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Abstract

Colorectal cancer (CRC) represents a major global
health challenge, and early detection of polyps is crucial
in preventing its progression. Although colonoscopy is the
gold standard for polyp detection, it has limitations, such
as human error and missed detection rates. In response,
computer-aided detection (CADe) systems have been devel-
oped to enhance the efficiency and accuracy of polyp de-
tection. As deep learning gained prominence, the incor-
poration of Convolutional Neural Networks (CNNs) into
CADe systems emerged as a breakthrough approach. How-
ever, CADe systems based on CNNs often demand signifi-
cant computational resources, making them unsuitable for
deployment in resource-constrained environments. To mit-
igate this, we propose a novel and lightweight polyp de-
tection model that integrates a Transformer layer into the
You Only Look Once (YOLO) architecture, focusing on op-
timizing the neck part responsible for feature fusion and
rescaling. Our model demonstrates a substantial reduc-
tion in computational complexity and the number of param-
eters, without compromising detection performances. The
lightweight model makes it accessible and feasibly deploy-
able in medically underserved regions, serving a significant
public interest by potentially expanding the reach of critical
diagnostic tools for CRC prevention. By optimizing the ar-
chitecture to reduce resource requirements while maintain-
ing performance, our model becomes a practical solution
to assist healthcare professionals in the real-time identifi-
cation of polyps, even with resource-constraint devices.

1. Introduction

Colorectal cancer (CRC) imposes a substantial health-
care burden worldwide, given its status as a prevalent form
of cancer. According to WHO [55], CRC was the third most
common cancer type with nearly 2 million cases, and the
second leading cause of cancer-related deaths, accounting
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Figure 1. Comparison between YOLOv5m (baseline) and the pro-
posed YOLOvSm-TST model with corresponding model size to
the baseline at image size 320. YOLOv5m-TST has fewer param-
eters, fewer FLOPs, and lower latency. YOLOvS5Sm-TST shows
comparable performances.

for approximately 1 million fatalities annually in 2020. One
of the precursors to CRC is the presence of polyps, which
are generally benign growths that can, over time, develop
into malignant tumors [6].

Colonoscopy is a diagnostic procedure that involves in-
serting an endoscope through the anus to visualize the
colon, allowing for the diagnosis of inflammation, polyps,
tumors, and other abnormalities within the colon [56].
Colonoscopy serves not only as a means of examination
but also permits immediate biopsy of suspicious areas for
histopathological analysis. Additionally, it enables direct
removal of polyps if present and provides the capability to
control bleeding if encountered, thereby serving both diag-
nostic and therapeutic purposes.

Colonoscopy remains the gold standard in both the de-
tection and removal of polyps, consequently playing a crit-
ical role in CRC prevention [2]. So detecting and removing
polyps at an early stage plays a crucial role in reducing in-
cidence and mortality rates associated with CRC [57, 58].
However, conventional colonoscopy relies on the expertise
of the endoscopist, and even in skilled hands, polyp detec-
tion is not always guaranteed. Studies have reported miss



rates of 16.8% to 28% for polyps during colonoscopy ex-
aminations [22], emphasizing the need for tools to increase
polyp detection accuracy.

To improve the efficiency and accuracy of polyp detec-
tion, computer-aided detection (CADe) systems have been
developed [50]. In the earlier CADe, hand-crafted filters
and feature extraction techniques were prominent [, [2].
These traditional methods primarily focused on analyzing
images to detect patterns that could signify the presence of
polyps [3, 13,21,47]. However, they required manual fine-
tuning and were often not generalizable or scalable. The
growing utilization of deep learning, particularly Convo-
Iutional Neural Networks (CNNs), has shown impressive
performance in polyp detection [4, 16, 39,40, 46]. Exam-
ples of CNN-based approaches like You Only Look Once
(YOLO) [41] and region-based convolutional neural net-
works (R-CNN) have shown remarkable potential in polyp
detection. However, it should be emphasized that the effec-
tiveness of CADe relies on its ability to not only accurately
detect but also work in real-time.

The need and significance of real-time polyp detection
cannot be overstated, and its impact on patient outcomes
is substantial. Real-time CADe systems empower medical
professionals to take immediate therapeutic actions during
colonoscopy procedures, which is crucial for early inter-
vention and improving patient prognosis [8]. This aspect
is particularly vital when we consider the inherent limi-
tations in the manual review of colonoscopy data. It be-
comes labor-intensive and impractical for endoscopists to
meticulously review extensive colonoscopy video record-
ings. This limitation is critical because, in practice, a
second analysis of these videos is often bypassed due to
time constraints and the cumbersome nature of the task
[14]. This omission can have significant consequences,
as it may lead to missing early-stage polyps that are vi-
tal for taking preventive measures against CRC. Thus, sev-
eral studies proposed the real-time polyp detection algo-
rithms [20,26,33,34,36-38,50,52,60,61]. However, while
these high-performance CADe systems have revolutionized
polyp detection, they are not without their limitations.

One significant drawback is the considerable computa-
tional power. They tend to be resource-intensive, often ne-
cessitating expensive, high-performance GPUs for real-time
operation. While these GPUs can provide excellent perfor-
mance, their cost and size limit the accessibility and ubig-
uity of advanced polyp detection technologies. In medical
settings, there is often a need for portable devices, which
have limited computational resources. As such, there is
an imperative need for lightweight models that can oper-
ate efficiently on these devices without compromising ac-
curacy or performance. Moreover, the deployment of such
high-powered, GPU-based systems may not always be fea-
sible, especially in resource-constrained environments, such

7810

as rural clinics or mobile healthcare units. Therefore, rec-
onciling the conflicting requirements of performance and
practicality in CADe systems is a significant challenge.

To address these challenges, we propose a lightweight
polyp detection model. Our primary objective is to op-
timize the computational costs in the neck part of the
YOLO model. The neck is crucial as it combines fea-
tures across various scales and abstraction levels to en-
hance detection performance. We hypothesized that the
neck part in YOLO can be further optimized using Trans-
former [51]. We integrate the Transformer into the YOLO
architecture. The Transformer is well-regarded for its abil-
ity to capture broader contextual information using atten-
tion mechanisms. This characteristic greatly aids in im-
proving the fusion of global and local features, resulting
in more efficient processing. Additionally, by employing
cross-attention, where local and global information are used
as queries and keys/values respectively, it becomes possible
to obtain global information attended to by local informa-
tion. It enables the model to capture intricate relationships
between different spatial scales and abstractions.

For integrating the Transformer into YOLO, we incor-
porate the Token-Sharing Transformer (TST) [25] in place
of the CNN-based neck into the YOLOvVS framework [17].
The TST layer consists of multi-head cross-attention and a
feed-forward network, capturing multi-level features with
global information. Using TST, our model uses both local
and global features from the backbone, leading to effective
feature fusion. As a result, our model reduces both compu-
tational burden and the number of parameters.

As shown in Fig. 1, our model (YOLOv5m-TST) has
significantly reduced both the number of Parameters and
FLOPs in the neck part of the architecture. Vision Trans-
former (ViT) [9] models are usually slower than CNNs due
to various factors including a large number of parameters
and increased computational burden [28, 32, 54]. How-
ever, experimental results show that even with the utiliza-
tion of a Transformer, our model reduces latency compared
to the YOLO model. We conduct extensive experiments to
demonstrate the effectiveness of our lightweight approach
in comparison to the YOLO models and versions. Experi-
ments show that our Transformer-based approach achieves
comparable or improved accuracy while significantly reduc-
ing the computational requirements. This enables real-time
performance even on resource-constrained hardware plat-
forms, which can make low-cost and high-quality examina-
tion possible even in medically underserved regions.

2. Related Work
2.1. Polyp Detection

Polyp detection using CNN has been actively studied in
recent years. Shin et al. [46] adopted region-based two-



stage CNN for polyp detection. Qadir et al. [39] devised a
two stage-stage process, initially proposing regions of inter-
est through CNN-based object detector networks and subse-
quently employing a unit to reduce false positives. Qadir et
al. [40] proposed 2D Gaussian masks and single-shot feed-
forward fully convolutional neural networks. Jia et al. [16]
presented a two-stage approach, called PLPNet, using ad-
vanced residual networks and feature pyramids. Zhang et
al. [60] constructed Single Shot MultiBox Detector (SSD)
based architecture, which is called SSD-GPNet. Zheng et
al. [61] applied YOLO [41] for polyp detection and Ur-
ban et al. [50] used a variation of YOLO for better local-
izing single objects. Lee et al. [26] developed a polyp de-
tection model using YOLOV2 [42], and applied median fil-
tering to reduce the number of false positives in the video
analysis. Nogueira et al. [34] utiliezed YOLOv3 architec-
ture and incorporated post-processing step to minimize false
positives. Jha et al. [14] devised a model called Colon-
SegNet, which focuses more on speed rather than accuracy
and showed that YOLOv4 [5] was faster compared with
YOLOv3+spp [43], EfficientDet [48], RetinaNet [29], and
also six times faster than Faster R-CNN [44]. Misawa et
al. [33] applied YOLOV3 and proposed SUN Dataset. Pacal
and Karaboga [37] proposed a YOLOv4-based model ap-
plying the Cross Stage Partial Networks(CSPNet) [53] to
the whole architecture and used Transformer [51] in the last
block on the backbone. Pacal et al. [38] scaled YOLOV3
and YOLOv4 with CSPNet and they tested various activa-
tion functions and loss functions to optimize their model.
Wan et al. [52] proposed a YOLOvVS model based on a self-
attention mechanism for polyp target detection. Karaman et
al. [20] used YOLOVS along with the Artificial Bee Colony
(ABC) [19] optimization algorithm, where YOLOVS is uti-
lized for polyp detection and ABC is deployed to enhance
the model performance by finding the optimal activation
functions and hyper-parameters. Ou et al. [36] devised
Polyp-YOLOVS-Tiny, which reduced the number of convo-
lutional kernels by half and removed the part of the head.

With minimal architectural modifications, the existing
polyp detection methods primarily relied on YOLO-based
frameworks, which consist of three parts: backbone, neck,
and head. Unlike the existing polyp detection methods, we
replace the neck part of YOLO using the Transformer. In
contrast to the existing models using self-attention based
Transformers for certain parts of the YOLO model, we em-
ployed a multi-head cross-attention between tokens from
different layers. Through this change, we not only reduce
the computational cost but also manage to make a lighter
model while minimizing performance drop.

2.2. Lightweight Transformer

ViT [9] showed that Transformer [51] architecture can
show the success on the image classification task. With at-
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tention mechanism, it enables the model to learn global in-
formation. After ViT, Transformer-based architectures were
actively studied for various applications. DeiT [49] used
distillation learning to reduce the needs of large datasets.
DETR [7] used a Transformer encoder-decoder architec-
ture for object detection. D-DETR [62] used attention
modules that focus on a small set of key sampling points.
Swin-Transformer [31] introduced a hierarchical structure
with shifted windows to efficiently address the challenges
of scale variation and high resolution in images. How-
ever, these models have a large number of parameters and
heavy computation complexity. Therefore, various studies
have been made for real-time use and to make lightweight
models. LeViT [10] used multi-stage Transformer architec-
ture using attention as a downsampling mechanism. Mo-
bileViT [32] reduced computational costs based on Mo-
bileNetV2 [45] backbone with repeated CNN-Transformer
blocks. Efficientformer [28] showed that Vision Trans-
former can operate at MobileNetV2 speed on mobile de-
vices. Topformer [59] proposed token pyramid pooling to
reinforce the model’s representation ability. TST [25] pro-
posed global token sharing to inject global information into
the multi-level features.

Previous works have successfully employed lightweight
Transformer architectures for tasks such as classification,
segmentation, and depth estimation. For polyp detection,
we adopted TST as a lightweight Transformer in the pro-
posed method. By utilizing TST in the YOLO model, we
achieved computational efficiency and elevated real-time
performance without a significant performance drop.

3. Proposed Method
3.1. Design Concept

To design an architecture for lightweight polyp detection
on edge devices, we start by revisiting the original YOLOv5
[17] model and understanding the functional principles of
the lightweight Transformer (i.e., TST [25]).

YOLOVS architecture is divided into three parts: back-
bone, neck, and head. The backbone efficiently processes
the input image and generates feature maps at different
scales, enabling the model to extract multi-level features.
In YOLOVS5, the CSP-Darknet53 architecture [5, 53] is uti-
lized as the backbone. The Neck performs feature fu-
sion and transformation to generate more informative and
context-rich representations. In YOLOvVS, the SPPF [11]
and CSP-PAN [30, 53] is utilized as the neck. The head
predicts the bounding box coordinates, objectness scores,
and class probabilities for multiple objects across different
scales and aspect ratios. In YOLOVS, the head part follows
the YOLOvV3 head [43]. Particularly, our primary focus is
to optimize the neck. In object detection, the neck plays
an instrumental role as it integrates feature maps of differ-
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Figure 2. The Overall Architecture of our proposed YOLOVS-TST model.

ent scales and resolutions from the backbone, allowing the
model to capture both low-level and high-level visual fea-
tures. This fusion and transformation within the neck are es-
sential for generating richer representations that can greatly
benefit the object detection process.

TST [25] is devised for the lightweight monocular depth
estimation task. TST focused on learning the multi-level
features containing global information, with global token
sharing. TST was incorporated into the encoder-decoder
shortcut, replacing the conventional skip connection. To
handle multi-level features, they down-sampled the local
features to match the size of the global features. To share
global information with each level of the features, they used
the global token as a query and the local token as a key and
value. After passing through the Transformer block, they
up-sampled the TST output to restore the feature size to the
original level. The result shows high throughput, without
performance drop.

Given that the CNN-based neck is crucial in feature
fusion, we hypothesized that by leveraging the attention
mechanism, which excels at capturing global information,
the TST could effectively replace the neck. Specifically, if
the query is set to the local token and the key and value are
set to the global token, the cross-attention result can obtain
the global token that has been attended to by the local to-
ken. By adding the output of the Transformer block to the
local token with residual connection, the global information
deemed important in the local context gets weighted during
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learning, potentially making feature fusion more efficient.
Through our experiments, we observed a functional simi-
larity between the role of the CNN-based neck in feature
fusion and the capabilities of the TST.

Based on this consideration, we replace the SPPF and
CSP-PAN with TST to devise a lighter model. By substi-
tuting the neck with TST, we achieved a significant reduc-
tion in the number of parameters while maintaining perfor-
mance comparable to the existing model. Furthermore, the
real-time detection performance, measured in edge devices,
showed a substantial improvement.

3.2. Overall Architecture

The TST layer consists of a convolution block, multi-
head cross-attention (MHA), and a feed-forward network
(FEN). Fig. 2 shows the detailed architecture of our model.

Considering an input image I € RT*W*C where H,
W, and C represent the height, width, and RGB channels
of the image, respectively. Backbone extracts a set of multi-
resolution feature maps, denoted as ¥ = {Fj, F2, F},
where Fj; € R X% %0 [, € Ri6*16%02 Fg ¢
R35 %35 %Cc_ These feature maps serve as local tokens
Fi1, Fio, F and a global token Fi.

Within the TST layer, the local tokens are first down-
sampled to match the resolution of the global token. Specif-
ically, the local tokens from /1 and [2 are down-sampled
to Ffl € R#x355xCn and Ffz € R%X%XC”, respec-
tively. Following this, the down-sampled local tokens and



the global token are input into the Transformer block.

In the MHA process, we aimed to use the local tokens as
queries @, and global tokens, which serve as information-
sharing tokens, as keys K and values V. We encountered
an issue as the channel dimensions of the local tokens were
different from those of the global tokens, making it impos-
sible to directly use them through the MHA. To address this
issue, we employed a convolution block to transform the
input dimensions, enabling us to obtain queries, keys, and
values with compatible dimensions for efficient processing
within the MHA. The output from the MHA is then passed
through FFN and is up-sampled to match the resolution of
each local token. This is followed by the Transformer block,
which effectively fuses the local and global tokens. Resid-
ual connection is utilized to integrate the information from
the global tokens that the MHA process deemed important
back into the original local feature map. This yields a syn-
ergistic effect by adding global information to the local in-
formation. Finally, the enriched feature map is forwarded to
the head. In polyp detection, when the data passes through
the detection head, bounding boxes are produced around ar-
cas that might contain polyps, along with confidence scores.

3.3. Token-Sharing Transformer Layer

In the convolution block, we perform batch normaliza-
tion after the dimension transformation. For MHA, the di-
mensions of the queries and keys are set to 4, while the di-
mension for values is set to 16. In each Transformer block,
the number of heads is set to 4. The FFN first processes the
MHA output through a ReLU activation function, and then
performs a dimension transformation to ensure that the out-
put dimensions match the channel size of the local tokens
that were initially fed into the layer. Additionally, batch
normalization is applied to the FFN output.

4. Experiments
4.1. Datasets

We use three colonoscopy datasets for our experiments.
To test the generalizability of the experiment, we com-
bine three datasets: SUN [33], KUMC [27], and Kvasir-
SEG (Kvasir) [15]. Also, we conduct experiments for each
dataset separately. Using the datasets, the training and test
sets are divided into different cases based on patient num-
bers, approximately 8:2 as follows. Furthermore, we con-
duct experiments using a 5-fold cross-validation approach.
SUN includes 49,136 polyp images taken from different
100 cases, which are fully annotated with bounding boxes.
We use 80 cases (38,249 images) as a training set and 20
cases (10,887 images) as a test set.

KUMC includes 37,900 polyp images taken from different
153 cases, which are fully annotated with bounding boxes.
We use 124 cases (29,261 images) as a training set and 29
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cases (8,639 images) as a test set.

Kbvasir includes 1,000 polyp images, which are fully anno-
tated with bounding boxes and masks. We use 800 images
as a training set and 200 images as a test set.

4.2. Hardware Platform

We evaluated model performance on embedded devices:
NVIDIA Jetson Nano, NVIDIA Jetson TX2, and NVIDIA
Jetson AGX Xavier. Jetson Nano has 128 CUDA cores
Maxwell architecture GPU with a Quad-core ARM AS57
MPCore CPU and 4GB of RAM. Jetson TX2 has 256
CUDA cores Pascal architecture GPU with Dual-Core Den-
ver, Quad-core ARM A57 MPCore CPU, and 8GB of RAM.
Jetson AGX Xavier has 512 CUDA cores, 64 Tensor cores
Volta architecture GPU with 8-core Carmel Armv8.2 CPU,
and 32GB of RAM. All evaluation results are reported on
10W, 15W, and 30W power modes for Jetson Nano, Jetson
TX2, and Jetson AGX Xavier, respectively.

4.3. Evaluation Metrics

For the polyp detection task, we use evaluation metrics to
measure the performance of our model, following the pre-
vious methods [14,27,36,38].

1) Floating-point Operations Per Second (FLOPs) mea-
sures the computational cost of a model by counting the
number of floating-point operations during inference.

2) Parameters (Params) refer to the trainable weights and
biases in a model. The number of parameters indicates the
model’s capacity and complexity.

3) Frames Per Second (FPS) measures the speed of the
model, indicating how many images the model can process.
4) Precision is a metric that measures the accuracy of posi-
tive predictions made by the model.

5) Recall measures the ability of the model to correctly de-
tect positive instances.

6) F1 score is the harmonic mean of Precision and Recall.
It provides a balanced measure of the model’s performance
by considering both Precision and Recall.

7) mean Average Precision (mAP) measures the accuracy
of object localization and detection. mAP25 and mAP50
represent the mAP at an Intersection over Union thresh-
old of 0.25 and 0.5, respectively. mAP50:95 represents the
mAP across a range of IoU thresholds from 0.5 to 0.95.

4.4. Implementation Details

For our experiments, we primarily adopt the settings
from YOLOVS [17] and YOLOvVS [18]. The YOLOV3
model was trained within the YOLOvS8 framework. How-
ever, we made some modifications to the settings. We
changed the learning rate to 0.001. When training on
the combined datasets, we set the batch size to 128 and
the number of epochs was set to 100. When training on
each of the SUN, KUMC, and Kvasir datasets, we set the



. FPS 1 Metrics T
Size  Model FLOPS(G) | Params | Nano X2 Xavier Precision Recall  FI mAP25  mAP50 mAP50:95
YOLOv5s 70 7.0M 173 1245 3511 09295 08472 08363 09207 0.8800 0.5464
S YOLOVSs-TST  25(-37.5%)  3.IM(46.9%)  64.8 (+37.0%) 162.4 (+304%) d437.5(+24.6%) 09234  0.8557 0.8881 09186 0.8773 05243
“  TYOLOvSm 21 209M 186 539 177.0 09302 08329 08786 09082 08712  0.5440
X YOLOVSm-TST 7.6 (-37.2%) 11OM (47.2%) 260 (+39.8%) 76.0 (+41.0%) 2417 (+36.6%) 09336  0.8627 0.8967 09272 0.8902 0.5446
& TYOLOwSI 271 26.IM 99 9.1 119.9 09332 08449 0.8867 00156 0.8827 0.5589
YOLOVSI-TST — 17.0 (-37.3%) 24.4M (47.2%) 152 (+53.5%) 432 (+48.5%) 167.9 (+40.0%) 09344  0.8587 0.8947 09293 0.8902 0.5518
YOLOv5s 57 7.0M 343 91.0 2905 0.9357  0.8533 0.8923 0.9271 0.8389 0.5532
S _YOLOVSs-TST 3.7 (-35.1%)  3.IM(46.9%) 424 (+23.6%) 1177 (+293%) 357.7(+23.1%) 09203 08447 0.8807 09135 0.8745 05445
= TYOLOvSm 174 209M 143 389 1476 0.9404 08375 08857 00118 08779 0.5520
X YOLOVSm-TST 110 (-36.8%) 11OM (-47.2%) 20.0 (+39.9%) 55.1 (+41.6%) 1952(+322%) 09256  0.8662 0.8947 09274 0.8917 0.5508
£ TYOLOvSI 39 36.1M 77 218 877 09359 08473 08593 00180 08824  0.5629
YOLOVSI-TST — 24.5(-37.2%) 244M (47.2%) 12.1 (+57.1%) 31.6 (+45.0%) 1291 (+472%) 09364  0.8711 0.9024 09355 0.8972  0.5599
YOLOv5s 9.0 7.0M 231 6.7 2263 09338 0.8542 0.8921 0.9266 0.8918 0.5804
S _YOLOVSs-TST  5.7(-36.7%)  3.IM(46.9%)  30.8 (+33.3%) 825 (+76.7%) _ 260.9 (+153%) 09098  0.8438 0.8753 09138 08711 05414
< YOLOvsm 271 20.9M 99 282 1055 0.9381 08447 0.8880 09215 08849 0.5590
X YOLOVSM-TST 17.1(-36.9%) 11OM (-47.2%) 14.2(+434%) 403 (+42.9%) 1383 (+31.1%) 09352  0.8603 0.8958 09265 0.8937  0.5602
£ TYOLOwSI 60.9 26.1M 56 157 69.3 0.9398 08507 0.8927 09220 08862  0.5690
YOLOVSI-TST 383 (-37.1%) 244M (-47.2%) 7.6 (+35.7%)  22.8 (+452%)  95.0 (+37.1%) 09293 0.8704 0.8988 0.9324 0.8958  0.5632

Table 1. Comparison of the performance between our proposed method and various sizes of the YOLOVS [

] models. Each model is

evaluated on the combined datasets of SUN, KUMC, and Kvasir. The best scores are bold-faced.

FPS 1
Model FLOPs(G) | Params | Nano X3 Xavier
YOLOVSm 2.1 209M 18.6 539 177.0
ENDOMIND 12.9 215M 15.9 487 160.0
YOLOvSm-Tiny 11.0 15.4M 211 575 210.7
YOLOVSm-TST 7.6 11.0M 26.0 76.0 2417
Metrics

Model Dataset g on Recall FI mAP25 mAPS0 mAP30:95
YOLOVSm 00183 05204 08663 08981 08633 05196
ENDOMIND sUN 09082 08194 08612 08925 08458 04974
YOLOvSm-Tiny 09064 08336 0.8683 09084 08713 05200
YOLOVSm-TST 09223 0.8409 08794 09157 08736  0.5089
YOLOVSm 09236 0.8467 08835 09187 08835 05780
ENDOMIND KUmce 09286 08237 08727 09026 08609 0.5566
YOLOVSm-Tiny 09191 08464 08809 09188 08808 0.5879
YOLOVSm-TST 09387  0.8554 0.8951 09286 0.8881 05728
YOLOVSm 09323 0.8906 09109 09370 0.8988 0.6631
ENDOMIND Koasr 09332 08873 09095 09410 09043  0.6729
YOLOVSm-Tiny 09072 0.8889 0.8977 09374 09008 0.6672
YOLOVSm-TST 09369  0.8915 09134 09428 09150  0.6855

Table 2. Comparison on SUN, KUMC, and Kvasir datasets with
320 x 320. For each dataset, comparisons among YOLOvS5m,
YOLOvV5m-TST, YOLOvSm-ENDOMIND (ENDOMIND) [23],
and modified Polyp-YOLOvVS-Tiny (YOLOv5m-Tiny) [36] are
presented. The best scores are bold-faced.

batch size to 64 and the number of epochs was set to
90, 120, and 3000, respectively. In addition, we compare
the performance of our models using input image sizes of
320, 384, and 480, considering the impact of different im-
age sizes on the model’s performance. All models were
trained from scratch using NVIDIA RTX™ A6000 GPU.
We used different sizes of the YOLOvS model, namely
s, m, and 1. In these models, the sizes of the channels
{Ci,Ci2,Cq} in each feature map are {128, 256,512},
{192,384, 768}, {256,512,1024}, respectively. In the
YOLOv8m model, the sizes of the channels in each feature
map are {192,384, 576}. In the YOLOv3 model, the sizes
of the channels in each feature map are {256,512, 1024}.
The results in Tab. 1, Tab. 2, Tab. 3 and Tab. 5 are aver-
aged from 5-fold cross-validation. In supplementary mate-
rial, the full experimental results are presented.
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4.5. Results

We hypothesized that the TST layer could serve as a suit-
able replacement for the CNN-based neck, both in terms
of devising a lightweight model and potentially enhancing
feature fusion. The following experiments demonstrate the
validity of our hypothesis. We set the YOLOvS5m model as
our baseline model and conducted experiments accordingly.

Tab. 1 presents a performance comparison of the TST
layer based on the size of the YOLOvVS model. When com-
paring our YOLOv5m-TST with YOLOv5m, we observed
a reduction of 37.2% in FLOPs and a decrease of 47.2% in
the number of parameters. This trend of reduction is con-
sistent, yielding similar results regardless of the model size.
We achieved an average reduction of 47.1% in the number
of parameters regardless of the model size. Furthermore, we
confirmed an average reduction of 36.9% in FLOPs, even
when the input image size changed. In terms of perfor-
mance metrics, TST layer showed minor performance drop
or even better performance. The TST layer has significantly
contributed to performance improvements when deployed
on edge devices.

For real-time object detection, achieving at least 30 FPS
is considered essential [25]. In cases where previous models
could not meet this FPS requirement due to their larger size,
our more compact and efficient model successfully attained
an FPS above 30. Specifically, with an input size of 384,
YOLOVSI-TST leaped, increasing FPS from 21.8 to 31.6 at
TX2. Furthermore, the performance is increased by approx-
imately 40.36%, 44.51%, and 31.91% on the NVIDIA Jet-
son Nano, TX2, and Xavier, respectively. These improve-
ments emphasize the effectiveness of replacing the neck
part with the TST layer, particularly in scenarios demand-
ing real-time detection, by not only meeting but surpassing
the 30 FPS threshold across varying image sizes.



. FPS 1 Metrics 1
Size  Model FLOPS(@) | Params | Nano X2 Xavier Precision Recall FI mAP25  mAP50 mAP50:95
YOLOV3 70.7 103.7M 49 138 68.7 09342 08795 09056 09438 09157 0.6170
S _YOLOVATST 553 (21.8%)  754M(-273%) 5.9 (+204%)  17.1 (+23.9%) 83.8 (+21.9%) 09347  0.8873 09102 0.9500 09210 0.6093
“  TYOLOVSm 9.8 250M 127 371 130.1 0.9365 08651 0.8980 09363 09077 0.6119
X YOLOVSm-TST 13.5(31.8%) 150M (-42.1%) 18.1 (+42.5%) 51.8(+39.6%) 173.2(+33.1%) 09316  0.8775 09036 09460 09139  0.5991
& TYOLOvAm 2.1 209M 186 53.9 177 09302 08329 0.8786 0082 08712 05440
YOLOVSIM-TST 7.6 (-37.2%)  11LOM (-47.2%) 260 (+39.8%) 760 (+41.0%) 2417 (+36.6%) 09336  0.8627 0.8967 09272 0.8902 0.5446
YOLOV3 101.9 103.7M X 112 780 0.9398 08800 09133 09491 09197 0.6210
S _YOLOVATST  79.7(-21.8%)  754M(-27.3%) 5. 124 (+10.7%)  52.6 (+9.6%) 09316 0.8902 09101 0.9499 09204 0.6127
= TYOLOVSm 285 259M 104 29.7 111.9 09351 08627 08971 09363 09069  0.6161
X YOLOVSmM-TST 19.5(:31.6%) 150M (-42.1%) 15.0 (+442%) 40.1(+35.0%) 143.4(+282%) 09381  0.8848 0.9104 09507 09197 0.6069
£ TYOLOvSm 74 209M 143 389 1476 0.9404 08375 08857 00118 08779 0.5520
YOLOVSm-TST 110 (-36.8%)  1LOM (-47.2%) 20.0 (+39.9%) 55.1 (+41.6%) 195.2(+322%) 09256  0.8662 0.8947 09274 0.8917 0.5508
YOLOV3 159.2 103.7M X 76 382 09434 08303 00105 09430 09229 0.6296
S _YOLOVATST  124.5(21.8%) 754M(-27.3%) 3.4 92 (+21.1%)  45.0 (+15.1%) 09342 0.8954 09143 09528 09257 0.6123
< TYOLOVSm 45 250M 75 204 76.1 0.9398 08683 00024 09413 009142  0.6189
X YOLOVSmM-TST 30.5(-31.5%) 15.0M (-42.1%) 9.6 (+28.0%) 271 (+32.8%) 106.7(+402%) 09327  0.8847 09078 09481 0.9180  0.6097
£  TYOLOvSm 271 209M 99 282 1055 0.9381  0.8447 0.8880 09215 08849 0.5590

YOLOV5Sm-TST  17.1 (-36.9%)

11.0M (-47.2%) 14.2 (+43.4%) 40.3 (+42.9%)

138.3 (+31.1%) 0.9352 0.8603 0.8958 0.9265 0.8937  0.5602

Table 3. Comparison of the performance between our proposed method applied to YOLOv3 [43] and YOLOv8m [18] for examining the
compatibility of the model. Each model is evaluated on the combined datasets of SUN, KUMC, and Kvasir. The best scores are bold-faced.

Shape  # Frames  Model Precision  Recall  Fl1 mAP25  mAP50  mAP50:95
Ia 939 YOLOvSm 0.9492 0.8168 0.8781 0.8805  0.8629  0.4838
YOLOv5Sm-TST 0.9627 0.8573  0.9070 0.9284 0.8959  0.4818
Ip 264 YOLOvSm 0.9994 0.9962  0.9978 0.9950  0.9950  0.8599
YOLOvSm-TST 1.0000 0.9917  0.9958 0.9950  0.9950  0.8514
Is 7693 YOLOv5m 0.9700 0.9122  0.9402 0.9626  0.9550  0.5929
YOLOvSm-TST 0.9671 0.9410 09539  0.9797  0.9724  0.5881
Isp 799 YOLOv5m 0.9674 0.8473  0.9034 0.9248  0.9108  0.6254

YOLOv5Sm-TST 0.9692 0.9050  0.9360 0.9587  0.9514  0.6609

Table 4. Comparison between YOLOv5m and YOLOv5Sm-TST
based on polyp shape in the SUN test dataset with 320 x 320 res-
olution. The best scores are bold-faced.

Tab. 2 presents a comparison of our baseline models,
YOLOvVSmM-TST with YOLOv5m, YOLOvV5-ENDOMIND
(shortly ENDOMIND) [23], and modified Polyp-YOLOVS5-
Tiny (shortly YOLOv5m-Tiny) [36] on each dataset — SUN,
KUMC, and Kvasir. The ENDOMIND is an advanced ver-
sion of the baseline YOLOVS model. The original Polyp-
YOLOVS-Tiny utilized YOLOvSs. However, for the pur-
pose of conducting a fair comparison in our experiments,
we re-implemented it to align with the YOLOv5m model
and conducted our experiments accordingly. YOLOvSm-
Tiny, derived from the original YOLOVS5 architecture, re-
moves the large-object detection part of the head. For each
dataset, YOLOv5Sm-TST outperforms other models except
mAP50:95. Therefore, our YOLOvSm-TST demonstrates a
lightweight yet generalized model performance.

In Tab. 3, to check compatibility and compare our
method with the baseline YOLO models, we experimented
with YOLOv3 and YOLOvS. The YOLOv3 and YOLOVS
models were used as baseline models in previous studies
[20, 33, 34, 36, 38, 52]. In the YOLOvV3 architecture, the
FPS of YOLOV3-TST on TX2 and Xavier increases by ap-
proximately 18.6% and 15.5%, respectively. In Nano, the
YOLOV3-TST operates successfully, but for YOLOV3, the
model does not work with image sizes 384 and 480. In

YOLOv5m

polys 091

YOLOV5Sm-TST

Figure 3. Detection results of YOLOv5m and YOLOvSm-TST on
the SUN test set based on polyp shapes. The red and green boxes
signify the prediction results and ground truth, respectively.

the YOLOvV8m, the FPS of YOLOv8m-TST on Nano, TX2,
and Xavier increases by approximately 38.23%, 35.8%, and
33.83%, respectively. Furthermore, in the cases of YOLOV3
and YOLOVS, the model with the TST demonstrates reduc-
tions in computational cost, leading to 21.8% and 31.6%
reduction in FLOPs, along with a decrease in parameters
by 27.3% and 42.1%, respectively. Performance metrics,
such as Precision, F1, and mAP50:95 are slightly dropped.
Notwithstanding these minor decreases, the YOLOv3-TST
and YOLOv8m-TST demonstrated slightly higher or nearly
similar performance in other metrics. Through our method,
we could leverage YOLOV3 architecture on Nano. More-
over, the TST layer demonstrates efficiency and adaptability
even in newer architectures like YOLOv8m.

Tab. 4 presents the evaluation based on the type of polyp
using SUN test set. In SUN dataset, polyps are catego-
rized into four shapes according to the Paris Classification
[24,35]: Ia, Ip, Is, and Isp. We compare the performance
of YOLOvV5m and YOLOvV5m-TST based on these shapes.



. . FPS Metrics
Size  Key Dim. FLOPs(G) Params Nano X2 Xavier Precision Recall F1 mAP25 mAP50 mAP50:95
- 4 7.6 (-37.2%) 11.0M (-47.2%)  26.0 (+39.8%) 76.0 (+41.0%) 241.7 (+36.6%) 0.9336 0.8627 0.8967 0.9272  0.8902  0.5446
Y 64 8.5(-29.8%) 15.4M (-26.3%) 23.5(+26.3%) 66.8 (+23.9%) 217.1 (+22.7%) 0.9364 0.8686 0.9011 0.9336 0.9006  0.5602
X 128 9.4 (-22.3%)  20.1M (-3.8%) 219 (+17.7%) 60.5 (+12.2%) 189.4 (+7.0%) 0.9370 0.8645 0.8991 0.9341 0.8990 0.5575
5 256 11.3(-6.6%) 29.4M (+40.7%) 18.4 (-1.1%) 475 (-11.9%)  137.1(-22.5%) 0.9381 0.8659 0.9004 09355 0.9014  0.5601
- YOLOv5m  12.1 20.9M 18.6 539 177 0.9302 0.8329 0.8786 0.9082 0.8712  0.5440

Table 5. Comparison of the performance between our proposed method with varying key dimension sizes and the original YOLOv5Sm
model. Result of models evaluated on the combined combined datasets of SUN, KUMC, and Kvasir. The best, second-best, and third-best

scores are highlighted in bold, italics, and underlined, respectively.

Across most shapes, YOLOvSm-TST shows better met-
ric performance. However, except for Isp, the YOLOv5m
model shows better mAP50:95 performance. Fig. 3 shows
examples of each shape along with the detection results for
each model. There are various cases where the YOLOvSm-
TST model detects polyps but YOLOvS5m misses.

mAP25 and mAP50 of our models generally show com-
parable or slightly better performance than those of exist-
ing models. Furthermore, when evaluating Precision, Re-
call, and F1 Score, our model shows similar performance
to the existing models in most cases, with only a few ex-
ceptions. For real-time polyp detection, the primary goal is
to help endoscopists not miss polyps during the examina-
tion. Early-stage polyps might be extremely small or have
irregular shapes. So, the ability to detect small or irregu-
larly shaped polyps is vital for early detection and diagno-
sis, facilitating the prompt delivery of proper treatment to
patients. Although determining the exact location and size
of polyps would be desirable, our main focus is on alerting
the endoscopist to the presence of polyps. From our exper-
iments, YOLOVS-TST demonstrates proficiency in detect-
ing polyps, but it might occasionally struggle to accurately
localize polyps compared to the YOLOVS. It can be consid-
ered a trade-off between computational cost and accurate
prediction. YOLOVS excels in mAP50:95 performance, yet
it requires a more computational cost than YOLOv5-TST.
On the other hand, YOLOvS-TST effectively reduces the
computational cost and achieves better mAP25 and mAP50.
Thus, to assist endoscopists, YOLOvV5-TST can be desir-
able in resource-constrained devices because it can effec-
tively reduce computational costs while showing high per-
formance at mAP25 and mAPS50.

4.6. Ablation Study

We hypothesize that if we configure our model to have
a similar number of FLOPs as the original YOLO model,
we would observe improvements across various evaluation
metrics. Accordingly, we experimented with YOLOvSm-
TST by adjusting the key dimension, which is initially set to
4, and aims for the number of FLOPs that is roughly equiv-
alent to that of YOLOv5m. By setting the key dimension
to 256, we could achieve comparable FLOPs to the conven-
tional YOLO model. We evaluate the performance of the
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TST layer by increasing the key dimension to 64, 128, and
256. Although this increases the number of parameters, as
can be seen in Tab. 5, our model outperforms the standard
YOLOv5m across most metrics. As the number of key di-
mensions increases, the overall performances are improved.
Particularly, when the key dimensions are set to 256, the
model demonstrates the best performance in mAP25 and
mAP50. We aim to design a model that is lightweight yet
does not compromise significantly on performance. So, we
devise a model with key dimensions set to 4. In real-time
polyp detection, latency is a critical consideration. Setting
key dimensions to 4 not only results in superior FPS per-
formance compared to 256 but also does not have a signif-
icant compromise in evaluation metrics performance. This
observation suggests that the TST layer is capable of more
efficiently fusing features at a lower dimension, and con-
sequently enhances the performance of the model with less
computational demand.

5. Conclusion

In this paper, we propose a novel and efficient model for
polyp detection by using a lightweight Transformer within
the neck of the YOLO framework. Specifically, we re-
place the CNN-based neck with a Transformer-based TST
layer. The TST layer employs global token sharing for
effective feature fusion. The TST layer reduces both the
number of parameters and FLOPs, ultimately leading to
significant improvements in FPS without substantial per-
formance drops. Our experiments show consistent perfor-
mance improvement across various YOLOvVS model sizes
and input sizes. We also confirmed a similar trend with
the recently proposed YOLOv8m. For CRC prevention, our
model makes it feasible for deployment in medically un-
derserved regions, serving the public interest by potentially
expanding the reach of critical diagnostic tools.
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