new classi-
fier for the target domain.

2.2. Class-Imbalance Problem

Class imbalance can lead to a decrease in classification
performance if the source domain has an imbalanced label
distribution [5, 39]. Recent works on class-imbalance usu-
ally aim to correct label shift for a Neural Network classifier
with an imbalanced source label distribution and uniform
target label distribution.

Re-Weighting and Re-Sampling Earlier works [12, 13,
17] re-weight the training loss or up-sample rare classes to
create a class-balanced train set. The re-weighting approach
is similar to importance-weighted ERM proposed by BBSE
[22]. However, these methods have been shown to overfit
rare classes [9] on highly imbalanced train sets.

Offline Correction Recently, several works introduce
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LSC to correct the classifier for the target domain. For
example, Tian et al. [36] proposed to combine the orig-
inal classifier and an LSC corrected classifier for class-
imbalance. LADE [16] proposed to learn a better classifier
and the correct classifier for a uniform test set with LSC.

Other Advanced Models Other recent works on the
class-imbalance problem propose more complicated mech-
anisms to obtain better performance. However, these mod-
els usually have less flexibility to adjust for different target
label distributions. For example, LDAM [6] proposes a loss
that aims to minimize the generalization error bound on a
uniform test set. OT [28] proposes an optimal transport al-
gorithm to optimize a classifier for a uniform test set. These
models require retraining or algorithmic adjustment for a
different target label distribution.

3. Preliminaries
3.1. Problem Setup

We use similar notation to [10]. We denote the input im-
age space as X ⊆ RH×W×C where H,W,C are the height,
width and channels of the image, and the corresponding la-
bel space as Y = {1, 2, ...K}, where K is the number of
classes. The random variable of image and label pairs on
source and target domains are denoted as (Xs, Ys) ∼ Ps

and (Xt, Yt) ∼ Pt respectively.
Under the label shift setting, it is assumed that the

source and target domain have a different label distribution
P(Ys = i) ̸= P(Yt = i). The conditional probability of an
image given its label is identical [22]:

P(Xs = x|Ys = i) = P(Xt = x|Yt = i). (1)

Three main problems are usually discussed in label shift,
namely detection, estimation and correction [10]. In this
work, we focus on label shift estimation. To tackle la-
bel shift estimation for classification, a blackbox classifier
f : X → ∆K−1 is usually assumed to be available, which
is sometimes required to perform well on the source do-
main [10, 23]. Here ∆K−1 is the space of a K dimensional
probability simplex.

Note that the source label Ys ∼ Cat(K, c) and target
label Yt ∼ Cat(K,π) each follow a categorical distribution
over K classes. c,π are parameters of the two distributions
respectively, with c,π ∈ ∆K−1. Estimating the target label
distribution P(Yt = ·) = π is equivalent to estimating the
parameters π of the categorical distribution Cat(K,π).

3.2. MLLS Label Shift Estimation

Saerens et al. [32] derive MLLS by assuming the clas-
sifier reflects the true conditional probability f(x)j =
P(Ys = j|Xs = x), j = 1, 2...K. The source domain
label distribution P(Yt = i) = c can be estimated using
labelled data. With unlabelled target domain data X, MLLS

Label Shift Problem Setup

Given
{xs

i , y
s
i }N

s

i=1, where (xs
i , y

s
i ) ∼i.i.d Ps

f : X → ∆K−1

X = {xi}Ni=1, where (xi, ·) ∼i.i.d Pt

Detection If P(Ys = ·) ̸= P(Yt = ·) ?
Estimation P(Yt = ·) =?
Correction argmaxg P(g(Xt; f) = Yt)

Table 1. Label Shift problem setup. The available data is: la-
belled samples from source domain Ps, a classifier f , and unla-
belled target domain data X. Label shift detection tests if label
shift occurs, estimation estimates the target label distribution and
correction adopt the classifier for the target domain.

estimates the target label distribution P(Yt = i) = π by
maximizing the log likelihood (2):

logL(π;X) := log

(
N∏
i=1

P(Xt = xi|π)
)

(2)

using the EM algorithm. We provide more discussions on
basics and advantages of EM algorithm in Appendix A.

In the algorithm, the parameter π is first initialized as
π(0). The EM algorithm then proceeds by repeatedly ap-
plying two alternating steps, the E-Step and the M-Step.
E-Step: the model evaluates the conditional probability
g(xi;π

(t))j := P(Yt = j|Xt = xi,π
(t)) under label shift

with:

g(xi;π
(t))j =

π
(t)
j

cj
f(xi)j∑K

l=1
π
(t)
l

cl
f(xi)l

. (3)

Equality has been proved by Saeren et al. [32] under label
shift along with the assumptions of MLLS.

M-Step: π(t+1) for next iteration can be obtained via:

π
(t+1)
j =

1

N

N∑
i=1

g(xi;π
(t))j . (4)

Given π(0), the iterative procedure of the EM algorithm
is repeated until numerical convergence to obtain the MLE
of the target label distribution P(Yt = i) = πi.

3.3. Offline Label Shift Correction

For classifier, f , trained on the source domain Ps,
Saerens et al. [32] proposed to construct a new target do-
main classifier g : X → ∆K−1 to correct for label shift:

g(x)j =

πj

cj
f(x)j∑K

l=1
πl

cl
f(x)l

(5)

where cj , πj , j = 1, 2...K are parameters of source and tar-
get label distributions respectively.

The advantage of this model is that adjustment does not
require retraining of f — see [29, 34, 36] for more theoreti-
cal discussions.
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4. Proposed Method
In this work, we propose a novel Bayesian approach for

the label shift estimation problem. By employing a prior
distribution over target label distribution P(Yt = ·) = π,
we obtain the posterior of π given available data X. Based
on the posterior, we derive an EM algorithm to obtain the
Maximum A Posteriori (MAP) estimate of π. To utilize
the information of the entire posterior, we also propose to
use Hamiltonian Monte-Carlo (HMC) method to obtain i.i.d
samples from the posterior.

The categorical distribution Yt ∼ Cat(K,π) requires
that the prior distribution over π is supported on ∆K−1. K
dimensional Dirichlet distributions satisfy this constraint,
and are often used as a prior over parameters of categori-
cal distributions [19, 37]. Therefore, we employ a Dirichlet
prior over the parameters π ∼ Dir(K,α) of the target label
distribution Cat(K,π), where α ∈ RK

>1. With the Dirichlet
prior as P(π|α) and unlabelled target domain samples X,
we can write the posterior of π given X and α as:

P(π|X,α) =
1

Z
P(π|α)

N∏
i=1

P(Xt = xi|π), (6)

where Z =
∫
P(X|π′)P(π′|α))dπ′ is a constant w.r.t π.

The marginal distribution P(Xt = x|π) can be rewritten
as a combination of known expressions. Given the source
domain labelled data, we can estimate the source domain
label distribution P(Ys = j) = cj in Ys ∼ Cat(K, c), which
is also a categorical distribution. P(Ys = j|Xs = xi) on the
source domain can be modelled by the blackbox classifier
f , and the target label distribution is P(Yt = j|π) = πj .
Formally we are given:

P(Ys = j) = cj > 0

P(Ys = j|Xs = x) = f(x)j

P(Yt = j|π) = πj ,

(7)

where ci > 0, i = 1, 2...K because each class has non-zero
sample frequency on the source domain.

In (7), we assume the classifier f is well-specified to
model P(Ys = ·|Xs = x). We further discuss in Section 4.2
when this may not be the case in practice. With (7) avail-
able, utilizing Bayes rule, we can rewrite the posterior (6)
as:

P(π|X,α) =
1

Z
P(π|α)

N∏
i=1

K∑
j=1

P(Xt = xi)
πj

cj
f(xi)j .

(8)
Note that P(Xt = xi) and Z are constants w.r.t π and

P(π|α) is the Dirichlet prior. Therefore the analytical ex-
pression for the un-normalized posterior P(π|X,α) can be
obtained from (8).

4.1. MAP estimate

We first derive an EM algorithm to obtain MAP estimate
of π. By definition, any MAP estimate π∗ minimizes the
negative log posterior:

π∗ ∈ argmin
π∈∆K−1

− logP(π|X,α) (9)

We prove that the optimization problem (9) is strictly
convex in π and propose a novel EM algorithm to find π∗.
We name our proposed algorithm: Maximum a Posteriori
Label Shift (MAPLS).

Proposition 1 Under label shift defined in (1), suppose (7)
holds for ∀(x, i) ∈ X × Y . Let π ∼ Dir(K,α) with
α ∈ RK

>1. Then in (9), the objective is strictly convex in
π, π∗ is unique and EM Algorithm 1 converges to π∗.

Algorithm 1 MAPLS

Input: Target domain {xi|i = 1, 2, ...N, {xi, ·} ∼ Pt},
source domain P(Ys = j) = cj , classifier f(x) and
Dirichlet prior P(π|α).
Initialize: π(0) ∈ ∆K−1

>0 .
for t = 0 to T do

E-step Evaluate g(xi;π
(t))j :

g(xi;π
(t))j =

π
(t)
j

cj
f(xi)j∑K

l=1
π
(t)
l

cl
f(xi)l

. (10)

M-step Obtain π(t+1) with:

π
(t+1)
j =

∑N
i=1 g(xi;π

(t))j + αj − 1

N +
∑K

l=1(αl − 1)
. (11)

end for
Output: P(Yt = ·) = π(T+1)

The detailed proof can be found in Appendix B.1, B.2.
Algorithm 1 can seen as a generalization of MLLS. In the
M-Step, we can rewrite (11) as:

π
(t+1)
j = λ

∑N
i=1 g(xi;π

(t))j
N︸ ︷︷ ︸

Data contribution

+(1− λ)
αj − 1∑K

l=1(αl − 1)︸ ︷︷ ︸
Prior contribution

(12)
where λ ∈ (0, 1) has the form:

λ =
N

N +
∑K

l=1(αl − 1)
. (13)

As λ → 1−, the algorithm degenerates to MLLS. As λ →
0+, the MAP estimate will converge to the Dirichlet prior
Dir(K,α). In this manner, λ can be seen as our confidence
in our label distribution estimation.
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Figure 2. Label shift estimation error analysis. The Mean Square Error (MSE, see Section 5.3) increases when: (1) the model is
misspecificed, i.e. P(Ys = ·|Xs = x) = f(x) is not satisfied (left); (2) the sampling error gets magnified when source and target domains
have large label shift (right). Our MAPLS with fixed prior (λ = 0.9 in (14)) can reduce both errors compared with MLLS. Our MAPLS-
APL model with prior parameters learned given data can further reduce MSE and outperform BBSE under large label shift (right).

The choice of α and corresponding λ affect the MAP
estimate π∗. In practice, it is important to determine an
appropriate α and λ to give a good MAP estimate π∗ for
the target label distribution P(Yt = ·).

After obtaining π∗, we can use (5) to correct the source
domain classifier f to the target domain under label shift.

Symmetric Dirichlet Prior: The Dirichlet prior pos-
sesses K parameters in α = [α1, ..., αK ] ∈ RK

>1. When
no information about the target domain label distribution is
available, we may set αj = α0. This has the advantage of
reducing the number of parameters to be chosen, at the cost
of limiting expressivity.

• The Dirichlet prior satisfies π ∼ Dir(K,α01).
Then the M-Step of the MAPLS algorithm in the form of

(12) can be further simplified as:

π
(t+1)
j = λ

∑N
i=1 g(xi;π

(t))j
N

+ (1− λ)
1

K
(14)

where λ = N/(N +K(α0 − 1)) also has a simpler form.
The MAPLS algorithm with λ → 0+ will converge to

a uniform categorical distribution with π = 1/K in Yt ∼
Cat(K,π). Note that now α = α01 is fully determined
by λ, and we can determine parameter α0 in the prior by
selecting a value for λ. In this case, 1 − λ represents the
strength of regularization in the MAP estimation procedure.

4.2. Adaptive Prior Learning Model

In our MAPLS algorithm 1, the prior parameter α should
be determined before the estimation of π. In this work,
based on the analysis of the possible estimation error, we
propose a novel Adaptive Prior Learning (APL) model to
adaptively learn α given available data. Our model is in-
spired by the empirical Bayesian [7, 30] approach.

Estimation Error Analysis: Intuitively, two factors can
induce estimation error in our posterior. Firstly, we use a
classifier f(x) to model ground truth P(Ys = ·|Xs = x)
in (7), when the classifier fails to represent the ground truth,
the model is subject to misspecification error. Secondly,

even if (7) is satisfied, our MAPLS model will have an as-
sociated sampling error due to using a finite number of sam-
ples, like other models [10].

Figure 3. Structure of our Adaptive Prior Learning model. The
parameter in the prior is adaptively determined by the available
data with a heuristic based on dTU , dTS , dSU defined in (15).

Adaptive Prior Learning: In our APL model, we pro-
pose to use a heuristic to loosely evaluate the magnitude of
model misspecification error. The sampling error of the la-
bel shift estimation model can be magnified with large label
shift between the target and source domains (e.g. Fig. 2).
Therefore, our APL model also includes a heuristic to miti-
gate sampling error.

Practically, we first run MAPLS with λ = 1 to obtain
an initial MLE of the target label distribution πMLE . Then
our APL model quantifies the two estimation errors based
on the three KL-divergences below:

dSU := DKL(c∥1/K)

dTU := DKL(π
MLE∥1/K)

dTS := DKL(π
MLE∥c)

(15)

where 1/K denotes a uniform label distribution and c is the
parameter of source label distribution. S, T, U represents
source, target and uniform label distribution respectively.

Adapt to model misspecification: A Neural Network
classifier f trained on the source domain usually has poor
performance when the source domain has a highly imbal-
anced label distribution (dSU ≫ 0) [6]. In this case, the
classifier is more likely to be subject to model misspecifi-
cation error when estimating label shift. Hence we increase
prior contribution in (14) with higher dSU .
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Adapt to sampling error: We propose two approaches
to mitigate the problem that sampling error tends to increase
given large label shift. Firstly, we use dTS to approximate
the amount of shift between target and source label distribu-
tion. A higher dTS implies larger label shift, which will lead
to more severe sampling error. Thus our APL model should
increase the contribution of prior in (14) with higher dTS .
Secondly, when πMLE is close to a uniform label distribu-
tion 1/K, we also propose to increase the prior contribution
so that (14) can push the estimate more towards 1/K.

Overall APL model: By defining a normalization func-
tion F (x) = x/(1 + x), our APL model determines λ via:

λ = a · F (γ · dTU ) + (1− a) · (1− F (γ · dTS)),
(16)

where γ = 1 − F (b · dSU ) takes into account the model
misspecification error and dTU , dTS evaluates the sampling
error. Here a ∈ [0, 1] represents the trade-off between the
two approaches to reduce sampling error and b ∈ [0, 1] rep-
resents the strength of misspecification error. We provide
more discussion of our APL model in Appendix D.

4.3. Sampling from the Bayesian posterior

Apart from the point estimate π∗, we also use Bayesian
analysis to utilize the entire posterior P(π|X,α) as our es-
timated target label distribution. In this work, we propose
to use the Markov Chain Monte Carlo (MCMC) method to
obtain i.i.d samples of the posterior. The samples can then
be used for downstream label shift correction tasks.

Based on (8), we can rewrite P(π|X,α) as:

P(π|X,α) =
1

Z
P(π|α)

N∏
i=1

K∑
j=1

πj

cj
f(xi)j , (17)

where Z contains
∫
P(X|π′)P(π′|α))dπ′ and P(Xt = xi),

which are constant w.r.t π and are usually intractable.
To avoid evaluation of Z, we adopt the MCMC method

to obtain samples of the posterior. Because the Hamiltonian
Monte-Carlo (HMC) sampler can be more efficient than
other MCMC methods in high dimensional space [3, 26] ,
we adopt the HMC to obtain i.i.d samples of the posterior:

Π = {πi}Li=1, where πi ∼i.i.d P(π|X,α), (18)

where α is determined by our APL model.
After collecting Π, each πi is used as a point estimate

of π for the down stream task. For example, for the label
shift correction problem, we use every πi ∈ Π to correct
the source domain classifier f(x) to the target domain gi(x)
under label shift based on (5). The target domain average
SoftMax classifier can then be constructed as:

g(x)j =

L∑
i=1

1

L

πi
j

cj
f(x)j∑K

l=1
πi
l

cl
f(x)l

. (19)

With samples of the posterior, the uncertainty of our es-
timated π given data can also be analyzed. Comparing with
Algorithm 1, this approach utilizes the entire posterior at
the cost of computation resources.

Remark: MCMC can be computationally expensive in
high dimensional space, because sufficient warm up steps
are required if the Markov chain is initialized randomly in
value space [25]. Fortunately, since the posterior in our
model is strictly log concave (Proposition 1) with known
maximal point π∗ obtained by MAPLS, we can initialize
the Markov chain at π∗ and the HMC sampler can then col-
lect i.i.d samples more efficiently without warm up steps.

4.4. Estimation of Source Label Distribution

Given source domain data {xs
i , y

s
i }N

s

i=1 and blackbox
classifier f , there are two known methods to estimate the
source domain label distribution P(Ys = ·) = c. MLE
is the standard method to estimate c with source domain
ground truth labels ysi . On the other hand, when classifier
f is calibrated on the source domain, Alexandari et al. [1]
also proposed to estimate c with source domain images in
{xs

i , y
s
i }N

s

i=1 and classifier f with

cj =
1

Ns

Ns∑
i=1

f(xs
i )j . (20)

In this work, we adopt both approaches to estimate c.
We name the MLE approach as the “hard” method and (20)
as the “soft” method.

4.5. Overall Method

We propose to estimate and correct label shift as follows:

Algorithm 2 Overall Method

Input: Source domain data {xs
i , y

s
i }N

s

i , classifier f :
X → ∆K−1 and target domain data X = {xi|(xi, ·) ∼
Pt, i = 1, 2, ...N}.
Parameter Determination:

• c: Use MLE or (20) to estimate P (Ys = ·) = c.
• πMLE: Use MAPLS 1 to obtain πMLE (α0 = 1).
• α0: Determine λ with APL model.

With α0 and (14), use MAPLS 1 to obtain π∗.
if Point Estimate then

Correct Label Shift: Obtain g with (5).
else if Posterior Sampling then

Use HMC (initialized with π∗) to obtain Π in (18).
Correct Label Shift: Obtain g with (19).

end if
Output: Target domain classifier g.

We name the model that uses the MAP estimate
MAPLS-APL and the model that uses posterior sampling
PSLS-APL, where the “APL” indicates that parameter α in
the prior distribution is learned with our APL model.
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5. Experiments
5.1. Datasets

We evaluate our model on the CIFAR100 [21], ImageNet
2012 [31] and Places2 [44] datasets. Following common
use in Long-Tailed research [6, 38, 43], we also use Long-
Tail versions of ImageNet, Places [24] and CIFAR100.

We test the models on test sets with Dirichlet shift pro-
posed by previous label shift estimation models [1, 22].
Dirichlet Shift generates a random test set label distribution
from a K dimensional Dirichlet distribution. We also adopt
the ordered Long-Tailed shifted test set used in LADE [16],
which has the same or inverse order of the Long-Tailed dis-
tributed train set. We further extend this setting to a shuf-
fled Long-Tailed test set, where the test set still has a Long-
Tailed label distribution but with random class order.

Train Set

Dataset Setup

CIFAR100 [21]
Original,

Long-Tailed with
R = {2, 5, 10, 20, 50, 100, 200}

ImageNet [31] Original, Long-Tailed [24]
Places [44] Original, Long-Tailed [24]

Test Set

Test Shift Type Params
Original None

Dirichlet [22] α = 1.0, 10

Ordered Long-Tail [16] R = {2, 5, 10, 50}
Order = “Forward”, “Backward”

Shuffled Long-Tail R = {2, 5, 10, 50}

Table 2. Label shift experiment settings. R is referred to as the
imbalance ratio — the ratio of maximum and minimum sample
number per class respectively in test set. α is the parameter of the
Dirichlet distribution.

5.2. Model Setup

Both our MAPLS/MAPLS-APL algorithm and previous
MLLS algorithm are initialized with π(0) = c and run for
100 epochs to ensure convergence. Because π∗ is unique
as proved in Proposition 1, our MAPLS is guaranteed to
converge to a single MAP estimate. In our APL model, we
empirically set a = 0.9, b = 0.5 in (16) for all the label
shift settings in all datasets. For our PSLS model, use a
HMC sampler called No-U-Turn Sampler [15] provided by
Pyro [4] to collect 5000 samples from the posterior.

We implement the Neural Network classifiers using Py-
Torch [27]. We use the ResNet32 [18] classifier for CI-
FAR100 and every CIFAR100-LT dataset. We use pre-
trained ResNet50 [14] and pre-trained Resnet152 for Ima-
geNet and Places datasets respectively. We train a ResNet50
and ResNet152 for ImageNet-LT and Places-LT datsets re-
spectively. More details of classifier implementations can
be found in Appendix E.1.

5.3. Evaluation Metrics

We follow previous methods [1, 2, 22] to evaluate la-
bel shift estimation performance with (w− ŵ)2/K, where
wi = P(Yt = i)/P(Ys = i), i = 1, 2...K is the target over

Train Set
Test Set

Ordered LT Shuffled LT Dirichlet

CIFAR100/CIFAR100-LT 55% 50% 52%
ImageNet/ImageNet-LT 82% 90% 75%

Places/Places-LT 68% 90% 92%

Table 3. SOTA comparison summary of estimation error. The
percentage of settings that our MAPLS-APL model outperforms
SOTA models (MLLS, BBSE, RLLS) in terms of (w − ŵ)2/K.

Train Set
Test Set

Ordered LT Shuffled LT Dirichlet

CIFAR100/CIFAR100-LT 56% 58% 58%
ImageNet/ImageNet-LT 59% 80% 58%

Places/Places-LT 59% 80% 75%

Table 4. SOTA comparison summary of Top1 Accuracy. The
percentage of settings that our MAPLS-APL model outperforms
SOTA models and the baseline classifier in terms of accuracy.

the source label distribution ratio. w is the ground truth
ratio estimated by the source and target labels. ŵ is the
predicted ratio with P(Yt = ·) estimated by each model.

We also provide Top1 accuracy for different label shift
estimation models with LSC (5) on all datasets. The result
summary is available in Tab. 4 and detailed results are re-
ported in Appendix F,G,H, for CIFAR100/CIFAR100-LT,
ImageNet/ImageNet-LT and Places/Places-LT respectively.

5.4. State-of-the-art Comparison

We compare the performance of our method with several
state-of-the-art (SOTA) label shift estimation methods, in-
cluding MLLS [1, 32], BBSE [22] and RLLS [2]. In BBSE
and RLLS, there are also “soft” and “hard” versions of each
model. We evaluate performance of these models with pre-
viously available implementation (details in Appendix E.2).

In the setting of large-scale datasets, methods that re-
quire retraining the classifier on the source domain will suf-
fer from high computational cost. Therefore we have not
reproduced and reported Tachet et al. [34] in our results.

We provide the SOTA comparison of our MAPLS-APL
model in terms of (w − ŵ)2/K in Tab. 3 and Top1 Accu-
racy in Tab. 4. More details are discussed in Appendix C.
Note that unlike SOTA models that obtain a point estimate
of π, our PSLS-APL model obtains samples of π from the
posterior instead. Thus only Top1 Accuracy is compared
for our PSLS-APL model (Tab. 6) instead of both metrics.

As shown in Tab. 3, our MAPLS-APL model outper-
forms SOTA models in at least 50% of the label shift and
dataset settings. As an example on ImageNet in Tab. 5, our
model outperforms other models by a large margin for the
highly imbalanced train set ImageNet-LT.

As shown in Tab. 4, in terms of Top1 Accuracy, our
MAPLS-APL model outperforms SOTA models and base-
line in at least 50% of the settings. As an example in Tab. 6,
our MAPLS-APL and PSLS-APL model have similar per-
formance and outperform SOTA models in most settings.

By analyzing the performance in Tab. 5, 6, one obvious
advantage of our model is its robustness to the source label
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Dataset ImageNet ImageNet-LT
Shift Type Shuffled LT Dirichlet Shuffled LT Dirichlet

Params 50 25 10 5 2 α = 10.0 α = 1.0 50 25 10 5 2 α = 10.0 α = 1.0
Test sample No. fixed fixed fixed fixed fixed 12500 25000 12500 25000 fixed fixed fixed fixed fixed 12500 25000 12500 25000

MLLS-hard 0.1210 0.1102 0.1001 0.0868 0.0766 0.1111 0.0848 0.1299 0.1113 36.09 34.49 30.57 26.90 24.42 28.44 26.03 38.21 36.18
MLLS-soft 0.1121 0.0972 0.0868 0.0721 0.0637 0.0981 0.0721 0.1154 0.0977 80.66 82.10 84.92 81.54 76.59 91.28 83.62 82.62 84.23
BBSE-hard 0.1285 0.1020 0.0871 0.0699 0.0581 0.0869 0.0661 0.1285 0.1173 3.2e5 1.8e6 1.4e6 2.0e7 4.8e5 4.8e5 1.0e7 1.7e6 1.2e10

BBSE-soft 0.1305 0.1086 0.0969 0.0790 0.0671 0.1052 0.0769 0.1366 0.1177 28.00 25.48 18.04 15.86 12.07 13.84 12.89 28.30 27.75
RLLS-hard 1.1450 0.7160 0.4436 0.2244 0.0473 0.1159 0.1122 1.1020 1.0607 45.00 38.77 29.99 24.18 19.96 21.98 21.05 46.05 45.75
RLLS-soft 1.1450 0.7160 0.4436 0.2244 0.0473 0.1159 0.1122 1.1020 1.0607 45.00 38.77 29.98 24.18 19.96 21.98 21.05 46.05 45.75

MAPLS-APL-hard (Ours) 0.1236 0.1006 0.0816 0.0633 0.0482 0.0736 0.0570 0.1283 0.1142 20.25 16.62 10.26 6.18 2.62 4.72 3.86 21.16 20.68
MAPLS-APL-soft (Ours) 0.1144 0.0904 0.0710 0.0521 0.0370 0.0628 0.0465 0.1160 0.1025 19.48 16.39 11.23 7.58 4.43 6.62 5.66 18.94 18.75

Table 5. Performance of (w− ŵ)2/K (↓) on the ImageNet and ImageNet-LT datasets, with shuffled Long-Tailed test set that have an
imbalance ratio {50, 10, 5, 2} and Dirichlet test set that have α = {1, 10} and total test sample number {12500, 25000} in each setting.
Best performances are in bold face and second best are in blue. Our PSLS-APL model is only suitable for Top1 Accuracy comparison.

Dataset ImageNet-LT Places-LT
Order Forward Uniform Backward Forward Uniform Backward

Imbalance Ratio 25 10 5 2 1 2 5 10 25 25 10 5 2 1 2 5 10 25
Baseline 62.55 58.48 54.97 49.59 45.31 40.94 35.22 31.31 26.56 41.25 38.04 35.11 31.06 27.92 24.76 20.89 18.26 15.49

MLLS-hard 59.10 55.42 52.70 48.93 46.47 44.04 41.27 39.82 38.30 40.46 37.78 35.67 32.95 31.08 29.22 26.85 25.30 23.70
MLLS-soft 58.45 54.70 52.13 48.56 46.34 44.11 41.66 40.41 39.30 39.90 37.20 35.06 32.43 30.53 28.72 26.58 25.50 24.11
BBSE-hard 33.20 25.93 24.53 19.03 26.15 23.99 16.85 28.03 15.67 28.65 28.39 27.83 26.37 26.79 24.51 23.09 16.69 17.60
BBSE-soft 60.95 57.47 54.86 51.03 48.23 45.67 42.47 40.42 37.94 41.12 38.32 36.18 33.16 30.94 28.75 26.16 24.34 22.31
RLLS-hard 62.55 58.48 54.97 49.59 45.31 40.94 35.22 31.31 26.56 41.25 38.04 35.11 31.06 27.92 24.76 20.89 18.26 15.72
RLLS-soft 62.55 58.48 54.97 49.59 45.31 40.94 35.22 31.31 26.56 41.25 38.04 35.11 31.06 27.92 24.76 20.89 18.26 15.49

MAPLS-APL-hard (ours) 60.67 57.72 55.56 52.51 50.31 48.05 45.09 43.33 41.31 41.34 39.55 38.01 36.04 34.48 32.80 30.49 28.68 26.63
MAPLS-APL-soft (ours) 60.34 57.58 55.44 52.50 50.32 48.33 45.69 44.21 42.50 41.15 39.32 37.78 36.04 34.58 32.97 30.87 29.35 27.41
PSLS-APL-hard (ours) 60.80 58.00 55.49 52.65 50.34 47.88 45.07 43.27 41.33 41.61 39.19 38.14 36.01 34.49 32.99 30.44 28.64 26.74
PSLS-APL-soft (ours) 60.61 57.95 55.46 52.76 50.45 48.00 45.47 43.86 42.22 41.44 39.11 38.11 36.01 34.52 32.97 30.51 28.89 27.17

Table 6. Performance of Top1 Accuracy (↑) on ImageNet-LT and Place-LT dataset, with Ordered Long-Tailed test set that have
imbalance ratio R = {25, 10, 5, 2}. Best performances are in bold face and second best are in blue.
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Figure 4. Illustration of the label shift estimation result (π).
On the Long-Tailed CIFAR100 dataset with Ordered Long-Tailed
test set, our PSLS-APL model uses HMC to obtain samples of the
posterior P(π|α,X) (posterior sample density histogram plot as
blue bar heatmap), which fit nicely with the ground truth.

distribution. When source domains have highly imbalanced
label distributions (e.g. ImageNet-LT, Places-LT), the label
shift estimation performance of our model stays relatively
stable while previous models degrade significantly.

5.5. Ablation Study

We provide the density histogram of posterior samples
Π collected by our PSLS-APL model in Fig. 4, with single
value of π estimated by other models as well. The poste-
rior P(π|X,α) fits well with the ground truth and is able to
provide a sense of uncertainty of our estimation.

We also analyze the estimation stability of our model
during the training of classifier f on the source domain.
Specifically, we monitor the performance of each label shift
estimation model during the training of a Neural Network
classifier on Long-Tailed CIFAR100 dataset. The test sets
have Ordered Long-Tailed label distribution. As shown in
Fig. 5, the performance of BBSE, MLLS and our model
improves during the training of the classifier. This obser-
vation suggests that label shift estimation performance of
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Figure 5. Ablation study on stability of the MAPLS-APL
model. On the Long-Tailed CIFAR100 dataset with Ordered LT
test set, our model is stable during the training of the classifier and
performs better than SOTA methods.
these models could be further improved with a better clas-
sifier. Our MAPLS (λ = 0.9) and MAPLS-APL model
performs better and stable in the last 50 epochs.

6. Discussion and Conclusion
In this work, we develop label shift estimation meth-

ods MAPLS-APL and PSLS-APL under a Bayesian frame-
work that are applicable to large-scale datasets and robust
to highly imbalanced source label distributions. In our
MAPLS model, we derive an EM algorithm to obtain the
MAP estimate of the target label distribution and propose
a novel Adaptive Prior Learning model to adaptively adjust
the prior parameter. In our PSLS model, we use HMC to
sample from the strictly log-concave posterior P(π|X,α).

Unlike previous benchmark evaluations, our experimen-
tal settings additionally covers a variety of large-scale
datasets (ImageNet, Places) with highly imbalanced la-
bel distributions, which provide a more realistic evalua-
tion of SOTA methods. Experiments on these datasets have
demonstrated the effectiveness of our model and its poten-
tial to be applied in real world label shift problems.
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