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Figure 1. We propose a novel neural scene representation based on directional distance function (DDF), which enables us to replace sphere
tracing for rendering images from a signed distance function (SDF) model. We learn the SDF and DDF models on a class of 3D shapes.
During inference, given a depth map (top row), we reconstruct 3D shapes by means of our proposed algorithm (FIRe) which is 15 times
faster (per iteration) and more accurate than competing methods. In the last two rows, we show images of reconstructions rendered using

our DDF model with just a single network evaluation per ray.

Abstract

Neural 3D implicit representations learn priors that are
useful for diverse applications, such as single- or multiple-
view 3D reconstruction. A major downside of existing ap-
proaches while rendering an image is that they require eval-
uating the network multiple times per camera ray so that
the high computational time forms a bottleneck for down-
stream applications. We address this problem by introduc-
ing a novel neural scene representation that we call the di-
rectional distance function (DDF). To this end, we learn a
signed distance function (SDF) along with our DDF model
to represent a class of shapes. Specifically, our DDF is de-
fined on the unit sphere and predicts the distance to the sur-
face along any given direction. Therefore, our DDF allows
rendering images with just a single network evaluation per
camera ray. Based on our DDF, we present a novel fast
algorithm (FIRe) to reconstruct 3D shapes given a posed
depth map. We evaluate our proposed method on 3D recon-
struction from single-view depth images, where we empiri-
cally show that our algorithm reconstructs 3D shapes more
accurately and it is more than 15 times faster (per iteration)
than competing methods.

1. Introduction

LI LI

The field of generating 3D shapes [26,32,33,54] has seen
unprecedented growth in the recent past due to novel neural
network architectures. Yet, there are many open challenges
for generating realistic 3D shapes, such as data availability
and 3D shape representations. Further, using the 3D gener-
ative models for accurately reconstructing 3D shapes given
partial observations such as depth maps or point clouds is
still in the early stages.

Implicit scene representations have proven to be the most
suitable data representations for generating 3D surfaces us-
ing deep neural networks. Among others, signed distance
functions (SDFs) are commonly used. SDFs represent a 3D
shape as the level-set of a function, {z € R?| f(z) = 0}.
At every point in space, the SDF of a 3D shape evaluates
to the minimum distance to the surface. The sign indicates
if the point is inside or outside the shape. For rendering
an image of the shape represented by SDFs, one must per-
form a line search along each camera ray to find the distance
to the surface. Sphere tracing [18] accelerates this process
for SDFs by exploiting the minimum distance property of
SDFs. Inverse rendering is the process of optimizing for the
shape and other properties from one or many images [52].

Substantial progress has been made towards single shape
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or scene reconstruction [27, 52] from dense multi-view im-
ages using inverse rendering. Some of the models [4, 6, &,

,44] trade off memory for speed enabling real-time ren-
dering. However, these models cannot be used as priors as
they reconstruct a single scene. Further, the major focus of
these methods is to generate novel views of a scene rather
than reconstruct geometry. It is an open problem to train
such models to represent different shapes with accurate ge-
ometry.

In contrast, a 3D generative model learns a conditional
implicit function of shapes. In addition to a 3D point, a
3D generative model accepts a latent code as an input to
represent different shapes. DeepSDF [32] learns a class of
shapes using an autodecoding framework. Models trained
on many shapes can be used as priors to reconstruct shapes
from partial observations, such as images, at test time. We
use inverse rendering to optimize for the latent code of
a generative model during inference. However, for each
optimization step, we need to render an image by sphere
tracing through a neural implicit representation as done in
DIST [24].

Novel Scene Representation: In this paper, we pro-
pose to accelerate inverse rendering algorithms with learned
models by avoiding sphere tracing at each iteration of the
algorithms. Towards that, we propose a novel scene rep-
resentation called directional distance function (DDF). We
propose to use DDF along with the signed distance func-
tion (SDF). We assume that the 3D shapes that our mod-
els represent are inside the unit sphere. While the SDF is
defined everywhere, our DDF is defined on the surface of
the unit sphere. Our DDF model learns to predict the dis-
tance to the object’s surface along rays cast in all directions
from the unit sphere’s surface. DDF has two output com-
ponents - the directional distance, and the probability of the
ray hitting the surface. The learned DDF model accelerates
inverse rendering algorithms by reducing the number of net-
work evaluations required to find the object surface to 1 for
each iteration.

Enabling Fast Inverse Rendering: We propose a shape
optimization algorithm that utilizes our proposed neural
representation to reconstruct the 3D shape given partial
observations, such as single view depth. As our DDF
model replaces the sphere tracing algorithm, our algorithm
is 15.5x faster than competing methods. Our contributions
are as follows.

1. A novel neural scene representation, DDF defined on the
unit sphere, for rendering images from our SDF model
during inference with 1 forward pass through the model.

2. An algorithm to reconstruct 3D shapes from single view
depth maps using our DDF and SDF models, which is
15.5x per iteration faster than competing methods.

2. Related Work

In the following, we introduce relevant papers from
different domains.

Implicit Representations: Implicit shape representa-
tions, in particular SDFs, have been studied for decades
as they can represent shapes with arbitrary topology
[12,15,21-23,29,35,42,43]. Recently, neural network-
based implicits [26, 32] have proven to be a compact
way to represent SDFs. DeepSDF [32] learns the SDF
values using an autodecoder architecture conditioned on
a learned latent code set to generate different 3D shapes.
OccupancyNet [26] and IMNet [9] learn object surfaces as
decision boundaries using an autoencoder architecture. In-
stead of encoding global priors, local priors [10,20,33,51]
have been explored to handle large-scale scenes and more
detailed representations. However, these rely on generating
large feature grids using neural networks. Further, for
each new downstream task such as reconstructing from
a depth map, or even handling a change in input image
resolution, they need to train a new encoder. Differ-
entiable rendering-based methods [31, 41] alleviate the
need for 3D supervision by learning from images. Pixel
features [37, 38, 55] have been used to condition implicit
representations for novel view synthesis given a single
image. However, they cannot model the geometry of the
objects satisfactorily. Other novel view synthesis [40]
methods suffer from similar problems. Applications of
implicit representation on human [37,38,46,47], face [54],
and hair [36, 54] modeling are also explored and have
achieved superior results to classical methods.

Directional Distance Prediction: Recent efforts to-
wards predicting the occupancy density distribution along
the rays [34], or, alternatively, a region along the ray instead
of distance [30], have proven to accelerate volumetric ren-
dering. However, they only model single objects and they
still need to perform local sampling for volumetric render-
ing. We note CPDDF [ 1], PRIF [16], NeuralODF [19], and
SDDF [56] as our contemporary works, which propose to
use DDF as a standalone representation. However, unlike
these methods, we use both SDF and DDF for high-quality
geometric details while defining the DDF only on the sur-
face of the unit sphere.

Single View 3D Reconstruction: Single-view recon-
struction is generally an ill-posed problem, general solu-
tions [17, 48,50, 53] exploit low-level geometric or photo-
metric properties, whereas shape-specific methods [3, 31,

,40,45,49,51,55] solve the problem using learned pri-
ors [2,25,32]. The closest to our algorithm is DIST [24],
which reconstructs 3D shapes given a depth map. However,
it requires multiple evaluations per ray, whereas ours needs
only a single evaluation.

3078



3. Method

We learn the two neural representations, DDF and SDF.
The DDF model represents the distance to the surface of
an object from a point on the unit sphere along a given di-
rection, and the probability of the ray hitting the surface.
This helps avoid the computationally intensive sphere trac-
ing step for rendering images, especially for solving image-
based inverse problems such as 3D reconstruction. In the
following, we first introduce our representation, followed
by our network architecture, and then our proposed algo-
rithm.

3.1. Directional Distance Representation

Our 3D shape representation consists of two compo-
nents: (i) a distance d to the surface of an object along a
given direction r from a point p on the surface of the unit
sphere, called the directional distance (DDF) and (ii) the
signed distance s at every point inside the unit sphere en-
closing the object (SDF).

The directional distance d and signed distance s are re-
lated as follows - outside the surface of the object the signed
distance is positive and the value is the minimum distance
between a given point z € R? and the object surface (in any
given direction), i.e.,

SDF(x) = min DDF(z, ),

where s = SDF(z) is the signed distance at the point
x € R3, r € S?is a given direction from z pointing towards
the surface of the object.

In our proposed directional distance representation, we
learn to predict the DDF on the unit sphere p € S? along
with a ray-hitting probability o € [0, 1]. Further, the value
of SDF at the distance predicted along a hitting direction r
must be 0, or

SDF(p + dy—17) = 0,dy—; = DDF(p,7). (1)

In the following, we introduce our neural model that learns
to represent this function along with SDF, and show how we
exploit the relationship defined in Eq. (1).

3.2. Network

Our model consists of two shape representations, SDF
and DDF. For both, we use neural networks conditioned
on latent codes to represent multiple shapes. Further,
we make our generative model of 3D shapes viable to
represent shapes with much higher accuracy. We achieve
this by conditioning them on high-dimensional features
that are sampled from learned feature planes for each shape
category, as shown in Fig. 2. Our network architecture is
inspired by Pi-GAN’s [5] implementation’.

Thttps://github.com/marcoamonteiro/pi-
GAN/blob/master/siren/siren.py#L255

Latent Code (2)

3x 2D Feature 15x 2D Feature
Grids(fps) Grids(fpq)
%ﬂ SDF DDF, hit
(s) i (d, 0)
MLP
t . A
3D point () 3D point on Sy, direction (p, )
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Figure 2. SDF and DDF Models: Our SDF model generalizes with
high-dimensional feature inputs from 3 2D feature grids (fps) by
sampling from the grid with bilinear interpolation given a 3D point
(z € R?) and a latent code (2). Similarly, our DDF model takes
as input a point on the unit sphere and a direction ((p,r) € R)
along with a latent code (z) to generalize with features from 15 2D
feature grids for each shape category. The SDF and DDF models
have a shared latent space for each shape category.

2D Feature Grids: High-dimensional features stored in a
high-resolution grid have proven to be effective in reducing
rendering times for representing complex shapes [8,39,44].
For example, given a 3D point z € R?, we sample a feature
from a learned high-resolution grid, e.g. 2563, by fetching
8 nearest features in the grid and trilinearly interpolating in
the cube formed by the 8 neighboring features. We assume
that the function we learn is linear in the high-dimensional
feature space, and process the features using an MLP to
obtain the value of the function at the given 3D point.
Recent efforts [0, 8] to factorize the 3D grids into three
2D grids have proven to be effective. We elucidate in the
following text.

2D Feature Grids for SDF:

For 3-dimensions: A feature grid M,,, < X
RX with resolution N and K-dimensional features can be
factored into three 2D feature grids (M, My, M.,) €
R3XNXN o RE, Performing this factorization, we assume
that the distribution of high-dimensional features in (z,y)
is independent of z, (y, z) is independent of z, and that of
(2, x) is independent of y. We expect that the MLP handles
cases where this assumption is broken. For SDF, we define
three feature grids, (M5, M:,, M3,) € R¥*N XN x RK.

Given a 3D point x € R°, we retrieve the features
2

RNXNXN

S S Z S S S S

mag, ~ Mz, =, my, ~ Mg, and mZ, ~ M7, where
s s s K 3 :

My, My, , and mZ, € R™. Using this, we define a func-

tion fP% : R3 — R3*K ag

[P (@) = (mg,, my,, mZ,). 2

2D Feature Grids for DDF: Our DDF representation is
defined on a 6D grid, therefore we need to factorize a

2By ‘~’ we mean to sample 4 neigbouring features of a given 2D loca-
tion in the grid and bilinearly interpolating between the features.
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6D grid into 2D grids. The number of 2D grids we need
is (§) = 15, which is the number of 2D tuples we can
make from a 6D tuple i.e., (pg, Py, Pz, T, Ty, =) factor-

izes into {(ps,py), (Py,P=),s..., (s, 72)} . For points
p = (Pz,py,pz) € S? on the unit sphere, and di-
rections r = (rg,7y,7.) € S? we define 15 fea-

ture grids, (M, ,...,MZ, ) € RSNV RE

Given a 6D tuple (p,7) € RS, we retrieve the fea-

d d d d
tures gy, o~ My, ..., andmg .~ M7, where
mg , ,...,mi . € R¥. Using this, we define a func-
tion, fP? : R6 — RI5*K a5
d
fp (p,?") = (mpzpy PR amrzrz)~ (3)

Without this factorization, the memory required to store
a 6D grid scales as O(N®) for 2D featured grids, and is
computationally highly inefficient. The 2D feature grids’
memory requirements scale quadratically O(N?) with
the grid resolution. The 2D feature grids, f?(p,r), and
fP%(x), are learned per shape class and not per object.

SDF Model: The SDF model takes as input a latent code
per shape z € RZE, a high-dimensional feature vector
fps(x) € R¥*E from Eq. (2), and a point inside the unit
sphere z € R3. With that, it outputs an SDF value s € R.
We learn the SDF model, f, : {R?, R¥ R3*X} — R, using
an MLP with parameters O as

fS(I,Z,fps(l’);@S) =Ss. 4)

DDF Model: The DDF model takes as input a latent
code (per shape) z € RF¥, a high-dimensional feature
vector fpq(z) € RY¥*E from Eq. (3), a tuple with a
point on the unit sphere, and a direction (p,7) € RS.
The model outputs a DDF value d € R,, and a ray
hit probability ¢ € [0,1]. We learn the DDF model
fa: {RE,RE RY*EY 5 R, [0,1]} using an MLP with
parameters O as

fa((p;7), 2, fra(2);©4) = (d, o). 5)

We encode the inputs to our models, x and (p, r), with po-
sitional encoding from NeRF [27].

3.3. Training

We train a model for each class of the ShapeNet
dataset [7].
Data Preprocessing: For training the network, we use
the ground truth signed distance and the ground truth
directional distance supervision. We use the preprocessing
pipeline from DeepSDF [32] to sample about 1 million
points for SDF supervision. We randomly sample 1 million
points on the unit sphere and random directions that point
to the surface of an object using the object’s point cloud

for DDF supervision. We also sample 500k points and
random missing directions. We render the 1.5mil rays
using Trimesh [13] to obtain ground truth distances and ray
hit supervision.

Losses: We train the network with the following losses:
SDF loss £s;. We supervise the SDF network to predict
signed distances s (Eq. (4)), with ground truth SDFs sgr
using

Ls(s)=|s—serl- (6)

DDF loss £;. We learn the DDF model by supervising
the model to predict directional distances d (from Eq. (5))
which are close to their corresponding ground truth dis-
tances dgr using

Lq(d) = ||d — darl|1 - 7

Ray hit loss £,. We supervise the ray hit predictions o
from the DDF model with the ray hit ground truths oG
using the binary cross entropy loss as

Lo(0) =—(1—o0gr)log(l — o) —ogrlog(o). (8)

TV regularizer L£;,. We enforce that the gradient of each
of the 2D feature grids is small so that the features learned
in the grid result in shapes that are not noisy, for both the
feature grids of DDF and SDF models. The loss is given by

Lio(M) = |IVM; 24+ > IVM{|l2, (9

where the gradients, VM, and VMid, are computed
using finite differences similar to how it is done for 3D
feature grids [14], ¢ = xy, yz, zz for SDF feature grids and
1 = PuPys PyP=z, - - - , 7275 for DDF feature grids.

Track-SDF Regularizer. The predicted directional dis-
tance and the signed distance for an object need not agree,
therefore, we additionally constrain that the DDF prediction
results in a point close to the surface predicted by the SDF
using the Track-SDF regularizer. Towards that, we compute
the points using the predictions of the DDF model as p + dr
for point and direction pairs that point to the object surface.
We enforce that these points are close to 0 using

Lis(d) = | fs(p+dr)ll1, (10)

where (p,r) are point-direction tuples that point to a sur-
face, and d is the predicted directional distance for the
point-direction tuples as in Eq. (5). Note that we only train
the DDF model, and not the SDF model, with this loss.

Latent code regularizer £;. As we use an autodecoder
framework [32], we enforce that the latent codes for differ-
ent shapes are close to each other. This can be achieved by
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penalizing latent codes with large magnitudes so that latent
codes are close to zero, i.e.,

Li(z) = |22, (1D

where z is the latent code for a given shape. Note that
SDF and DDF have the same latent code for a given shape.
Training loss. The complete training loss is given as

L=w,Lls+wglyg+ wsLy

(12)
+ wtvﬁtv + wtsﬁts + 'UJl,Cl )

where ws, Wy, Wy, Wiy, Wes, and wy are the weights for the
SDF loss, DDF loss, Ray hit loss, TV regularizer, Track-
SDF regularizer, and latent code regularizer respectively.
Optimization: We optimize the loss in Eq. (12) for the neu-
ral network weights, feature on the grid, and shape latent
codes, O, O4, M, and Z, where Z = {z;]¢ = 1...J}is
the set of latent codes representing all the J training shapes,
O, are the learnable network parameters of the DDF model
fa, ©s are the learnable network parameters of the SDF
model f,, and M = (M?*, M?) are the SDF and DDF
feature grids where M*® = {M? | i = xy,yz, zx} are the
SDF feature grids and M? = {M@ | i = pypy, ... , 7272}
are the DDF feature grids.

3.4. Reconstruction from Single-view Depth Maps

Our autodecoder framework allows us to work with any
type of data without having to learn a new encoder for each
type of data. Hence, during test time we merely need to
optimize for the latent code z, while keeping the network
and feature grids fixed. The highlight of our reconstruction
algorithm is that it obviates the need for sphere tracing at
every iteration of the optimization.

For 3D reconstruction, we assume a depth map with an
object mask and a given camera pose as input. We obtain
the points of intersection of the rays r from the camera with
the unit sphere as p. At every iteration, we do the following:

1. with the latent code z corresponding to the current iter-
ation, evaluate the DDF model for the directional distance,

d7 g = fd((p7 T)a fpd(pa T)? Z) fromp along r

2. compute the 3D point inside the sphere predicted by the
DDF model as z = p + dr

3. evaluate the SDF model at = as s = fs(z, fps(2), 2)

4. optimize for the latent code z of the object from the given
depth map using the loss function,

Lree =wsLls +wpLlp +wLy, (13)

where Lg is the silhouette loss, L is the depth loss, and £;
is the regularizer (Eq. (11)) for learning the latent code with
wg, wp, and wy as their respective weights. Depth loss and
silhouette loss are explained in the following.

Depth Loss £p. The depth loss is the error between the
given depth A\gr and the predicted depth A, i.e.

Lp(A) =X =Aerll- (14)

We obtain the predicted depth using Au = Px, where u are
the image coordinates, P is the given projection matrix of
the camera and z is the 3D point obtained in step 2 above.
Silhouette Loss £g. The silhouette loss is enforced as

Es(s) = ESSJr + LSS, + Ly, (15)
Ls,. (m) = s, m) (16
Ls, (m)=|l[{s,1=m)| =], (17)

where m € {0, 1} is the given image mask, s is the pre-
dicted signed distance from step 3 above, 7 is the truncation
distance for the SDF model, o is the predicted ray hit prob-
ability from the DDF model in step 1, and £, is the DDF
silhouette loss from Eq. (8). The idea behind the loss is that
where the rays hit the surface, the SDF must be as low as
possible and where the rays don’t, SDF must be high.

4. Experiments

In this section, we evaluate our method in different set-
tings, reconstruction from single-view depth maps, and
RGB videos. We evaluate the design choices of our method
and the reconstruction algorithm in the ablation study. We
show reconstruction from silhouettes and provide imple-
mentation details in supp. mat.

4.1. Reconstruction from Single-view Depth Maps

Our DDF model predicts distance to the surface of a
shape given the latent code representing the shape, the ray
origin, and the ray direction. Therefore, it can be used to re-
place the expensive sphere tracing algorithm during inverse
rendering with learned SDF models.

We evaluate this advantage of our method by recon-
structing the 3D shape given a depth map with a camera
pose. We render a depth image with the given camera pose
from our network and optimize for the latent code as dis-
cussed in Sec 3.4. We test our trained models on the first
200 test instances of different classes of ShapeNet shapes
— airplanes, cars, chairs, lamps, sofas, and tables. For the
images, we obtain the camera parameters of the first image
of the rendered ShapeNet dataset from 3D-R2N2 [11] and
render a depth map with the same resolution, 137 x 137.
For comparisons, we run the official implementations of IF-
Net [10] and DIST [24]. With IF-Nets, we complete partial
point clouds obtained by un-projecting the depth maps.

Qualitative Results: We show qualitative results in
Fig. 3. It can be seen that our method can reconstruct
3D shapes accurately given a single view depth image.
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Figure 3. 3D shapes reconstructed from a given depth map. Each column shows reconstruction results for different shapes. Top row: Given
depth map. Upper-middle rows: views rendered with 1 forward pass from our DDF model. Middle rows: views of 3D shapes reconstructed
by our SDF model. Lower-middle rows: views of 3D shape reconstructed using DIST [24]. Last rows: views of 3D shapes reconstructed
using IF-NET [10]. Our method outperforms existing methods, as it can, for example, better model fine-scale details (see e.g. the legs of

the tables or chairs, or the geometry of the airplanes)

Given our feature-based network architecture, and our algo-
rithm, our reconstructions are more detailed compared with
DIST [24]. Further, our method is about 15.5x faster per it-
eration on average (see Tab. 1). We compare our reconstruc-
tion with those of IF-NET [10], a state-of-the-art encoder-
based neural implicit representation. While IF-NET leads to
plausible reconstructions in the observed locations, where
there are valid depth maps, it does not complete unobserved
shapes, as shown in the last two rows of Fig. 3.
Quantitative Results: We show the quantitative re-
sults in Tab. 1. We use the chamfer distance defined in
DeepSDF [32] to compute the accuracy. Please see supp.
mat. for more details. The results are consistent with qual-
itative ones, as our method can fit well to the given depth
maps and obtain more plausible reconstructions compared
to DIST [24]. Moreover, we outperform DIST in all the

classes while being 15.5x faster. Further, as IF-NET [10]
does not complete the shape in unobserved areas, we signif-
icantly outperform IF-NET quantitatively and qualitatively.

Model Evaluation: We compare our model with the
state-of-the-art directional distance representation methods,
PRIF [16], Depth-LFN [40], and NeuralODF [19] on recon-
struction from depth maps. PRIF predicts the directional
distance from the perpendicular foot of a camera ray. LFN
predicts RGB given Pliicker coordinates and ray direction.
NeuralODF predicts distance to the surface, and ray hit pre-
diction, given a point and direction in 3D space. As pre-
dicting DDF everywhere in space is a harder task, for a
fair comparison, we restrict the input to NeuralODF to the
unit sphere. Further, we found that predicting ray hit from
the final layer results in higher accuracy for NeuralODF;
hence, we use this model. For a fair comparison, we train
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Method || Ours | Ours DIST IF-NET | Ours DIST Ours | Ours | DeepSDF
SDF | DDF | Our SDF \ DeepSDF DeepSDF || DDF

Metric 1000x CD | ms/iteration | ms /256 x 256 frame |
Car 0.55 | 0.38 0.60 0.61 4.09 17 282 62 23 132
Chair 0.74 | 0.64 1.96 1.92 545 18 236 58 23 118
Lamp 2,50 | 4.81 6.39 7.34 6.05 15 281 65 22 120
Plane 0.18 | 0.32 0.69 0.94 2.08 15 231 56 22 116
Sofa 0.77 | 0.67 1.64 1.81 9.43 18 238 61 21 113
Table 1.28 | 0.83 3.02 2.79 4.67 18 283 56 23 126

Table 1. Quantitative results of comparisons of our method with DIST [
forms DIST and IF-NET in all the shape classes, showing that our models and our depth-fitting algorithm lead to better reconstructions.
DIST performs marginally better in most classes with our SDF model compared with DeepSDF’s, showing that the majority of improve-
ment is due to our method and not the SDF model. We compare the time per optimization step with DIST, where ours is on an average
15.5x faster than DIST, as shown in the middle-right columns. Finally, in the right-most columns, we show that we can render 256 x 256
images in real-time with just one forward pass using our DDF representation. Rendering times include time for normal computation.

] and IF-NET [

] (middle-left columns). Our method outper-

LFNs with just the depth and ray hit supervision so that the
model can predict dense depth. We train the three models
on the first 256 shapes of the training set and test them on
the first 64 shapes of the test set, of each shape class. We
follow this split to closely replicate the number of train and
test shapes in PRIF. We evaluate the methods quantitatively
using chamfer distance between the predicted and ground
truth shapes.

We optimize for latent code using the algorithm in
Sec. 4.1 during inference with our method. For other meth-
ods, we optimize for the latent code with the losses from
Egs. (14) and (8). Our method marries the best of both
the models, view-consistent geometric details from the SDF
model and 1 forward pass rendering from the DDF model.
Owing to this, our model outperforms the state-of-the-art
DDF models by a large margin quantitatively, as seen in
Tab. 2, and qualitatively (see supp. mat. Fig. 3).

4.2. Ablations

In this experiment, we evaluate the design choices in our
method. We train the models with the first 256 shapes from
the training split and test on the first 64 test shapes of the
sofas class from the ShapeNet dataset. We report 1000 x
the chamfers distance between reconstructions and ground
truth in Tab. 3.

Reconstruction Algorithm: We train our models as de-
scribed in Sec. 3.3. We reconstruct 3D shapes from depth
maps (see Sec. 4.1) using our learned models. We ablate
the components of losses introduced in Sec. 3.4. Quantita-
tive results are shown in Tab. 3 and qualitative results are
shown in Fig. 4. (DIST) We run the single view recon-
struction algorithm with DIST on our trained model. As
DDF and SDF share a latent space, we can also evaluate
DDEF. Quantitatively DIST underperforms as we have also
seen in Tab. 1. (wo Lg) Without any silhouette losses, our
method performs poorly, showing the impact of silhouette

Ours PRIF | LFN | Neural
Class | SDF DDF ODF
1000x CD | (Mean)
Cars 0.71 0.57 | 0.85 | 0.66 0.83
Chairs | 1.30 1.15 1.83 1.56 1.78
Lamps | 498 6.52 | 9.22 | DNC 7.68
Planes | 0.26 0.51 0.78 | 0.59 0.68
Sofas 0.78 0.78 1.57 1.08 1.57
Tables | 1.49 140 | 2.30 1.63 2.60

Table 2. Quantitative comparison of our model with PRIF [16],
Depth-LFNs [40], and NeuralODF [19] on reconstruction from
depth maps. We train the models on different classes of shapes
and utilize them in the autodecoder framework to optimize for
shapes from a given depth map during inference. We report the
mean chamfer distance between the reconstructed and ground truth
shapes. Our model outperforms competitive DDF models in all
the classes. While our model maintains the salient features of
DDF, such as 1 forward pass rendering, it can also represent view-
consistent geometric details using the SDF model. (Depth-LFN
did not converge for lamps class with 256 shapes.)

losses on reconstruction quality. (wo L, ) Without the fore-
ground SDF silhouette loss, the background silhouette loss
overpowers the reconstruction and leads to missing regions,
as shown in Fig. 4, 4" column. (wo £,_) Without a back-
ground silhouette loss, the SDF reconstruction can be larger
than the masks, leading to poor accuracy. (wo Ls, + L,_)
Without any SDF silhouette losses, the SDF reconstructions
miss structures leading to poor accuracy. (wo L) Without
the DDF silhouette loss the DDF renders are inconsistent
with SDF reconstructions. Since we use DDF for rendering
the SDF, this also leads to a decrease in the reconstruction
quality of the SDF.

Model: We perform ablation studies on our models and
losses presented in Sec 3. Qualitative results are shown in
Fig. 4, and quantitative results are shown in Tab. 3. (wo
shared latent space) Independent optimization for latent
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Reconstruction Algorithm Model and Losses

DIST wo Ls wo £55+ woLls, wo £SS+ wo L, |Ours|wosh. w ., woL.l;; wo.l;, wo DDF w SDF

Eq. (15) Eq.(16) Eq.(17) +Ls, Eq.(8) lats. to SDF Eq. (10) Eq. (9) o preds. 3D Grid
SDF| 1.56 2.74 7.92 1.38 2.62 096 |0.78 | 098 1.48 0.93 0.77 0.96 0.87
DDF| 1.72  1.37 0.89 1.13 1.00 1.00 |0.78] 0.95 1.49 0.79 1.26 1.00 0.84

Table 3. Quantitative results of ablation study. Ablations on reconstruction algorithm (left columns), and ablations on models (right
columns). Reconstruction algorithm: from left to right, DIST algorithm with our model, without any silhouette losses Lg, without
foreground SDF silhouette loss Ls, , without background SDF silhouette loss L£s, , without any SDF silhouette losses, without the
DDF silhouette loss L., and ours. Model: From left to right: without a shared latent space for SDF and DDF models, with gradients
from Track-SDF regularizer L to SDF model, without Track-SDF regularizer L, without the TV regularizer L., without DDF ray hit
predictions o, and with a 3D feature grid instead of a 2D grid for SDF model. Middle: Our proposed algorithm.

Reconstruction Algorithm Ablations

\‘FVV§ V‘r
LA cAr A AT

Ground DIST woLs wo Lg, woﬁss wolls
Truth Ls, *

Model Aplations .

/\\

w L:s wo TS wo TV wo DDF w SDF Ours

wo sh.
lat. space to SDF Ly Ly o preds. 3D Grid

Figure 4. Qualitative results of ablation study. Left: Ground truth depth (top) and geometry (bottom). Middle: Reconstruction algorithm:
(left to right) with DIST and our SDF, without any silhouette loss L£g, without foreground SDF silhouette loss Ess+ , without background
SDF silhouette loss Ls, , without any SDF silhouette loss Ls, + Ls, , without DDF silhouette loss L., and ours. Right: Model: (left
to right) without a shared latent space between DDF and SDF, track SDF L, loss also trains SDF model, without track SDF L, without
TV regularizer L;,, without DDF ray hit predictions o, with a 3D feature grid for SDF instead of 2D grids, and ours. Our design choices

WO L‘ s, Ours
o

SIOPUY (] "SUOINY

result in fast and accurate reconstructions.

codes does not let the DDF and SDF models change to-
gether, leading to inaccuracies between the reconstructions
as shown in Fig. 4. (with L5 to SDF) When the SDF model
is allowed to train with the gradients from the Track-SDF
regularizer (Eq. (10)), the reconstructions are bad as the
SDF model can incorrectly learn to place a surface at DDF’s
predictions during training. (wo TS Ls) As the DDF is un-
constrained the accuracy increases, however, since the DDF
model does not predict close to the SDF surface, the recon-
struction quality of SDFs is lower. (wo TV L;,) Without
the TV regularizer, the reconstructions are noisy around the
surface but sharp for SDF hence leading to high accuracy
whereas for DDF this noise leads to higher error as the pre-
dicted distances are noisy. (wo DDF o preds.) without DDF
ray hit predictions, the DDF renders are incomplete, as we
rely on SDF value for the ray hit predictions, leading to poor
accuracy. (w 3D Grid SDF) As a 3D feature grid with the
same number of parameters as a 2D feature grid is of lower
resolution, the model performs worse with the same number
of features in the grid, leading to smoother reconstructions.
Our model performs the best with all the design choices.

5. Future Work

Overall, our method has shown significant improvement
in terms of speed while reconstructing from different inputs
such as depth maps, silhouettes (supp. mat.), and videos.
While our results show consistent renders from different

views using the DDF model, 3D inconsistency is a per-
sistent problem with directional representations. The fea-
ture grid-based representation achieves high-quality results,
however, better regularizers than the TV (Eq. 9) that allow
for discontinuities while suppressing noise could help im-
prove the representational capacity of DDF models.

6. Conclusion

We presented a novel 3D representation, DDF, that en-
ables us to replace sphere tracing for rendering SDFs with
just 1 network evaluation per camera ray. Based on the
learned DDF and SDF models, we introduced a fast algo-
rithm (FIRe) to reconstruct shapes with our learned models
from depth maps. We experimentally showed that FIRe can
reconstruct high-quality 3D shapes given a depth map or
a video while achieving an order of magnitude speedup of
the optimization algorithm. We believe that the proposed
method can play a crucial role in working with learned im-
plicit scene representations for various applications. In or-
der to stimulate follow-up work we plan to make our code
publicly available.
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