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Abstract

Learning from bounding-boxes annotations has shown
great potential in weakly-supervised 3D point cloud in-
stance segmentation. However, we observed that existing
methods would suffer severe performance degradation with
perturbed bounding box annotations. To tackle this is-
sue, we propose a complementary image prompt-induced
weakly-supervised point cloud instance segmentation (CIP-
WPIS) method. CIP-WPIS leverages pretrained knowledge
embedded in the 2D foundation model SAM and 3D geo-
metric prior to achieve accurate point-wise instance labels
from the bounding box annotations. Specifically, CIP-WPIS
first selects image views in which 3D candidate points of an
instance are fully visible. Then, we generate complemen-
tary background and foreground prompts from projections
to obtain SAM 2D instance mask predictions. According
to these, we assign the confidence values to points indicat-
ing the likelihood of points belonging to the instance. Fur-
thermore, we utilize 3D geometric homogeneity provided by
superpoints to decide the final instance label assignments.
In this fashion, we achieve high-quality 3D point-wise in-
stance labels. Extensive experiments on both Scannet-v2
and S3DIS benchmarks proves that our method not only
achieves state-of-the-art performance for bounding-boxes
supervised point cloud instance segmentation, but also ex-
hibits robustness against noisy 3D bounding-box annota-
tions.

1. Introduction
Indoor point cloud instance segmentation is one of the

fundamental tasks in 3D scene understanding [9,14,16,19,
23, 27, 28, 30, 31]. The goal is to predict instance masks
of 3D points and corresponding semantic labels. Current
3D indoor instance segmentation methods are mainly de-
signed on fully-supervised annotations, i.e., point-wise an-
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notation. However, such annotation procedures are often
time-consuming and laborious due to the vast quantity of
points in each scene. Hence, there has been a growing inter-
est in investigating weakly-supervised alternatives. Among
different types of weak supervisions for point clouds, 3D in-
stance bounding boxes stand out as a prospective direction.
First, annotating bounding boxes is considerably efficient,
as it only involves drawing a single box around each ob-
ject. More importantly, each bounding box is a naturally
richer instance representation, thus making it more capable
of handling instance-level segmentation.

While several 3D bounding-boxes-based instance seg-
mentation methods have been proposed [5, 8], they all uti-
lize the minimum axis-aligned instance bounding-boxes as
annotations. In other words, these bounding boxes are the
tightest ones enclosing instance point clouds along the 3D
world coordination. However, in practice, manual annota-
tions inherently contain errors or noise. As a result, when
bounding-box annotations have minor perturbations, these
methods would experience significant degradation in per-
formance. Therefore, it is crucial to consider the existence
of noise and develop a counter-algorithm to mitigate its ad-
verse effects. In this work, we proposed a complementary
image prompt-induced weakly-supervised point cloud in-
stance segmentation method under noisy bounding-box an-
notations. Our method merely requires each bounding box
to cover the entire instance without any strict constraints
on tightness. In other words, annotators can draw rela-
tively looser bounding boxes as annotations, even if they
are slightly larger than the objects themselves and may sub-
sequently introduce a higher amount of noise.

As the first attempt to tackle this issue, we aim to lever-
age the recent advance of the 2D foundation model, i.e.,
Segment Anything Model (SAM) [15]. SAM performs
promptable instance segmentation on the 2D domain. In
other words, SAM cuts the objects in the image, and which
object gets cut out depends on the given prompt. Hence, we
intend to generate 2D image prompts from 3D weak super-
vision signals and achieve accurate point-wise instance la-
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(a) Point-wise annotation. (b) Bounding-box annotation. (c) Indoor complex point cloud scene. (d) Noisy bounding boxes.

Figure 1. (a) and (b) compare point-wise annotation and bounding-box annotation in the point cloud instance segmentation task. Bounding
boxes annotation notably streamline the labeling process. (c) shows the complex indoor point clouds scene, exhibiting extensive instance
overlapping and highly irregular point distribution. This suggests that manual annotated bounding boxes are unavoidable suffer from
inaccuracy. (d) plots the examples of tight bounding-box annotations (□ and □) and the relaxed (i.e. noisy) bounding boxes (□ and □).
Our work aims at alleviating the negative effects brought by noisy bounding-box annotations.

bels based on SAM predictions. In this case, any advanced
fully supervised segmentation network can be used as the
following procedure.

To transfer the powerful performance of SAM on 2D do-
mains for 3D data, we treat the points that potentially be-
long to the instance as candidate points and project them
into multiple image planes. After that, a greedy view selec-
tion algorithm is employed to choose the suitable views for
projection. Based on the projected locations of candidate
points, foreground 2D instance bounding boxes and sam-
pled background pixel coordinates can be obtained as com-
plimentary prompts. With these prompts, we use the pro-
duced SAM predictions to effectively assign confidence val-
ues to each projected point, indicating its likelihood of be-
longing to the instance. Finally, we apply a voting scheme
to uniquely assign each point to instances according to the
rank of confidence. Moreover, to mitigate the side effects of
potential noisy projections and inaccurate SAM predictions,
we exploit the 3D geometric structure of point clouds to fa-
cilitate our label refinement process. Our method does not
require additional training or fine-tuning and can be adopted
into any fully-supervised network.

With our CIP-WSIS, we can accurately assign point la-
bels even in the presence of noisy bounding-box annota-
tions. Extensive experiments on both widely-used ScanNet-
v2 and S3DIS benchmarks demonstrate that our method
is robust against various levels of annotation noise for 3D
bounding boxes. In particular, our CIP-WSIS outperforms
the state-of-the-art Box2Mask [5] by a large margin of
10% on AP on Scannet-v2 validation set with noise-free
bounding-box annotations. There is only a 2% decrease in
performance even with an increased noise rate. Overall, our
contributions are three-fold:

• To the best of our knowledge, we are the first to explore
the noisy weakly supervision problem on 3D instance
segmentation tasks. To tackle the problem, we pro-
pose a complementary image prompt-induced weakly-

supervised point cloud instance segmentation (CIP-
WPIS) method that mitigates the model performance
degradation problem caused by perturbed bounding
box annotations.

• We introduce a 3D confidence ensemble module to
mine the instance knowledge ensembles in the large
2D foundation model. With the 2D instance knowl-
edge and the 3D geometric constraints, we can obtain
accurate labels for each point.

• Our proposed is a flexible plug-in module that can be
easily integrated into any fully supervised 3D instance
segmentation methods, avoiding re-designing specific
weak-supervised network structures.

2. Related Work
2.1. Fully-supervised 3D Instance Segmentation

Early methods can be grouped into two classes:
proposal-based and grouping-based paradigms. Proposal-
based methods employ a top-down strategy to generate re-
gion proposals and then segment the instance within each
proposal. For instance, [36] and [11] first regress 3D
bounding boxes for all instances and then leverage the point
features to produce instance masks. Grouping-based meth-
ods implement a bottom-up pipeline that produces point-
wise predictions and then cluster points into different in-
stances. For example, MASC [17] leverages the mesh graph
to cluster the instances after extracting the semantic features
of points. To group instances more robustly, Jiang et al. [14]
proposes to estimate point offsets with respect to object cen-
ters. Following such design, Liang et al. [16] and Chen [3]
improve the performance by adopting hierarchical aggre-
gation schemes. Furthermore, [9] introduces an additional
graph convolutional network to refine the grouping outputs.
Recently, SoftGroup [30, 31] leverages the advantages of
both strategies. They proposed an architecture with bottom-
up soft grouping and a subsequent top-down refinement.
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State-of-the-art methods further improve 3D instance
segmentation by utilizing advancements in transformers.
The latest works, SPFormer [28] and Mask3D [27], both
implement a transformer decoder following the design of
cutting-edge 2D segmentation methods [2, 4]. Instead of
clustering points, such methods learn a set of instance
queries and compute instance masks directly based on the
similarities between point features and query vectors. Such
a strategy can better model the relationship between ob-
jects and points while accelerating the inference process at
the same time. Moreover, an attention mask mechanism
is incorporated to enhance training efficiency. However, all
these fully-supervised methods require clean point-level an-
notations, and they would suffer severe performance drops
when noisy annotations are provided.

2.2. Weakly-supervised 3D Instance Segmentation

Sparse-point weak supervision approaches only use a
small portion of labeled point clouds to train the network.
For example, Xu et al. [35] propose to propagate gradients
of labeled points to those of labeled points in optimizing
their semantic segmentation network. Hou et al. [12] anno-
tate 0.1% of points and train a 3D semantic segmentation
network by contrastive learning. Liu et al. [21] generate
semantic pseudo labels from one point per object by imple-
menting a contrastive learning strategy. In addition, Wu et
al. [33] introduced a dual transformer model to effectively
regularize unlabeled 3D points through an adversarial strat-
egy at both the point level and region level. Note that most
of these works focus on semantic segmentation instead of
instance segmentation.

Compared to sparse point supervision, 3D bounding box
annotations provide rough instance information such as ob-
ject center and size, thus making it more capable of han-
dling instance-level segmentation tasks. However, such a
method has received little attention. Chibane et al. [5]
adopts bounding-boxes as supervision. They estimate the
instance bounding boxes for each superpoint and then fol-
low a clustering technique to decide which group of super-
points belongs to the same instance. Du et al. [8] lever-
ages 3D local geometric information to generate point-level
labels from bounding-box annotations. However, all these
methods highly rely on the accuracy of bounding boxes.

2.3. Foundation Models

The emergence of foundation models has received lots of
attention, such as [7, 24–26]. These models are trained on
vast amounts of data and hence demonstrate superior per-
formance. Very recently, the Meta Research team has re-
leased the “Segment Anything Model” (SAM) [15]. It is
trained on over 1 billion masks on 11 million images. With
efficient prompting, it can create high-quality, generalized
masks for image instance segmentation. Due to the excel-

lent generalization performance of SAM, it has shown ex-
tensive use for other downstream tasks as an off-the-shelf
tool [13, 18, 20, 22, 32, 37]. In our work, we aim to lever-
age SAM to provide 2D prior knowledge in our 3D instance
segmentation.

3. Proposed Method
The overall framework of our proposed CIP-WPIS is il-

lustrated in Figure 2. The description of our method is de-
tailed in the following sections.

3.1. Candidate Points Initialization

We aim to initialize points inside the bounding boxes that
potentially belong to the corresponding instance as candi-
dates. Instead of considering all the contained points as can-
didate points, we invoke 3D superpoints to filter out some
unlikely points for the efficiency of the following proce-
dures. Superpoints are small clusters of points symboliz-
ing local geometric continuity, formed via a normal-based
graph cluster technique [10]. Following the assumption of
previous works [5,16,28], all the points within a superpoint
belong to the same instance. Given that bounding boxes
only include additional points, we identify points as candi-
dates only if the associated superpoints are entirely within
the box. In other words, if any point in the superpoints lies
outside the box, we can confidently exclude the entire su-
perpoint. Following this process, we can obtain the can-
didate points for each instance. Note that some points in
the overlapping area of boxes might be candidate points for
multiple instances, and some background points might be
incorrectly identified. The false-positive candidates will be
corrected through the following processes with 2D pretrain
knowledge from the fundamental model SAM.

3.2. View Selection

Indoor 3D point clouds are reconstructed from a se-
quence of RGBD images. Hence, each point of the scene
is presented in at least one of the images, and this motivates
us to leverage the prior knowledge from 2D for 3D tasks.
We intend to select 2D image views for instances to project
all the corresponding 3D candidate points. Due to the ex-
tensive overlapping and obstructions, it is usually difficult to
locate a single instance view so that all the candidate points
can be fully observed. Therefore, we designed a greedy
view selection algorithm to progressively select a subset of
2D image views for each instance. First, we initialized an
empty view set and labeled all the candidate points as un-
projected. Then the view with the maximum number of vis-
ible points is added to the view set. These points, once vis-
ible, are subsequently marked as observed. We repeat the
above procedure until all the candidate points are observed.
The specifics of this algorithm are presented in Algorithm
1. In the projection phase, we mapped the 3D point location
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Figure 2. Workflow of our proposed CIP-WPIS. The left part depicts the whole pipeline for obtaining the point-wise instance labels from
noisy bounding boxes. Specifically, we first assign the candidate points for each instance given the noisy bounding boxes. Then we devise
the 3D confidence ensemble module to correct the mislabeled point of each instance as shown in the middle part plots. We first design a
greedy selection algorithm to select multiple 2D views in which an instance is fully visible. Based on projected object points in each 2D
view, we introduce a complementary prompt generation module to obtain the SAM predictions from various views. After that, we integrate
these predictions to indicate whether the point belongs to the instance. The right part details the complementary prompt generation module.
Complementary background and foreground prompts are introduced to obtain the object mask for each instance.

onto the 2D image plane utilizing the given camera view in-
formation. The projected 2D coordinates of each point are
computed as below following the pinhole camera model:uv

z

 = K · P ·
[
X
1

] [
x
y

]
=

1

z

[
u
v

]
,

where K and P represent the camera intrinsic and extrinsic
parameter matrix. X is the input point location vector under
3D world coordinates and x, y is the projected 2D pixel co-
ordinates. Subsequently, we capture the points in the image
view by clipping according to the dimensions of the image.
We can determine the visibility of points based on the align-
ment between the depth of the RGBD image and the z-axis
value from the camera coordinates.

3.3. Complementary Prompt Generation for SAM

Once comprehensive image views for all instances
within the scene are selected, we derive 2D prompts based
on the projected coordinates for these views. In this context,
we adopt a complementary prompt strategy by computing
a 2D bounding box of projected pixels as the foreground
prompt and sampling pixels around the projected area as
the background prompt. The foreground prompt can seg-
ment the target instance within the bounding box range, and

Algorithm 1 Greedy View Selection

Input: Number of instances N
Camera views set V
Candidate points sets P (|P| = N)

Output: Sets of selected instance views V
Procedure:

V ← {Vi

∣∣Vi = ∅, i ∈ {1..N}}
S ← {Sj

∣∣Sj = project(P,Vj),Vj ∈ V}
for i = 0 to N do

P ← Pi

while P ̸= ∅ :
j = argmax{|Sj |

∣∣Sj ∈ S}
Vi ← Vi ∪ {Vj}
P ← P \ Sj

return V

the background prompt aids in identifying irrelevant parts of
the instance in the image plane. Such dual types of prompts
collectively facilitate each other to achieve the optimal 2D
instance segmentation results using SAM.

The exclusive reliance on a single type of prompt would
decrease the precision of SAM predictions, primarily due
to two key factors. First, the major issue with foreground
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prompts is their lack of accuracy. Since our input candidate
points are highly noisy, the bounding box formed from the
projected points generally exceeds the optimal size. When
there are multiple instances in the box area, SAM may over-
include additional parts other than the desired instance. At
some viewing angles, when the image only includes a small
fraction of the true positives but a larger number of false
positives, such a problem can be enlarged. On the other
hand, background prompts present their own set of chal-
lenges. Compared to bounding boxes, point prompts pro-
vide weaker constraints. Given a point as a prompt, SAM
will return the most likely corresponding instance based
on its pretrained knowledge. Since SAM is a generalized
model trained with millions of diverse 2D object masks, it
may have a different semantic understanding from the spe-
cific dataset. For instance, when there is a sink within the
cabinet and the sink is the target instance, SAM sometimes
interprets the cabinet and sink as a singular instance if the
prompt is on the cabinet. Without a foreground prompt, the
whole sink will be treated as part of the cabinet, which ad-
versely impacts the prediction results for both classes.

With these two types of prompts, we can leverage SAM
to compute instance masks on the 2D image plane. Note
that each mask generated by SAM is a float-type score ma-
trix with the size of the input image. Then, we merge the
SAM mask predictions as the following formulation and
output a single mask in the view m of instance k:

Hm
k = Hm,f

k − βmax{Hm,b1
k , ...,Hm,bn

k },

where Hm,f
k and Hm,bi

k represent the mask predictions of
view from the forground bounding box prompt (f ) and
background point prompts (b). In the equation, max donates
the element-wise maximum operation, and n is the number
of background prompts. Since each Hm,b1

k only represents
one instance of an irrelevant image area, we implement such
a strategy to merge the background predictions as a single
background mask. In addition, β is a hyperparameter. Ac-
cording to our ablation study, β = 0.5 achieves the best
performance. In this scenario, we derive the 2D instance
scores for each pixel in the selected views. A higher score
demonstrates a greater possibility that the pixel belongs to
the prompt-induced instance.

3.4. 3D Confidence Ensemble from Selected Views

Based on the obtained 2D instance prior from SAM, we
designed the following function to assign the confidence
values for each candidate point:

Cp,k =

∑
m Φ(p, Vk,m) ·Hm

k [i, j]∑
m Φ(p, Vk,m)

.

The confidence result C has two inputs: the 3D point p
and the instance ID k, which signifies the likelihood of the
point having the corresponding instance label. It calculates

the average of the 2D mask scores of the projected pixel
in the views of the instance (Vk,m). In the equation, [i, j]
represents the 2D projected pixel coordinate of p. Implicit
function Φ stands for the visibility of point p under instance
view Vk,m, which outputs a value of 1 if the point is visible
in the view and 0 if otherwise. Note that each point might
appear a different number of times across the views. Hence,
a normalization factor is added below, denoting the count of
visible views.

After obtaining the confidence value of each point from
2D prior, we finalize the instance label for the candidate
points guided by 3D geometric homogeneity provided by
superpoints. We first compute the confidence of each su-
perpoint as the mean confidence of its included points and
then assign the instance labels to superpoints based on that.
A higher confidence value indicates a stronger correspon-
dence between the superpoint and the instance. With such
a 3D cluster-level label correction approach, we can handle
potential projection noise and 2D prediction errors.

We designed the following two steps to determine the
instance labels of superpoints. Firstly, we set a confidence
threshold at 0 to filter out the highly likely irrelevant super-
points from the candidate superpoints of the instance. De-
spite this, there are still massive superpoints that have pos-
itive confidence values associated with multiple instances.
Therefore, we assign such superpoints to the instance with
maximum confidence. This voting strategy aims to assign
the points with the most correlated instance label. Follow-
ing this design, additional included background points can
be eliminated with negative confidence values and ambigu-
ous points in the overlapping bounding box area can be
uniquely and accurately allocated. In this fashion, we exten-
sively leverage 2D prior knowledge from SAM and 3D ge-
ometric information to achieve correct point-wise instance
labels, which can be seamlessly integrated with any fully
supervised 3D instance segmentation network.

4. Experiments
To validate the effectiveness of our proposed CIP-WSIS,

we conduct experiments on two challenging datasets, i.e.,
ScanNet-V2 [6] and S3DIS [1].

4.1. Datasets and Evaluation Metrics

ScanNet-V2 [6] dataset contains 1, 613 scans with 3D
semantic and instance annotations. The dataset is split into
training, validation, and testing sets, with 1, 201, 312, and
100 scans. It contains 18 object semantic categories. We
train on the training set and report results on the validation
set for comparison with other methods. An efficient normal-
based graph cut image segmentation method [10] is utilized
for superpoint generation. Mean Average Precision (mAP )
serves as the common evaluation metric for instance seg-
mentation on the Scannet-V2 dataset. It calculates the av-
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Figure 3. Visualizations of instance labels generated by the baseline model and our proposed method. To show the effectiveness of our
method, we select the bounding boxes with the highest noisy rate (λ = 0.3) as the input. Regions for comparison are highlighted by □.
Even the input bounding boxes containing large unrelated regions, the instance labels generated by our method have minor differences
from the ground-truth labels.

Sup. Method AP AP50 AP25

Mask

PointGroup [14] 0.348 0.517 0.713

SSTNet [16] 0.494 0.643 0.740

SoftGroup++ [30] 0.458 0.674 0.791

ISBNet [23] 0.545 0.731 0.825

Mask3D [27] 0.552 0.737 0.835

SPFormer [28] 0.563 0.739 0.829

Point
PointContrast [34] 0.348 0.517 0.713

CSC [12] 0.494 0.643 0.740

Box

Box2Mask 0.391 0.597 0.718

WISGP [8] 0.352 0.569 0.702

Ours&Softgroup++ [30] 0.395 0.629 0.773

Ours&SPFormer [28] 0.475 0.693 0.786

Table 1. The results of our method under noisy-free bounding
boxes on the Scannet-V2 validation set. For reference purposes,
we also include the results of methods using other types of supervi-
sion (Sup.), such as masks or sparse points (200 points per scene).
Our method can be used as a plugin to leverage the power of a
fully supervised network, and it outperforms the existing weakly
supervised design.

erage scores of all foreground classes among different In-
tersection over Union (IoU) thresholds, ranging from 50%
to 95%, with increments of 5%. In addition, AP50 and
AP25 represent the scores corresponding to IoU thresholds
of 50% and 25%, respectively. We present the mAP, AP50,
and AP25 results on the ScanNetv2 validation dataset.

Stanford 3D Indoor Scene Dataset (S3DIS): S3DIS [1]
is a large-scale indoor dataset displaying six distinctive ar-
eas from three separate campus buildings. It contains 272
scans and is annotated with instance masks over 13 seman-
tic classes. Following the common splits, our method is
trained in Area 1, 2, 3, 4, and 6 and evaluated in Area 5. To
compare with the previous works [5,8], we adopt the mean
precision (mPrec) and mean recall (mRec) at overlap 0.5 in
S3DIS evaluation.

4.2. Experiment Settings

Noisy Bounding-boxes: We input noisy bounding boxes
to each instance for point-wise 3D label generation. Each
axis-aligned bounding box can be represented by a 6-
dimension vector, including the xyz coordinates of min-
imum corners and maximum corners. To simulate noisy
annotations, we choose different hyper-parameter λ val-
ues to enlarge the minimum bounding boxes. Each noisy
bounding box can be expressed as [Cmin − 0.5X,Cmax +
0.5X], where C stands for bounding box corners and X =
λ(Cmax − Cmin). To mimic human labeling in real-world
settings, we add a minor Gaussian permutation with a stan-
dard deviation of 0.5λX . A larger λ will lead to a higher
noise rate. To exhibit robustness, we select different λ from
0 to 0.3.

Network Selection: We selected three different seeds to
generate noises and report their average performance. To
evaluate the adaptive capacity of our method under differ-
ent types of backbones, two representative fully supervised
methods are selected (SPF and SoftGroup ++) for our ex-
periment. Softgroup++ stands as a representation of the
traditional methods [9, 14, 16, 31]. It involves a bottom-up
grouping and a top-down refinement after feature extrac-
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Method
Noise parameter λ

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3

AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25

Box2Mask [5] 0.398 0.592 0.712 0.366 0.563 0.690 0.359 0.539 0.670 0.301 0.515 0.669

WISGP ∗ [8] 0.352 0.569 0.702 0.333 0.524 0.645 0.294 0.492 0.599 0.261 0.458 0.562

Base & Softgroup++ [30] 0.393 0.623 0.765 0.368 0.598 0.759 0.362 0.591 0.752 0.354 0.592 0.757

Base & SPF [28] 0.473 0.689 0.787 0.437 0.672 0.780 0.396 0.625 0.761 0.364 0.620 0.771

Ours & Softgroup++ 0.395 0.629 0.773 0.371 0.584 0.741 0.366 0.582 0.745 0.364 0.588 0.749

Ours & SPF 0.475 0.693 0.786 0.465 0.691 0.777 0.452 0.672 0.768 0.446 0.668 0.761

Table 2. The results of our method under noisy bounding boxes of different noisy rates on the ScanNet-V2 validation set. The main metric
for comparison is AP. Symbol ∗ indicates the method is reproduced by ourselves to test on the noisy bounding-box setting.

Noise Wrong Points Wrong Superpoints

λ = 0 5.2m / 3.6m 64k / 43k

λ = 0.1 10m / 5.9m 114k / 67k

λ = 0.2 13m / 7.1m 141k / 81k

λ = 0.3 16 m / 10m 174k / 107k

Table 3. Quantitative evaluation of inaccurately assigned points
and superpoints throughout the entire Scannet-V2 training set,
compared between the baseline (left) and our technique (right).
Due to the significant improvement in label accuracy, our method
delivers a better final prediction.

tion. SPF [28], similar to Mask3D [27], implemented a
different type of strategy using transformers [29] and in-
troduces learnable queries as instance vectors. To further
demonstrate the effectiveness of the method, we report the
improved label accuracy in Table 3.

4.3. Implementation Details

Training Strategy: The fully-supervised technique usu-
ally imports a pre-train checkpoint on the same dataset with
a less strong fully-supervised network backbone. To adapt
to the weakly supervised scenario, we manually removed
such pertaining. In this case, we make some minor adjust-
ments to the previous training configuration, i.e., increas-
ing the number of training epochs and reducing the learn-
ing rates. To compare with the second type of baseline, we
adopt the same configuration settings for training. More-
over, ceiling and floor classes are considered to have the
same semantic label as background for supervision.

Prompt Generation: Our method employs complemen-
tary prompts to guide SAM predictions. The foreground
prompt is the 2D bounding box of projected pixels of can-
didate points. Background prompts are the sampled pixels
around the projected area. Specifically, we divide the image

Sup. Method mPrec mRec

Mask

PointGroup [14] 55.3 42.4
SSTNet [16] 65.5 64.2
SoftGroup++ [30] 73.6 66.6
Mask3D [27] 68.7 66.3
SPFormer [28] 72.8 67.1

Box

Box2Mask 66.7 65.5
WISGP&PointGroup [8] 50.0 52.8
WISGP&SSTNet [8] 44.3 56.7
Ours&SPFormer 69.1 64.2

Table 4. The results of our method under noisy-free bounding
boxes on S3DIS folder-5.

into multiple 32 × 32 windows. If one window contains a
projected point, it will be marked as ‘True’ and vice versa.
Thus, we can obtain a boolean matrix, and the number of
columns and rows are image height and width divided by
32. With a simple kernel multiplication, we can achieve the
windows that are close to the projected area while not in-
cluding any projections. A smaller window size leads to a
slightly better performance, but it will increase the number
of prompts, which would cause higher computation time.

4.4. Main Result

The majority of the experiment is conducted on the
ScanNet-V2. The quantitative results are shown in Table 1,
2, and qualitative results can be visualized in Figure 3. As
the first attempt to tackle the problem, we tried our best to
adapt previous works and create the following two baselines
for comparison. The first one is the existing box-supervised
approach with the same noisy bounding boxes. Another one
is state-of-the-art fully-supervised methods with point-wise
labels generated from each bounding box with only the can-
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didate point initialization step. To ensure each point has a
unique instance label, we implemented a simple heuristic
following the design of previous works [5], which is choos-
ing the instance with the smallest bounding box if the point
is a candidate point of multiple instances. This is because
smaller objects are often fully contained in bounding boxes
of larger objects. The purpose of establishing this base-
line is to ensure that the improved performance isn’t just
because of the change in network structure. As a result,
we achieve state-of-the-art 3D instance segmentation per-
formance under noise-free and noisy bounding box anno-
tations. Especially for noisy bounding boxes, our method
only has around 2% performance degradation as the noise
rate increases to the next level.

We carry out extra experiments under the S3DIS dataset
with SPFormer as the network structure. We achieved state-
of-the-art performance in terms of mPrec under noisy-free
bounding box supervision, as shown in Table 4. For noisy
bounding boxes supervision, our method suffers nearly 5%
performance drop for mPrec and 8% for mRec on average
with a 0.1 increase of λ. In contrast, the baseline labels with
the same network structure drop 9% and 13% on average,
respectively. Therefore, we prove that our CIP-WPIS is ro-
bust against noise.

4.4.1 Ablation Study

Prompt Using Strategy: We examine another way of
acquiring 2D mask scores, which is the most straightfor-
ward design. SAM allows users to feed an arbitrary number
of prompts with multiple types to generate a single mask
prediction. Hence, we input foreground and background
prompts together to predict a single heatmap and use such
heatmap to do the confidence assignment. The box fore-
ground prompt is naturally a positive signal. Background
prompts are manually set as negative signals for the pre-
dictor. However, we observed that when the number of
prompts gets more, SAM tends to give unstable results and
leads to a drop in performance.

Hyperparameter Selection: In addition, we evaluated
different hyperparameters β for merging the SAM predic-
tions of each prompt. A smaller β would be less effective
in identifying the excessively included background points.
And a bigger β over-crop the true positive candidate points.
The two ablation study results are combined in Table 5.

4.5. Further Discussion

Robustness: We observed that our method outper-
forms the baseline with a bigger gap as the noise level rises.
One contributing factor is the strong ability of the 2D foun-
dation model that gives robust predictions against noisy
prompts. Another important factor is that the number of
candidate points increases along with the noise level, lead-
ing to a rise in the number of selected views. Such a conse-

β Single Merged mAP AP50 AP25

0.5 ✓ 0.411 0.628 0.754

0.2 ✓ 0.442 0.681 0.767

0.8 ✓ 0.409 0.616 0.732

0.5 ✓ 0.465 0.691 0.777

Table 5. Performance comparison of different ways of leverag-
ing prompts and different selections of hyperparameter β under
noise rate λ = 0.1 with SPFormer network structure under Scan-
net Dataset.

quence can be beneficial for generating a more reliable con-
fidence value due to our averaging process. Therefore, in
the most ideal case, if every RGBD image is taken into con-
sideration, the labeling accuracy can be further improved.
However, the computational burden will surge dramatically
since each 3D scene may overall contain thousands of high-
resolution image frames. Therefore, the greedy view selec-
tion approach is introduced as a trade-off design between
final performance and computation cost.

Limitations and Further Work: Even though our in-
troduced method notably enhances label accuracy, it can-
not match the precision of human annotation. Since this
work focuses on demonstrating the effectiveness of our
auto-labeling module, our proposed method doesn’t involve
additional innovation on the fully-supervised network struc-
ture under noisy masks. While our method provides a con-
fidence value for each point associated with each instance,
we anticipate further studies to improve noisy bounding box
supervised segmentation from a soft labeling perspective.

5. Conclusion

In this work, we propose an annotation noise-aware
weakly supervised point cloud instance segmentation
method taking advantage of the image-domain information
provided by the foundation model SAM and the geometric
local consistency of point clouds. In particular, we generate
prompts on the image plane based on given weak supervi-
sion, and leverage the foundation model to mine the image-
domain instance mask predictions. We then rectify erro-
neously assigned 3D point labels according to the 3D ge-
ometric consistency. As a result, we achieved high-quality
3D point instance labels. Extensive experiments demon-
strate that our method outperforms the state-of-the-art, es-
pecially in the presence of noisy bounding-box annotations.
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