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Abstract

Optical flows play an integral role for a variety of
motion-related tasks such as action recognition, object seg-
mentation, and tracking in videos. While state-of-the-art
optical flow methods heavily rely on learning, the learned
optical flow methods significantly degrade when applied to
different domains, and the training datasets are very limited
due to the extreme cost of flow-level annotation. To tackle
the issue, we introduce a domain adaptation technique for
optical flow estimation. Our method extracts diverse style
statistics of the target domain and use them in training to
generate synthetic features from the source features, which
contain the contents of the source but the style of the tar-
get. We also impose motion consistency between the syn-
thetic target and the source and deploy adversarial learning
at the flow prediction to encourage domain-invariant fea-
tures. Experimental results show that the proposed method
achieves substantial and consistent improvements in differ-
ent domain adaptation scenarios on VKITTI 2, Sintel, and
KITTI 2015 benchmarks.

1. Introduction
Optical flow estimation is a fundamental computer vi-

sion task that aims to estimate per-pixel motion informa-
tion across two consecutive frames [2, 16, 36]. The es-
timated flow information is useful for numerous motion-
related problems such as action recognition [25, 39], object
segmentation [8, 50], and object tracking [10, 34] in videos.
While optical flows are supposed to be widely used in dif-
ferent environments, most previous studies [9, 22, 46, 47]
have ignored the issue of a domain gap between train and
test environments while mainly relying on the consistency
of brightness and gradients of corresponding pixels [31,53].
Most existing optical flow estimators thus suffer from a
significant domain difference, e.g., clean to foggy or rainy
weather. In a practical sense, this is a critical issue since the
existing flow-annotated datasets are limited, and the cost of
collecting such a large-scale dataset on a new domain or
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Figure 1. Optical flow domain adaptation. The proposed domain
adaptation approach tackles the domain discrepancy issue in opti-
cal flow estimation. Our Target Style Transfer (TST) module in a
model generates a synthetic target feature (STF), which contains
the content of the source but the style of the target. The module
enables the flow model to be easily adapted to the target domain
by utilizing the properties of the STF. (Best viewed in color.)

environment is extremely high.
There exists some previous work [30,31,53,60] that tack-

les the issue of domain shifts for optical flow estimation
by designing an adaptive module based on the character-
istics of a specific domain [30, 31] or training an optical
flow model with synthesized data [53,60]. Nonetheless, the
aforementioned methods are only applicable to their fixed
target domains. For example, [31] can only utilize their
techniques to rainy images because they only consider the
properties of rainy scenes, i.e., the presence of rain streaks
and veiling effects, being inapplicable to other domains
such as fog or dark.

In this paper, we introduce a generic method for opti-
cal flow domain adaptation (OFDA), which is applicable
to arbitrary domains of optical flow estimation. It aims to
adapt an optical flow model to a target domain using a flow-
annotated dataset from a source domain and an additional
yet unannotated set of samples from the target domain. To
achieve the goal, we propose three components: target style
transfer (TST), motion consistency learning (MCL), and
flow adversarial learning (FAL). The TST module extracts
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the style statistics of target images and uses them to gener-
ate synthetic target features from the source features, which
preserve the content of the source but follow the style of the
target. In particular, it leverages diverse local style statistics
from the target, thus making the synthetic features to con-
tain richer target styles; these synthetic features are used to
adapt the given optical flow model to the target domain in
training. Since the synthetic features preserve the content
of the source, MCL encourages the computed motion from
the source images to be close to that of the synthetic im-
ages and vice versa. FAL adversarially trains the optical
flow model to be unable to distinguish output flows from
the source and the target. All the proposed components are
architecture-agnostic and thus applicable to different optical
flow models. Our cross-domain experiments with Virtual
KITTI 2 [5], FlyingThings3D [35], Sintel [4], and KITTI
2015 [13] datasets show that the proposed method provides
a substantial gain in optical flow estimation. Our contribu-
tions are summarized as follows:

• We investigate the problem of Optical Flow Domain
Adaptation (OFDA), which is applicable to arbitrary
target domains of optical flows.

• We propose architecture-agnostic techniques for
OFDA, which leverage style transfer (TST), motion
consistency (MCL), and adversarial training (FAL).

• We demonstrate the substantial gain of the proposed
method on cross-domain experiments with different
optical flow datasets.

2. Related Work
Optical Flow. Optical flow estimation has been actively ex-
plored in computer vision [2, 9, 16, 36, 46, 47]. FlowNet [9]
applies deep learning to the optical flow and proposes two
distinct FlowNetS and FlowNetC. FlowNet 2 [22] brings
both FlowNetS and FlowNetC and then stacks them to
obtain more accurate flow maps. RAFT [47] is one of
the state-of-the-art optical flow estimation models. Its re-
current update operator retrieves values from the corre-
lation volumes and iteratively updates a flow field. The
aforementioned optical flow methods achieve reliable re-
sults when input images satisfy the Brightness Constancy
Constraint (BCC) and the Gradient Constancy Constraint
(GCC) [31, 53]. However, they are not able to handle
constraint-broken images such as rainy or foggy scenes.
Optical Flow under Adverse Weather. Recently, several
optical flow methods attempt to obtain fine flow estimations
under adverse weather [29–31, 38, 53, 54, 60, 61]. Robust-
Net [30] first suggests estimating flow fields from rainy
scenes by utilizing a residue channel which is free from
rain. Subsequently, RainFlow [31] generates streak- and
veiling-invariant features to alleviate the properties of heavy
rainy scenes: the rain streaks and the rain veiling effect.
For foggy scenes, [53, 54] proposes to alternate supervised

training using synthetic data and unsupervised training us-
ing real data with the hazeline loss, which is designed for
tackling the fog domain. Also, [61] brings synthetic and
real fog images to mitigate both the fog gap and style gap.
To handle dark scenes, [60] injects a noise to the clean im-
ages, then uses the noisy images and the ground truth for
training. These previous methods are all designed for the
specific target domain; e.g., RainFlow can train a model
that only prevails in rainy scenes. As a result, they cannot
fully leverage images from a non-target domain; e.g., foggy
scenes are not appropriate for RainFlow. To this end, we
develop a generic method to estimate robust optical flows
in arbitrary target domains based on DA techniques.

Domain Adaptation. To tackle a domain shift issue, the
learner is provided unlabeled data from the target domain
for training. DA shows its strength in various computer
vision tasks such as classification [6, 11, 32, 52], semantic
segmentation [3,15,28,48,49,63], detection [7,43,45], and
recently, action recognition [25, 39]. Although optical flow
also suffers from the domain discrepancy issue, DA has not
been mainly exploited to solve the problem. Among numer-
ous methods, there are two main approaches to minimize
the domain gap. The first well-known approach is to adopt
adversarial learning [14]. First proposed by [11], there are
several extensions [27, 32, 42, 52]. In semantic segmenta-
tion, [49] leverages a gradient reversal layer of [11] to ob-
tain a domain-invariant segmentation map. The second ap-
proach is to control normalization. Adaptive Instance Nor-
malization [17], which is one of the effective methods in
style transfer, shows that the mean and standard deviation
of the feature are related to the style of an image. Recently,
other methods [24, 40, 57, 58, 62] stem from these kinds of
normalization techniques of style transfer [17, 51] and use
them for reducing the domain gap. Our TST module makes
additional synthetic target features that contain contents of
the source features and follow the style of the target fea-
tures, thus making the network well-adapted to the target
domain. In contrast to previous work, however, our method
uses abundant local target statistics to create synthetic tar-
get features that properly follows the target distribution for
optical flow adaptation.

Optical Flow Domain Adaptation. There are also several
attempts to apply DA when estimating OF. In the medi-
cal field, [20, 21] attempt to apply DA with teacher-student
networks to track patients’ tissue motion. Meta-learning,
which adapts weights of the pre-trained networks to the test
domain, is also used for flow estimation [12, 37]. While re-
cent methods for semi-supervised optical flow [23, 26] can
handle various unlabeled data, they do not primarily con-
sider the domain discrepancy issue. In contrast, we aim to
handle more realistic and challenging situations; there ex-
ists a considerable domain gap between labeled and unla-
beled data, i.e., clear weather and adverse weather.
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Figure 2. (a) Overview of our proposed method. A base architecture is based on FlowNetC. (IS1, IS2) and (IT1, IT2) denote the source
image pair and the target image pair respectively. TST modules are placed in the early part of the feature extractor E. The module
takes both source and target features, thus making the synthetic target features that follow the target style with the contents of the source.
The discriminator D is appended at the last part of the optical flow network G. The other letter C, F , and R sequentially represent the
correlation layer, the flow extractor, the refinement network. The weights of the each network E, F , and R are shared respectively. (b)
Overview of Target style transfer (TST) module

3. Method

Given a pair of consecutive images I1 and I2, the task of
optical flow estimation aims to predict a displacement (u, v)
for all of pixels in I1, where I2(x

′, y′) = I1(x+ u, y + v).
To estimate domain adaptive optical flow, we consider two
datasets: a source dataset DS = {(I(i)S1 , I

(i)
S2 ,Y

(i)
S )}NS

i=1 and
a target dataset DT = {(I(j)T1 , I

(j)
T2 )}

NT
j=1, where I, Y, and N

denote an input image, its corresponding ground truth flow,
and the number of image pairs, respectively. We suggest
three main components to adapt the flow model G to the
target domain: a target style transfer (TST) module, motion
consistency learning (MCL), and a flow adversarial learn-
ing (FAL). The role of TST is to make the source feature
pair to be close to the target pair. We place TST modules
at the intervals of convolution layers from the early part of
the feature extractor E, thus generating synthetic target fea-
tures. Since the synthetic target feature pair should contain
the same content with the source pair, we apply motion con-
sistency loss between the computed motion of the synthetic
pair and that of the source pair, specifically, correlation ten-
sors and flow predictions. Moreover, we introduce the flow
adversarial training to make two flow predictions from the
source and the target domain-indistinguishable. Finally, the
discriminator D is appended to the output of the network G.

In this work, we explain our architecture based on
FlowNetC [9]. However, it is worth noting that our method
is broadly applicable to any other existing optical flow net-

works such as FlowNetS [9] and RAFT [47].

3.1. Network Architecture

The whole network G consists of the feature extractor
E, the correlation layer C, the flow extractor F , the refine-
ment network R. The discriminator D is appended after the
network G. Figure 2 illustrates our whole architecture.

Given two source-target pairs of two frames (IS1, IT1)
and (IS2, IT2), the feature extractor E takes each (IS, IT) of
the two as input and produces a triplet output of source fea-
ture sE, target feature tE, and synthetic target feature hE.
In the early part of the feature extractor E, we locate the
TST module that takes two intermediate features, s and t,
from source and target and generates synthetic target fea-
ture h, which resembles the style of the target image while
preserving the content of the source image. All the features,
s, t, and h, are further updated via the subsequent convolu-
tion layers of the feature extractor E, finally resulting in sE,
tE, and hE. After obtaining two triplet output for two con-
secutive frames, the correlation layer C computes a correla-
tion tensor for each of three feature pairs (sE

1, s
E
2), (t

E
1, t

E
2),

and (hE
1,h

E
2), respectively. The computed correlation ten-

sors are then forwarded through the flow extractor F and
the refinement network R. They both gradually transform
the correlation tensor to fine flow predictions with high res-
olution. The flow network G finally predicts the flow maps
after the refinement. The flow maps from both the source
pair and the target pair are forwarded to the discriminator
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D. D is then trained to classify whether the flow map is
from the source or from the target. The role of D is to make
G generate domain indistinguishable flow map by reversing
gradient at the backpropagation. Note that the TST module
and the discriminator are only inserted during training.

3.2. Target Style Transfer Module

Our proposed Target Style Transfer (TST) module aims
to make a synthetic target feature pair that follows the tar-
get style, thus allowing the network to be trained using the
target-style source content with its flow labels. While the
feature extractor provides two source-target pairs (s, t) as
input, each of the pairs is fed to TST individually.

The TST module takes s and t as input and produces a
synthetic target feature h as output; the size of all the fea-
tures is H ×W × c. Motivated by the fact that the feature
statistics are closely related to the style of the image [17],
the TST module is designed to make a synthetic target fea-
ture by whitening the source feature and then injecting the
target statistics to the whitened source feature. To exploit
diverse local styles from the target, we use local statistics in
style injection, enabling the resultant synthetic features to
contain richer target styles. Specifically, the c-dimensional
vector of synthetic target feature h at spatial position (i, j)
is computed as

hij = σL
ij(t)

sij − µG(s)

σG(s)
+ µL

ij(t), (1)

where µG(z) ∈ Rc and σG(z) ∈ Rc denote the global
statistics, i.e., the mean and the standard deviation, of fea-
ture z over its spatial dimension while µL

ij(z) ∈ Rc and
σL

ij(z) ∈ Rc stand for the local statistics of the feature z.
Note that all the operations above are done element-wise.

The global statistics, µG(z) and σG(z), are obtained by

µG(z) =
1

HW

H∑
h=1

W∑
w=1

zhw, (2)

σG(z) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(zhw − µG(z))2. (3)

The local statistics, µL
ij(z) and σL

ij(z), are obtained as fol-
lows. First, we compute the statistics for each position (i, j)
using its local window:

µL
ij =

1

P 2

i+K∑
h=i−K

j+K∑
w=j−K

zhw, (4)

σL
ij =

√√√√ 1

P 2

i+K∑
h=i−K

j+K∑
w=j−K

(zhw − µL
ij)

2, (5)
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Figure 3. Style statistics computation. (a) The global statistics of
Eqs. 2 and 3 summarize all elements. (b) The local statistics of
Eqs. 4 and 5 are computed for each position considering the ele-
ments in its local window, thus obtaining richer style information.
Note that random permutation is applied to the resultant map of
local statistics. All the statistics are computed channel-wise. This
illustration uses an example with a single channel for simplicity.

where P = 2K + 1 is the size of the local window. Then,
the calculated statistics are randomly permuted over spatial
positions.

µL(z)← PERM(µL(z)), (6)

σL(z)← PERM(σL(z)), (7)

where PERM(z) operation randomly permutes H ×W c-
dimensional vectors over spatial positions. The random
permutation operation offers implicit data augmentation for
synthetic target features, thus encouraging the model to be
more robust to the domain discrepancy. These permuted lo-
cal statistics are used for TST of Eq. 1. Figure 3 illustrates
the TST procedure in more detail.

As shown in Figure 2 and explained in Sec. 3.1, the syn-
thetic target feature h is updated to hE through the sub-
sequent convolutional layers of the feature extractor E and
used to adapt the given optical flow model to the target do-
main in training. Note that, during the inference phase, the
TST module is removed from the network and the network
takes only two target images as input.

3.3. Motion Consistency Learning

The synthetic target features, which are generated by
TST, follow the style of the target but retain the content of
the source. To leverage this property, we impose the motion
consistency on both the correlation tensor and the predicted
flows in training so that the motion of the source feature
pair becomes similar to that of the synthetic target feature
pair, and vice versa. The motion consistency loss is thus
formulated as

Lconsist = ∥MS −MH∥2, (8)
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where MS is the motion information (i.e., correlation tensor
or flow prediction) from the source pair and MH is that from
the synthetic target pair. We will denote the consistency loss
of the correlation tensor as Lcorr

consist and that of the predicted
flow as Lpred

consist.

3.4. Flow Adversarial Learning

Along with the TST module, we append a discriminator
at the end of the network to alleviate the domain gap be-
tween the source and the target pairs. As mentioned in [49],
unlike classification task, optical flow is a task of predicting
pixel-level flows. Therefore, we choose flow predictions as
inputs of the discriminator. The role of the discriminator is
to classify the domain of the flow maps. The loss to train
the discriminator is calculated as

Ldis = −{(1− y) log(1−D(G(I1, I2))) (9)
+y logD(G(I1, I2))},

where y = 0 if the prediction G(I1, I2) is from the source
domain, and y = 1 if G(I1, I2) is from the target domain.
The discriminator D outputs the probability that the pre-
diction flow is from the target domain. The discriminator
D is trained by the loss Ldis and is only used in the train-
ing phase. The flow network G is trained for generating
domain-invariant flow maps to fool the discriminator. The
loss for G can be written as:

Ladv = −Ldis. (10)

3.5. Overall Loss

Since flow annotations are available for the source
dataset DS, supervised training is conducted for the source.
We also deploy the source annotations for the synthetic pair
as the synthetic target pair preserves the identical motion
with the source pair. We use the end-point-error (EPE) loss,
which is the Euclidean distance between the predicted flow
map and the ground truth. The EPE loss is computed as:

Lepe = ∥G(IS1, IS2)−YS∥2, (11)

where G(IS1, IS2) is optical flow prediction of a pair of
source images and YS is a corresponding ground-truth flow.
Then, the EPE loss for the source will be LS

epe and the one
for the synthetic will be LH

epe. As a result, the overall loss
for the flow network G is as follows:

LG = LS
epe + LH

epe + λconsLcorr
consist + λconsLpred

consist + λadvLadv,
(12)

where λcons and λadv are the hyper-parameters for weighting
the consistency loss and the flow adversarial loss.

4. Experiments

We introduce three experimental settings to show the
transferability of our model. First, we use Virtual KITTI 2
(VKITTI 2) [5] dataset, which contains synthetic driving
scenes and consists of six weather conditions: Clone, Fog,
Morning, Overcast, Rain, and Sunset. In the experiments,
we select Clone as a source domain and the rest of the
weather as target domains; thus, we conduct experiments
on five domain scenarios. In other experiments, Sintel [4],
the popular optical flow benchmark dataset, is selected as
the target domain. Lastly, KITTI 2015 [13], which includes
3D scene flows of real-world driving scenes, is utilized for
the target domain. In both Sintel and KITTI experiments,
we bring the network pretrained on FlyingChairs [1] and
FlyingThings3D [35]. Also, FlyingThings3D is selected as
the source domain in both experiments. In all settings, our
goal is to properly adapt the network to the target domain.

Implementation Details. As we mentioned in Section 1,
our proposed method is applicable to existing optical flow
methods. In this work, we apply our proposed method to
FlowNetS [9], FlowNetC [9] and RAFT [47]. Unless other-
wise noted, we bring the identical experimental settings of
baselines for training our model. We add the TST module
after the first convolution layer that is located in the early
part of the network. We set up multiple patch sizes and
randomly select one of them at every step in the TST mod-
ule. The source and synthetic target’s motion tensors are ex-
tracted after the correlation layer for FlowNetC and RAFT.
We consider features before the refinement network as the
motion tensors for FlowNetS. The discriminator, which is
appended after the optical flow estimation, contains four
convolution layers and a fully-connected layer. We set batch
sizes to 8 and 4 for FlowNet and RAFT, respectively. We
use PyTorch [41] for implementation. We refer the readers
to the supplementary material for more details.

Baselines. We choose Instance Normalization (IN) [51],
which is known to alleviate domain difference and only ex-
tract contents from image features, as a baseline. Further-
more, we investigate the effect of the adversarial learning
by appending a discriminator at the end of the baseline net-
work. FlowNetS + IN and FlowNetC + IN are the FlowNetS
and FlowNetC model, which contain IN operation at the
early three convolution layers. Note that RAFT+IN model
does not exist because RAFT already contains IN in the
feature encoder. The model with + AT represents that it
is trained with adversarial learning. GST stands for global
synthetic target, and the statistics computation in our TST
module is replaced with the global statistics computation.
In Sintel and KITTI experiments, we bring several prior
work [18, 19, 22, 46, 47, 55, 56, 59].
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Figure 4. Qualitative results of VKITTI dataset.

Table 1. Average End Point Error (AEPE) results of domain sce-
narios in VKITTI dataset. We set Clone as the source domain for
all experiments (see the first row of the table). Target domains
are denoted on the second row of the table. + ours denote the full
implementation of our proposed model.

Method Clone Average
Fog Morning Overcast Rain Sunset

FlowNetS [9] 14.85 6.43 6.80 12.46 6.19 9.34
FlowNetS + IN 7.91 5.40 5.15 9.16 5.15 6.55
FlowNetS + AT 5.42 5.09 4.52 5.65 4.75 5.09
FlowNetS + GST 5.46 4.40 4.10 5.00 4.16 4.62
FlowNetS + ours 4.55 4.44 4.30 4.96 4.41 4.53
FlowNetC [9] 48.53 6.32 9.07 15.18 6.58 17.14
FlowNetC + IN 14.23 6.47 6.88 8.67 7.05 8.64
FlowNetC + AT 11.95 5.51 6.25 9.25 5.83 7.76
FlowNetC + GST 6.13 4.32 4.67 6.14 4.50 5.15
FlowNetC + ours 4.91 4.37 4.49 5.39 4.28 4.69
RAFT [47] 2.01 1.35 1.07 2.21 1.02 1.53
RAFT + FS [23] 1.73 1.51 1.52 1.63 1.44 1.57
RAFT + AT 1.91 1.35 1.07 2.24 1.01 1.51
RAFT + GST 1.64 1.26 1.10 1.82 0.99 1.36
RAFT + ours 1.48 0.99 0.84 1.46 0.82 1.12

4.1. VKITTI 2

As shown in Table 1, existing methods, especially,
FlowNetS and FlowNetC, are incapable of dealing with
domain changes. The performance of FlowNetS and
FlowNetC severely drops, especially when Fog and Rain
are the target domains. The two domains are very different
from Clone domain as they are both low-light weather. The
result indicates that the bigger the gap between the source
and the target is, the more vulnerable the networks without
domain adaptive techniques. As we can see in the table,
+ IN and + AT model help to make domain-invariant fea-
ture, and thus improving the model performance in the tar-
get domain. Moreover, + GST model assists the network to
be more adapted to the target domain by generating global

Table 2. Average End Point Error (AEPE) and F1 results on Sintel
and KITTI-15 datasets. We only measure AEPE for the results
of Sintel column following RAFT. (†FlowNet2 reported results on
the disparity split of Sintel, 3.54 is the EPE when their model is
evaluated on the standard data [18]. )

Method
FlyingThings3D

Sintel KITTI-15

Clean Final AEPE Fl-all

HD3 [56] 3.84 8.77 13.17 24.0
LiteFlowNet [18] 2.48 4.04 10.39 28.5
PWC-Net [46] 2.55 3.93 10.35 33.7
LiteFlowNet2 [19] 2.24 3.78 8.97 25.9
VCN [55] 2.21 3.68 8.36 25.1
MaskFlowNet [59] 2.25 3.61 - 23.1
FlowNet2 [22] 2.02 3.54† 10.08 30.0
RAFT [47] 1.43 2.71 5.04 17.4
RAFT + FS1 [23] 1.30 2.46 4.69 14.5
RAFT + GST 1.36 2.58 4.67 17.2
RAFT + ours 1.32 2.57 4.45 16.4

synthetic target features. When we apply our method (TST,
MCL, and FAL), the network outperforms other baselines.
Especially the method shows its efficacy even when the dis-
crepancy between the source and target is severe. Although
+ FS model is effective in Fog and Rain domains, it de-
grades the performance of RAFT in all the other domains,
indicating that the benefit of the mutual supervision strategy
of FS is sensitive to target domains.

Figure 4 shows the qualitative results of the VKITTI 2
dataset. The domain of the input target images are Fog,
Morning, Overcast, Rain, and Sunset from top to bottom.
The results indicate that the FlowNetS fails to get a reli-
able optical flow map in the target domains, which have a
large domain gap with the source domain (Clone). On the
other hand, the flow map results of our method show clear
improvements.
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Figure 5. Qualitative results of Sintel and KITTI dataset. The images in the top two rows are from Sintel (clean) and the following two
rows are from Sintel (final). The images at the bottom row are from KITTI.

4.2. Sintel
To evaluate the transferability of our model between two

datasets, we select FlyingThings3D as a source dataset and
Sintel as a target dataset. We use the official RAFT model
for our training, which is pretrained on FlyingThings3D.
Our quantitative results are denoted in Table 2. It shows
that our method successfully adapts the model to the target
dataset. Our method achieves 1.32 AEPE on Clean split
and 2.57 AEPE on Final split of Sintel (train). The re-
sults describe an interesting fact that our method not only
can handle the domain difference between the source and
the target but also can deal with the different motion dis-
tributions between them compared to VKITTI experiments.
However, FS shows marginally better results and we assume
the reason is that it fully exploits its teacher network, which
generates guidance for the student network, based on their
pretrained model. Although FS demonstrates its effective-
ness, it heavily relies on the prediction of the optical flow
model, which is pretrained, as supervision in learning; FS
shows unstable performances in the VKITTI experiment,
where the model is trained from scratch. In contrast, the su-
pervisory signal in our method mainly comes from source
annotations, thus being robust to the prediction of the op-
tical flow model. We demonstrate our model’s capability
without pretrained model by experiments in supplementary.
As shown in Figure 5, our method is capable of predicting
fine flow fields. In the second row, our method successfully
catches the movement of a left arm and a left leg of a person
compared with RAFT. In the third row, our method clearly

distinguishes the movement of the legs. Additionally, in the
fourth row, the method clearly detects the movement of a
right side man’s head.

4.3. KITTI 2015

Additionally, we choose FlyingThings3D as a source
dataset and KITTI 2015 as a target dataset. Similar to the
Sintel experiments, we utilize FlyingThings3D pretrained
model. The difference with the Sintel experiments is that
KITTI is a real-world dataset. Therefore, this experiment
shows our models’ transferability from synthetic to real do-
main. The results of Table 2 show that our proposed model
is capable of dealing with the difference between synthetic
and real domains. As shown in the bottom row of Figure 5,
the result indicates that our method is also capable of deal-
ing with occluded objects.

4.4. Ablation Study

We conduct multiple ablation studies on the VKITTI
dataset to validate the effectiveness of the proposed method.
We use FlowNetC [9] and set Clone as the source domain.
Proposed Components. In Table 3, we conduct an exten-
sive ablation study to validate the effectiveness of each com-
ponent by incrementally adding a component to the base-
line. The first row of the table is the result of FlowNetC. By
only attaching the TST module, and thus generating syn-

1We report the performance of FS without SMURF [44], which is an
additional training strategy using unlabeled images, for a fair comparison.
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Table 3. Comprehensive ablation study.

LST
epe Lcorr

consist L
pred
consist Ladv Fog Rain Sunset Avg.

48.53 15.18 6.58 23.43
✓ 6.06 6.91 4.41 5.79
✓ ✓ 5.36 5.53 4.24 5.04
✓ ✓ 4.95 5.60 4.22 4.93
✓ ✓ ✓ 5.20 5.43 4.16 4.93
✓ ✓ ✓ ✓ 4.91 5.39 4.28 4.86

Table 4. The effect of the permutation.

Permutation Fog Rain Average

5.95 5.41 5.68
✓ 4.91 5.39 5.15

Table 5. Quantitative results of multiple patch sizes.

Patch size Fog Morning Average

5 5.32 4.52 4.92
11 5.18 4.52 4.85
21 5.08 4.52 4.80
{5, 11, 21} 4.91 4.37 4.64

thetic target feature for training, the model obtains signifi-
cant performance improvement. Also, each motion consis-
tency loss (Lcorr

consist andLpred
consist) also contribute to the model’s

performance. Adversarial loss (Ladv) shows its efficacy as
well. Finally, the last row of the table is the full implemen-
tation of our proposed model. The result shows that our
components complement each other and effectively train the
model to adapt to the target domain. The results of other do-
mains are reported in the supplementary.
Effects of random permutations. The random permuta-
tion, after obtaining local target style statistics, has an effect
of implicit data augmentation. To demonstrate its efficacy,
we conduct an ablation study in Table 4. The results in-
dicate that random permutation meaningfully benefits the
training of the model.
Multiple Patch Size. We select three kinds of patch sizes
from 1

32 ,
1
16 ,

1
8 ,

1
4 , and 1

2 of the feature height. In VKITTI 2
experiments, the feature height is 160. For the ablation
study, we select the patch size of 5, 11, and 21, i.e., 1

32 ,
1
16 , and 1

8 of the feature height respectively. Table 5 indi-
cates that utilizing multiple patch sizes are more beneficial
than using only one size. Other patches’ size settings are in
the supplementary materials.

4.5. Visualization of Synthetic Target

Feature visualization. To demonstrate that our synthetic
target feature follows the content of the source, we visual-
ize the source and synthetic target feature in Figure 6. For
visualization, we average the feature across the channel di-
mension. The results show that the created feature properly
contains source contents.
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Figure 6. Feature visualizations of the source and the synthetic
target.
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Figure 7. t-SNE visualization of the source (Clone), target (Fog),
and synthetic target features.

t-SNE visualization. To investigate that synthetic target
features follow the style of the target and contribute to
reducing domain gap, we visualize the embedding space
of the source, target and synthetic target features using t-
SNE [33] in Figure 7. The points in the embedding space
represent 256-dim pixel embeddings from 40 × 56 × 256
feature maps before the correlation layer. Before training,
the embeddings of the synthetic target (yellow) are closer
to the points of the target (green), which represents that the
synthetic feature successfully capture the target style. Af-
ter training, the model efficiently extracts domain-invariant
features after being trained with our method.

5. Conclusion
Optical flow estimation on a novel domain is a chal-

lenging and critical issue. We have proposed the target
style transfer (TST) module for creating synthetic target
feature, which effectively assists to reduce domain discrep-
ancy. Motion consistency loss (MCL) enforces the com-
puted motion from the source feature to be close to that of
the synthetic feature and vice versa. We also deploy adver-
sarial training for flow adversarial learning (FAL). More-
over, our components can be applied to numerous other op-
tical flow models. We conduct extensive experiments on
various datasets and show that our model predicts fine flow
maps from the target domain. We believe that our method
can be broadly deployed to other computer vision tasks.
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