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Abstract

Multi-modal registration between tagged and untagged
cardiac cine magnetic resonance (MR) images remains dif-
ficult, due to the domain gap and large deformations be-
tween the two modalities. Recent work using an image-to-
image translation (121) module to overcome the domain gap
can convert the multi-modal into a mono-modal registration
task and take advantage of advanced mono-modal registra-
tion architectures. However, they often ignore two issues:
the sample-specific style of each image to be registered dur-
ing 121 and large hybrid rigid and non-rigid deformations
between modalities. We first propose an exemplar-based 121
module capable of unsupervised cross-domain correspon-
dence learning to enforce the style consistency between the
fake image and the image to be registered. Then we propose
an efficient cascaded vision transformer-based registration
network to predict both the affine and non-rigid deforma-
tions, in which a single feature embedding subnetwork is
shared by the two stages of deformation prediction. We val-
idated our method on a clinical cardiac MR dataset with
paired but unaligned untagged and tagged MR images. The
results show that our method outperforms traditional meth-
ods significantly in terms of the 121 quality and multi-modal
image registration accuracy.

1. Introduction

Multi-modal medical imaging provides complementary
information for clinical disease diagnosis. As shown in
Fig. 1, for dynamic cardiac magnetic resonance (MR) imag-
ing, we have two different 2D cine imaging modalities:
traditional untagged cine MR (cMR) and tagged cine MR
(tMR) imaging [1]. While cMR provides the gold stan-
dard imaging modality for global cardiac function evalu-
ation, tMR is the gold standard for regional myocardium
(Myo) wall motion quantification and strain estimation [3].
To extract the region-of-interest (ROI) for the Myo wall, we
need to segment such ROIs from images. However, due to

Figure 1. Two image pairs of (a) tagged cine MR (tMR) and
(b) untagged cine MR (cMR). Note the diverse sample-specific
styles within each modality and large inter-modality deformations
for each paired data. Red and yellow contours show the epi- and
endo-cardial borders of the left ventricle myocardium (Myo) wall.
Green grids are for alignment visual inspection. LV: left ventricle;
RV: right ventricle.

the tagged blood in early time frames, which obscures the
boundary between the Myo wall and blood pool, segment-
ing the Myo region on tMR frames remains difficult [33].
Although recent data-driven models, such as U-Net [36] and
V-Net [28], advance the segmentation performance on med-
ical images, training such models needs a large dataset and
annotations. Several large annotated cMR datasets, such as
UK Biobank [32] and ACDC [5] make it possible to train
a segmentation model to predict the Myo masks on cMR
data. However, tMR data is less common, compared with
cMR, as are annotations on tMR images. In clinical appli-
cations, tMR scans usually follow cMR scans, resulting in
paired cMR and tMR imaging data for each patient. Robust
multi-modal image registration between tMR and cMR thus
makes segmenting the Myo wall on tMR frames feasible,
by propagating the Myo masks from the cMR images to the
tMR images with the associated deformation fields.

To register a cMR image to a tMR image means to warp
the shape or content of specific ROIs from the moving im-
age (cMR) to the fixed image (tMR) according to some spa-
tial mapping function. The task is challenging, due to the
domain gap and potential large deformations between the
two different imaging modalities. One can easily observe
from Fig. 1 that the appearance or style of the two images is
distinct from each other, because they are produced by dif-
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ferent MR imaging sequences. Traditional multi-modality
image registration methods rely on developing robust simi-
larity metrics, e.g., MIND features [ 4], to define an energy
function for the registration model. Recent deep learning-
based models either seek similarity metrics in a common
content feature space [34,41] or use a generator to trans-
late the image style from the source domain to the tar-
get domain and thus convert multi-modal registration into
a mono-modal registration [21,42]. For the latter approach,
there are two aspects that determine the success: content
preservation and sample-specific style coherence. Recent
work, however, often ignores the latter aspect, which de-
grades the registration performance. As the two samples
shown in Fig. | demonstrate, for each modality, different
samples may manifest specific styles, e.g., both the tMR
and cMR images of the left sample show a brighter style
than those of the right one. Our method falls into the multi-
to-mono modality transform category. Different from previ-
ous methods, we aim to learn sample-specific styles during
image-to-image translation for multi-modal registration and
propose to use the target domain image as the style exem-
plar to guide the generator in an unsupervised fashion.

The large deformation challenge between different
modalities is due to imaging condition changes during sepa-
rate scans. As shown in Fig. 1, change of the breath-holding
location and cardiac deformation can result in large and hy-
brid rigid and non-rigid motion, even between the paired
tMR and cMR data. To deal with such large deformations,
we design a cascaded vision transformer-based registration
network to predict both affine and non-rigid deformations
simultaneously and efficiently.

Our contributions in this work can be summarized as fol-
lows: (1) We propose a novel unsupervised multi-modal
medical image registration method, which achieves a high
registration accuracy with efficient inference. (2) We
propose an unsupervised exemplar-based image-to-image
translation module, which can efficiently learn the cross-
domain correspondence without having strictly aligned
training data pairs and significantly enhance the multi-
modal image registration performance. (3) We propose
an efficient cascaded vision transformer-based registration
module, via the design of a shared subnetwork for differ-
ent stages of deformation estimation, which can predict the
large and hybrid affine and non-rigid deformations between
modalities accurately.

2. Related Work
2.1. Image-to-Image Translation

While there exist multi-domain image-to-image transla-
tion (I2I) tasks [15, 20, 55], in this work, we focus on two-
domain I2I tasks [17,22, 54]. Given a source domain A
and a target domain B, the goal of the I2I task is to trans-

fer the style of a target domain B to the source domain A,
while keeping the content of the input source domain im-
age € A invariant. Most prominent data-driven learning-
based methods rely on the use of generative adversarial net-
works (GANSs) [13]. These methods aim to train a mapping
network, i.e., the generator GG, to generate a fake image ¢
from the input source domain image € A which makes
the discriminator D fail to distinguish it from the target do-
main image y € B. If  and y are paired and aligned, it
is a supervised I2I task. However, it is difficult to obtain
paired and aligned training data, especially for the medi-
cal imaging domain, so recent efforts have focused more on
unsupervised 121 tasks.

Two kinds of losses are designed to achieve content-
preserving in 121 tasks, i.e., cycle-consistency loss used in a
two-sided architecture [15,20,22,54] and other feature-level
losses used in a one-sided architecture [18,27,31, 39, 50].
In general, style transfer can be achieved by using an ad-
versarial loss which makes the style of fake images indis-
tinguishable from that of the real ones. However, the ad-
versarial loss only makes the generator learn the averaged
style distribution of the target domain. To learn a finer
target style, exemplar-based 121 frameworks have been in-
troduced in [23, 25, 44-46, 51, 53]. However, these works
require strictly aligned training data  and y to learn the
correspondence between source image x and the exemplar
z, which are supervised 12 methods. We inherit the idea
of using an exemplar image to guide the generator learning
fine style of each specific image sample to be registered, but
drive the cross-domain correspondence learning process in
an unsupervised fashion.

2.2. Multi-Modality Medical Image Registration

Image registration aims to find the spatial mapping of
corresponding contents in an image pair. Multi-modal reg-
istration is more difficult than a mono-modal task because
of potentially severe intensity distortions and large deforma-
tions between modalities. Previous methods focus on devel-
oping robust similarity metrics to intensity distortions. Mu-
tual information has been successfully used in rigid multi-
modal registration [26, 40]. A recent work measures the
mutual information through a jointly learned multi-scale
and multi-modality embedding space for non-rigid image
registration [| 1]. The modality-independent neighborhood
descriptor (MIND) [14] is an image structural, instead of
intensity, representation and is robust to intensity distor-
tions, but it is computationally expensive. Some recent
works construct the modality-independent similarity met-
ric in a deep content feature space with the use of a pre-
trained content encoder [34,41]. Some efforts have been
made to convert the multi-modal to mono-modal registra-
tion by using an I2I network [21,42]. However, these works
ignore the sample-specific style during I2I. Large defor-
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mations between modalities consist of rigid and non-rigid
motions. Although convolutional neural networks (CNNs)
could be trained to predict the global affine [49] and lo-
cal non-rigid deformations [10], they fail to capture long-
range dependencies of image features, due to the weight-
ing sharing and locality inductive biases, resulting in sub-
optimal registration performance [38]. Vision transformers
(ViT) using self-attention mechanism to model long-range
dependencies have been introduced to image classification
tasks and dense prediction tasks, such as image segmenta-
tion and registration [12,24,52]. Although improved affine
or deformable registration performance has been achieved
by novel ViTs [6, 7, 30, 47], predicting hybrid affine and
non-rigid deformations simultaneously and efficiently with
ViTs still needs exploration. We aim to design a novel cas-
caded ViT-based registration network to predict large defor-
mations between modalities accurately.

3. Methodology

Our novel multi-modal image registration method con-
sists of an unsupervised exemplar-based I12I and cascaded
vision transformers (ECaT). Although our method could
be easily extended to other multi-modal image registration
problems, without loss of generality, we focus on the chal-
lenging task for cMR registration with tMR. As shown in
Fig. 2 (a), we have two modules in the pipeline: a style
reference-augmented 121 network, and a cascaded affine and
non-rigid registration network. Below, we detail each mod-
ule.

3.1. Unsupervised Cross-Domain Correspondence
Learning for Style Reference-Augmented 121

We use an examplar-based 121 network to translate the
tMR image (x) to a fake c MR image (y), which serves as
the fixed image for the downstream registration task. We
input the real image y as the style reference (SR) into the
generator GG to learn a specific style from each individual
y. As shown in Fig. 2 (b), we divide G into an encoder
G, and a decoder G4. G, is shared for extracting fea-
tures from « and y: F, = G.(x), F, = G.(y), where
F, F, c RHEXWXC  With the feature representations,
cross-domain correspondence is built with a correlation ma-
trix M € REWXHW 145] each entry of which is defined
by the similarity of F',; at location ¢ and F', at location j:

_ Fa()) —pp,) (Fy(G) — 1r,)
1o (i) = war, |, | Fui) = m,

M(i, j) (D

2

where py, and pp; are the mean feature vectors, 'y, F', €

RHWXC are reshaped vectors. We then align the features

F, with F'; by collecting the most correlated pixels in F'y,

and calculating the weighted average by M:

F, ..(i)= Z softmaz(M(i,§)/7) - Fy(j), ()

where 7 controls the sharpness of softmax and we empir-
ically set it as 5e~3. Then we reshape F', and F,_,, as
H x W x C and concatenate them together as the input
to the decoder G4, which gives the translated fake image:
:’A/ = Gd(anFy—)I)

Previous methods [45, 46] used strictly aligned paired
data {x, y} to train the cross-domain correspondence learn-
ing process in a supervised way. However, the medi-
cal imaging domain usually lacks such aligned data. We
thus introduce a content-preserving loss to learn the cross-
domain correspondence, along with image translation, in an
unsupervised way. Here, while the content-preserving loss
explicitly regularizes the synthesised image ¢ to avoid con-
tent distortion from the source image , it also implicitly
regularizes a plausible cross-domain correspondence be-
tween the style exemplar y and . We show an example in
Fig. 5. While our core idea is the unsupervised learning of
sample-specific style transferring to benefit the downstream
mono-modal registration, we do not focus on the design-
ing of efficient content-preserving losses. We use a self-
similarity based one proposed in the work [50]. We first ex-
tract the features ¢, and cy from several layers of a content
representation network; then, given a point ¢; in the source
image feature space c,, we compute the the spatial correla-
tion map (SCM) as S%. = (c%)7 (c¥"), where ¢ € RE*!
is the point feature with C' channels, cZ*’ € RE>*Nr are the
point features within the surrounding patch of N, points
centered at ¢; and S ; € R™N». The content-preserving
loss is the cosine distance between Ny SCMs of x and ¥:

Ls=|1—cos(Sz,Sy), 3)

where S, S; € RY:*No. We use the learned content rep-
resentation instead of the fixed one, which is trained in a
self-supervised contrastive learning fashion to make the ex-
tracted content features adapt to the medical image domain.

We train the SR-augmented generator GG alternatively
with a discriminator D by the following adversarial loss:

Lp = —E[logD(y)] — E[log (1 = D(G(z,y)))], 4

[’G =E [lOg (]‘ - D(G(:B, y)))} + O[,CS, (5)

where « is a hyperparameter trading off between sample-
specific style transferring and content preserving.

3.2. Cascaded ViT Registration Network

We decompose large deformations between the fixed im-
age tMR (f) and the moving image cMR (m) as global
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Figure 2. (a) The pipeline of ECaT for multi-modal image registration. (b) The generator of the style reference-augmented 121 network.
M is the cross-domain correspondence correlation matrix. (c) The shared ViT-based feature extractor (TransUnet) by affine and non-rigid
registration stages. (d) ViT used in TransU. (e) Affine registration head. (f) Non-rigid registration head. “SR” means style reference; “W”
is “warp”; “C” is channel-wise concatenation; “SVF” is a stationary velocity field; “SS” is the scaling and squaring layer.

affine and local non-rigid deformation components, and
propose a novel cascaded ViT-based registration network
ViTR as shown in Fig. 2 (a). Previous work uses either
multi-resolution [29] or cascaded networks [48] to predict
large deformations. The cascaded method is more efficient
for the use of a single, shared subnetwork, which can reduce
network parameters significantly. However, nearly all previ-
ous methods use a shrinking network to estimate affine mo-
tion while a shrinking-expanding network to estimate non-
rigid motion, which makes it impossible to share a common
subnetwork for both kinds of deformations. We first intro-
duce a TransUnet (Fig. 2 (c)) as the shared subnetwork for
efficient feature embedding. Then, for affine and non-rigid
deformation estimation, the TransUnet is coupled with their
own heads (Fig. 2 (e) and (f)). Finally, the two subnetworks
are cascaded as an end-to-end architecture ViT'R.

The TransUnet consists of an encoder and a decoder.
Compared with pure convolution-based U-Net [36], it dif-
fers by the ViT-based encoder. As shown in Fig. 2 (d), we
employ the ViT introduced in [30]. It replaces the linear
patch embedding with the convolutional patch embedding
and adds a depthwise convolution layer in between the two
hidden layers of a multilayer perceptron (MLP) block in the
feed-forward layer. These two improvements can add more
locality into the ViT. Therefore, it efficiently models not
only the long-range dependencies within the image patches,
by the self-attention mechanism, but also the relationship
between a certain patch and its neighbours, by the local-
ity. However, this ViT is a shrinking network dedicated for
affine registration tasks. To fit it in the local non-rigid defor-

mation estimation, we adopt the ViT to replace the convo-
lution layers in the encoder of the original U-Net and make
it as a local and long-range dependency modeling layer:

Z;, = ViT(Z;_1), (6)

where Z; is the i-th layer’s feature embedding and Z; =
(f,m). Note, we use stride = 2 in each convolutional
patch embedding layer to downsample the embedding size.
With the ViT embeddings of the input image pair, we use a
convolutional decoder to upsample them and further model
local dependencies among feature embeddings. The upsam-
pling layers in the decoder make it possible to learn the
positional information of patch embeddings implicitly [6],
hence we eliminate the positional embedding layer in the
original ViT. The skip connection between the encoder and
the decoder further enhances the local and long-range de-
pendency modeling of feature embeddings at each scale.
Finally, the TransUnet outputs the feature embeddings of
input fixed and moving image pair: Fo = TransU(f, m),
where Fy € R7*Wxd and d is the embedding dimension.
The affine head consists of a global average pooling layer
and a two-layer MLP. We first average F' along the H and
W dimension and then use the MLP to map it to the affine
registration parameters. We decouple the affine transforma-
tion into four subtransformations, i.e., translation ¢, rotation
r, scaling s and shearing h: [t,r,s,h] = af fine(Fy),
where t,s € R2, r, h € R. The affine matix A is given by
A=T -R-S-H,where T, R, S, H are the translation,
rotation, scaling and shearing transformation matrices de-
rived from the above corresponding transformation param-

7647



eters, respectively. With 4, the moving image is warped
towards the fixed image which gives m; = m o ¢, where
¢, is the affine deformation field derived from A.

The non-rigid head consists of a convolution layer and
a scaling and squaring (SS) layer [2, 9]. We first use the
convolution layer to map F'; = TransU(f,m4) to a sta-
tionary velocity field (SVF) and then use the SS layer with
7 recurrences to compute the local deformation field ¢;:
¢, = nonrigid(F), where ¢, is diffeomorphic with the
effect of the SS layer. With ¢;, we warp the moving image
m; towards the fixed image, which gives my = miog¢; =
mog, o¢p;, = mo@, where ¢ = ¢, o¢, is the composed de-
formation field. By minimizing the dissimilarity between f
and mo, we could register them: L, = —sim(f, mog),
where sim(+) is a similarity measure. Since the 121 module
translates the fixed image to the same modality as the mov-
ing image, we could choose mono-modal similarity mea-
sures, such as L, L, and normalized local cross-correlation
(NCC). In this work, we choose NCC as the similarity mea-
sure for its robust performance of medical image registra-
tion. The definition of NCC of an image pair  and J is

NCCO(I,J) =
5 (S wI®) ~ T@)(T(p) ~ TP)))

pes (S ewI®) = 1(0))?) (e (I () = T(0))?)
@)
where I(p) and J(p) are the local mean of I and J at posi-
tion p, respectively, calculated in a w? window W centered
at p, and 2 C R? is the 2D image spatial domain. We set
w = 9 in our experiments. A higher NCC indicates bet-
ter registration, so the similarity loss between f and m o ¢
could be Ly (f,mo ) = —NCC(f, m o ¢). We also
add a smoothness regularization loss to make the learned lo-
cal deformation field smooth which is a penalty on its gra-
dients: Lsmooth = ||V ;|- In sum, we train the affine and
non-rigid registration network V¢T'R with the loss

I

‘CReg = Esim + )\ﬂsmoothy (8)
where ) is a balancing hyper-parameter.

3.3. Two-stage Training Scheme

To get the deformation field ¢ between the moving im-
age m and the fixed image f, we sequentially compose the
121 module and the registration module together; the fixed
image f will be the fake image 9. In spite of the content-
preserving loss in Eq. (3), if we train generator G and reg-
istration network ViT' R jointly, as in RegGAN [19], the
content distortion problem of G still exists because of the
trivial solution [21]: G(x,y) = vy, ¢ = Id, i.e., the iden-
tity transform. We thus train G and VTR in a two-stage
fashion to decouple the 121 task and the registration task.

4. Experiments
4.1. Dataset and Pre-processing

We collected a clinical cardiac MR dataset which con-
sists of 23 subjects’ whole heart scans. Paired cMR and
tMR scans for each patient are included in the dataset, but
they are generally not aligned with each other, due to imag-
ing condition changes during separate scans. Each scan set
covers the long-axis (LAX) and short-axis (SAX) views.
For the LAX views, it has the 2-, 3-, 4-chamber views. The
SAX views include multiple slices from the base to the apex
of the left and right heart ventricles. Each set has approxi-
mately 10 2D slices, each of which covers a full cardiac cy-
cle forming a 2D sequence. In total, there are 223 2D paired
sequences in our dataset. For each cMR sequence, the frame
number is 25, while for tMR sequences, the frame numbers
vary from 16 ~ 25. We first used the scan information in the
DICOM header to do the rigid registration (translation and
rotation) between each pair of cMR and tMR images and
then used temporal nearest sampling to resample the tMR
image sequences as a fixed frame number of 25. A region
of interest (ROI) was extracted from the images to cover the
heart, then we resampled them to the same in-plane spatial
size 192 x 192. Each image pair was used as input to the
model to estimate the remaining deformation apart from the
rigid one; in total, we have 5,575 cMR and tMR pairs in the
dataset. We randomly split the dataset into 3, 500, 750 and
1, 325 pairs as the training, validation and test sets, respec-
tively (without patient crossing). For each 2D image value
normalization, we first divided them with 2 times the me-
dian intensity value of the image and then truncated all the
values to be [0, 1]. During training, we also did on-the-fly
data augmentation with random translation, scaling, rota-
tion and Gaussian noise addition for each image pair.

4.2. Evaluation Metrics

We evaluated both the quality of the translated fake cMR
image and the accuracy of the multi-modal registration. For
the former evaluation, we used the normalized mean abso-
lute error (NMAE), peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) metrics (see their definitions
in [43]); the ground truth cMR image is the warped result
by our registration method, since there is no ground truth
c¢MR image corresponding to the tMR image, due to the de-
formation between the two scans. For the latter evaluation,
we asked two clinical experts to annotate the segmentation
mask of the Myo wall on the image pair and double check
all the annotations. During evaluation, we input the Myo
masks on the cMR images and warped them by the esti-
mated motion field ¢p. With the warped cMR Myo mask and
the tMR Myo mask, we computed the Dice score [4] and
the 95th quantile Hausdorff distance (HD) score [16]. We
also evaluated the diffeomorphic property of the estimated
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motion field ¢ by using the percentage of non-positive Ja-
cobian determinant det(Jg) [9] pixels on the image plane.

4.3. Baseline Methods

For the I2I task, we compared our method with Cy-
cleGAN [54], UNIT [22], MUNIT [15], NICEGAN [8],
and RegGAN [19]. Note that, for RegGAN, we used a
non cycle-consistency with registration scheme based on
the NICEGAN, since it has the best performance [19].
For the multi-modal registration task, we compared our
method with the traditional MIND method based on a 3-
level multi-resolution iterative optimization scheme [14],
and recently proposed cutting-edge deep learning-based un-
supervised medical image registration methods VM [4],
VM-dif [9] and MIDIR [35]. VM is a deformable regis-
tration model, while VM-dif is a diffeomorphic registra-
tion model. MIDIR is also a diffeomorphic registration
model, but it further uses B-spline free-form deformation
(FFD) [37] to parameterize the SVF. We used the online of-
ficial implementation code to train VM, VM-dif and MIDIR
from scratch, following the optimal hyper-parameters sug-
gested by the authors, with NCC or normalized mutual in-
formation (NMI) introduced in [35] as the similarity loss.

4.4. Implementation

We implemented our method with PyTorch. For the 121
module, the architecture is the same as in [50], except that,
in the generator, we added the cross-domain correspon-
dence module which is the same as in [45]. For the reg-
istration module, the ViT architecture is the same as in [30]
and the remaining U-Net architecture is the same as VM.
Our code will be available on a public github repository if
the paper is accepted. We used the Adam optimizer to train
the 121 and registration modules with learning rates of 1e~*
and 5e~*, respectively. We set hyper-parameters o = 10,
A = 5, via grid search. All models were trained using an
NVIDIA Quadro RTX 8000 GPU.

4.5. Results
4.5.1 Quality of tMR to cMR Translation

Method NMAE | PSNR 1 SSIM 1

CycleGAN | 0.064+0.018 | 22.966 = 6.709 | 0.551 = 0.069
UNIT 0.062 +£0.014 | 24.529+9.011 | 0.539 +0.073
MUNIT 0.057 £ 0.013 | 24.378 £7.515 | 0.562 + 0.055
NICEGAN | 0.050 +0.011 | 25.085+7.314 | 0.613 = 0.060
RegGAN | 0.051+£0.011 | 25.207+7.076 | 0.601+0.061
Ours 0.031+0.011 | 27.516 + 5.938 | 0.781 + 0.076

Table 1. Average NMAE, PSNR (dB), SSIM for tMR to cMR
image translation.

We show the results of tMR to cMR translation in Ta-
ble 1. Our method outperforms all the baseline methods

J
(c) warped SR (e) Ours

25 ¢ /
(b) cMR (d) warped cMR ~ (h) MUNIT (i) NICEGAN (j) RegGAN

Figure 3. Results of tMR to cMR translation. (a) tMR; (b) cMR
(also as the style reference); (c) warped style reference by M; (d)
warped cMR by ¢; (e)~(j) translated fake cMR from (a). Red box
shows unaligned region of cMR with tMR. Blue box shows con-
tent distortion region for baseline methods. Yellow box highlights
area where baseline methods fail to keep style coherence.

for the NMAE, PSNR and SSIM metrics by a large mar-
gin. We also show an image translation example in Fig. 3.
We can see clearly that all the baseline methods fail to pre-
serve the content of the input tMR image. As shown in
the area highlighted by the blue box near to the Myo wall
which is our ROI, if the translated image has content dis-
tortion, the downstream registration performance will be
harmed. While our method can successfully obtain content-
preserving 121 results, we also notice that, the translated im-
age has a better style coherence with the cMR image to be
registered, than the results of the baseline methods. As in-
dicated by the yellow box, having an SR image input to the
generator, our method leverages the style of each specific
SR and directly transfers it into the translation result. Note
that, we use the image to be registered as the SR image,
which might be unaligned with the source image. How-
ever, with the cross-domain correspondence module and a
content-preserving loss, our method can learn to align the
SR image features with the source features, indicating by
the good alignment between the correlation matrix warped
SR image in Fig. 3 (c) and the source image in Fig. 3 (a).

4.5.2 Accuracy of tMR and cMR Registration

We show the results of cMR to tMR registration in Ta-
ble 2. We also show a registration example in Fig. 4. See
more detailed results in the Supplementary Material. Af-
ter rigid registration using the DICOM header, rigid motion
due to scan positioning change could be corrected, which
is demonstrated by the close locations of the liver dome
indicated by the blue lines. However, the low Dice score
after rigid registration suggests that large remaining defor-
mations still exist between the two separate scans.

For all the learning-based baseline methods, the NMI
similarity metric-based models outperform the NCC-based
ones, suggesting that for multi-modal registration, NMI is
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Method Dice (%) 1 | HD (mm) ] | det(Jg) <0 (%) | Time (s) |
Rigid 63.4+£16.3 4.35 £2.90 - -
MIND 72.6 +14.7 | 3.17+£2.36 0.00 £+ 0.00 7.428 £ 2.457
VM (C) 63.7£15.5 4.09 £2.78 3.80 +0.93 0.003 + 0.045
VM (I) 72.0+13.3 3.46 + 2.41 0.03 £0.05 0.003 £ 0.045
VM-dif (C) | 66.0+14.9 4.05 £ 2.81 0.03 £0.01 0.005 £ 0.048
VM-dif (I) 72.3+13.0 3.37+2.16 0.12£0.33 0.005 £ 0.040
MIDIR (C) | 67.8 £15.4 4.03 £ 2.92 0.00 £ 0.00 0.008 £+ 0.040
MIDIR (I) 72.7+13.0 3.32+2.13 0.10 £0.29 0.009 £ 0.053
Ours 7T74+11.9 | 2.54+1.89 0.01 £0.01 0.068 £0.174

Table 2. Average Dice, Hausdorff distances (HD), percentage of
pixels with non-positive Jacobian determinant on the image plane
and running time for multi-modal cMR and tMR image registra-
tion. ‘C’ means ‘NCC’, ‘I’ means ‘NMI’.

46. 68. 46.1
(d) VM (NCC)  (e) VM (NMI)  (f) VM-dif (NCC)

W 80.4
(a) tMR (c) MIND

- : 5 89.3
(g) VM-dif (NMI) (h) MIDIR (NCC) (i) MIDIR (NMI) (j) Ours

46.7
(b) cMR

Figure 4. Results of cMR registration to tMR. (a) tMR; (b) cMR
after rigid registration; (c)~(j) warped cMR from (b). Red/yellow
contour shows ground truth/warped Myo wall on tMR/warped
cMR. The right bottom of each cMR image shows the Dice score.

more suitable than NCC. The MIND method achieves rela-
tively good performance by using the MIND features-based
similarity metric and multi-resolution (3 levels) optimiza-
tion to cope with large deformations. Our method is much
more accurate than MIND since the cascaded ViT can pre-
dict both the affine and non-rigid deformations. Another
observation is that the diffeomorphic registration models
perform better than deformable models, due to the smooth-
ness and invertibility property of the diffeomorphic motion
fields. The MIDIR model improves the registration perfor-
mance from VM-dif model by using B-spline FFD parame-
terization of the SVF, which makes the diffeomorphic mo-
tion field smoother. Our registration module is simpler than
MIDIR, since we have no B-spline FFD parameterization
of the SVF. We benefit from the diffeomorphic registration
model and the NCC similarity metric, which maintain the
average portion of our model’s non-positive Jacobian de-
terminants on the image plane close to zero and ensure the
learned deformation field is close to a one-to-one mapping.

4.5.3 Running Time Analysis

In Table 2, we report the average inference time for tMR and
cMR image registration by using an Intel Xeon CPU and

an NVIDIA Quadro RTX 8000 GPU for different methods.
While the unsupervised deep learning-based methods uti-
lize both CPU and GPU during inference, the conventional
method (MIND) only uses the CPU. Clearly, the learning-
based method is much faster than the conventional iteration-
based MIND method. Our method can complete the infer-
ence of an image pair registration in far less than one sec-
ond. Although our method is slower than other learning-
based methods, we additionally obtain the translated fake
cMR images, which could be used in other tasks, such as
cross-domain image segmentation.

4.6. Ablation Study

4.6.1 Efficacy of Content-Preserving Loss and En-
forced Style Consistency

121 Registration
Model | Ls | SR —psNR@B)T | Dice (%) T
Al 25.030 = 7.720 | 74.0 £13.1
A2 v 24.028 £ 6.004 | 74.7+13.7
A3 v | 29706 £9.931 | 72.0+13.6
Ours vV | v | 27516+5.938 | 77.4+11.9

Table 3. Results of ablation study for content-preserving loss and
style reference for unsupervised sample-specific style learning.

(b) cMR () Al

(f) A3’s warped SR (g) A3’s corr (h) Ours (i) Our warped SR (j) Our corr

Figure 5. Results of cMR and tMR translation and registration. (a)
tMR and query points; (b) cMR; (c)~(e), (h) fake cMR translated
from (a); (f), (i) warped style reference by M; (g), (j) learned
correspondences in cMR for the query points in (a). Red/yellow
contour shows ground truth/warped Myo wall on tMR/(fake) cMR.
The right top of each (fake) cMR image shows the Dice score.

To verify the efficacy of components in our 121 module,
we trained different models shown in Table 3. With these
121 modules, we then trained their corresponding registra-
tion modules (ViT'Rs) in the second stage to test the in-
fluence of the I2I module on downstream registration. We
show an visual example in Fig. 5. See more detailed re-
sults in the Supplementary Material. From Table 3 and
Fig. 5, without the content-preserving loss (Al and A3),
content distortion of the translated fake image is unavoid-
able (pink arrows). A3 has the SR input into the generator
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and gives the best 121 quality under the three metrics. How-
ever, the output fake image has the most severe content dis-
tortion, thus deteriorating the registration performance the
most. As shown in the white boxes and the warped style
references in Fig. 5, while A3 fails to learn plausible cross-
domain correspondences, our model can learn correct cross-
domain correspondences without supervision and generate
both content-preserving and style-coherent fake cMR im-
ages. A2 is the same as the LSeSim model in [50], which
is content-preserving, but it cannot learn the proper style of
each cMR image to be registered without the SR (red ar-
rows). By comparing our model with A2, we note how the
enforced sample-specific style consistency during 121 can
significantly boost the downstream registration accuracy.

4.6.2 Efficacy of ViT for Registration

To verify the efficacy of the ViT-based embedding for reg-
istration, we replaced it with the pure convolutional layer
turning the TransUnet into a U-Net and named model B1.
We trained B1 with the same generator as our model which
was trained in the first stage. From Table 4, with the long-
range dependency modeling ability of ViT, it outperforms
B1. Although B1 performs better for the affine registra-
tion task than ours, the non-rigid registration can benefit
more from the ViT than the CNN. Besides, the design of
cascaded ViTs in our method ensures a global optimum
which predicts a better composed deformation field. Also
note that, the baseline registration models in Table 2 only
have the non-rigid registration part. Our style reference-
augmented I2I module could learn sample-specific style of
each cMR image to be registered, making the downstream
mono-modal registration more accurate. Even only with the
non-rigid registration, both B1 and our model significantly
outperform the baseline methods in Table 2.

. Dice (%) 1
Model | CNN | ViT Affine Non-rigid Composed
B1 v 70.5+14.4 | 75.0£13.7 76.7+£12.5
Ours v 69.6+14.5 | 754+13.5 | 774+ 11.9

Table 4. Ablation study results of CNN- and ViT-based feature
embedding for the registration module.

4.6.3 Efficacy of Shared Feature Embedding for Cas-
caded Affine and Non-rigid Registration

To study the efficacy of shared TransUnet for feature em-
bedding during cascaded affine and non-rigid registration,
we first created models C1 and C2, in which the TransUnet
was replaced by only an encoder of TransUnet (TransEn-
coder) for affine registration. Note that the TransEncoder
was unshared with the encoder of subsequent TransUnet for
non-rigid registration in C1, but shared in C2. Then we

created model C3, in which two different TransUnets were
used for the two stages of registration. We trained C1, C2,
C3 with the same generator as our model which was trained
in the first stage. From Table 5, we can note that TransUnet
is more efficient than TransEncoder for cascaded affine and
non-rigid registration. We also note that the shared embed-
ding models can not only significantly reduce the learning
parameters but also effectively avoid overfitting caused by
excess of network parameters.

Model | Affine | Non-rigid | Shared | Params (M) | | Dice (%) 1

Cl1 TE TU 0.173 76.7+£12.2
C2 TE TU v 0.120 76.9 +12.9
C3 TU TU 0.237 7T7.0£13.1
Ours TU TU v 0.119 77.4+11.9

Table 5. Ablation study results of different feature embedding
fashions for cascaded affine and non-rigid registration. ‘TE’
means ‘TransEncoder’; ‘TU’ means ‘TransUnet’.

4.6.4 Efficacy of Two-stage Training

From Table 6, with the content-preserving loss and the style
reference input, if we train the generator and the registra-
tion network jointly (D1), content distortion could occur in
the translated fake image and impair the downstream regis-
tration performance. Two-stage training decouples the 121
task and registration task, avoiding the trivial solution of
the joint training scheme. Our method thus ensures both a
robust sample-specific style consistency and accurate multi-
modal registration results.

. 121 Registration
Model | Joint | Two-stage PSNR (dB) T Dice (%) T
D1 v 27.435+5.683 | 76.1+13.1
Ours v 27.516 £5.938 | 77.4+11.9

Table 6. Ablation study results of joint and two-stage training
schemes for 121 and registration.

5. Conclusion

In this work, we proposed a novel multi-modal medical
image registration method. We proposed an unsupervised
exemplar-based image-to-image translation module to aug-
ment the sample-specific style coherence of the translated
fake image with each image to be registered. Further, we
proposed a cascaded ViT to estimate large affine and non-
rigid deformations between modalities. Extensive experi-
ments on a real clinical tMR and cMR dataset verified the
efficacy and efficiency of our method.
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