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Abstract

Cross-view image geo-localization aims to determine the
locations of outdoor robots by mapping current street-view
images with GPS-tagged satellite image patches. Recent
works have attained a remarkable level of accuracy in iden-
tifying which satellite patches the robot is in, where the lo-
cation of the central pixel within the matched satellite patch
is used as the robot coarse location estimation. This work
focuses on robot fine-grained localization within a known
satellite patch. Existing fine-grain localization work utilizes
correlation operation to obtain similarity between satellite
image local descriptors and street-view global descriptors.
The correlation operation based on liner matching simpli-
fies the interaction process between two views, leading to
a large distance error and affecting model generalization.
To address this issue, we devise a cross-view feature fu-
sion network with self-attention and cross-attention layers
to replace correlation operation. Additionally, we combine
classification and regression prediction to further decrease
location distance error. Experiments show that our novel
network architecture outperforms the state-of-the-art, ex-
hibiting better generalization capabilities in unseen areas.
Specifically, our method reduces the median localization
distance error by 43% and 50% respectively in the same
area and unseen areas on the VIGOR benchmark.

1. Introduction

Cross-view image geo-localization has proven to im-
prove outdoor robot localization accuracy in environments
with noisy GPS signals [2, 25]. Previous works formu-
late the cross-view geo-localization problem as image re-
trieval, matching current street-view images with GPS-
tagged satellite patches in a reference database [3,8,17,20–
22, 30, 32]. The GPS coordinate corresponding to the cen-
tral pixel within the retrieved satellite patch is used as the
current coarse location estimation. Even with high image

Figure 1. An example of ground-aerial view image pairs. Two
Street View images are covered by a satellite image, and the two
street View images are located far away from the center of the
satellite image.

retrieval accuracy, the coarse location estimation can poten-
tially result in tens of meters errors, due to the possibility of
street view images being captured at a significant distance
from the center of the satellite image [33], see Figure 1. In
this work, we focus on fine-grained localization within a
known satellite image patch, i.e. to predict satellite image
pixel coordinates corresponding to street-view images.

Zhu et al. [33] first attempts to address the fine-grained
localization problem on the VIGOR benchmark by offset
regression prediction. The regression prediction header is
simply built on the top of the connection of street-view and
satellite image global descriptors, which ignores the corre-
lation between the local features of the two views. Xia et
al. [28] formulated the fine-grained localization as a multi-
class classification problem. Their model encodes satellite
and street-view images into local and global descriptors re-
spectively and calculates the correlation between these de-
scriptors to produce similarity score maps. The similarity
score maps are up-sampled to obtain probability heat maps
of the same size of the input satellite images. which are
employed for coordinate prediction. However, correlation
operation as a linear matching will lose details and the up-
sampling process may also bring unexpected noise.
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To address these limitations, inspired by the core idea
of Transformer [24], we design a cross-view feature fusion
network, which mainly consists of self-attention layers and
cross-attention layers. Compared to correlation operation
in [28], cross-attention layers facilitate interaction between
local features from two different views and effectively inte-
grate semantic and spatial information. To make the local-
ization more accurate, we introduce a prediction network
built on top of the cross-view fusion features, which con-
sists of a classification header and a regression header. The
classification header predicts an index indicating the loca-
tion of a grid area within the satellite image and the regres-
sion header predicts an offset value based on the classifica-
tion results. Our main contributions can be summarized as
follows:

• We propose a novel Transformer-based cross-view fea-
ture fusion network and leverage the cross-attention
mechanism to present the cross-correlation between
aerial and street views. Compared with descriptor sim-
ilarity matching, our cross-attention module can ex-
ploit mutual interactions between local features of two
views to establish more complex correspondences.

• We for the first time combine classification prediction
and regression prediction to address the cross-view
fine-grained localization problem and validate that this
coarse-to-fine prediction manner can efficiently further
improve localization accuracy.

• Our experimental results on the VIGOR benchmark
show that the proposed cross-view fine-grained local-
ization framework significantly outperforms the state-
of-the-art method in predicting the street-view loca-
tion which is away from the center of the satellite im-
age. Compared with the state-of-the-art, our model
achieves lower prediction distance errors in cross ar-
eas, thereby indicating better generalization.

To foster future research on fine-grained robot localiza-
tion, we make our code available at: https://github.
com/UQ-DongYuan/CVLocationTrans

2. Related work
Cross-view Image Retrieval. Cross-view image re-

trieval task is to find the corresponding satellite image patch
from a reference database to the current ground view im-
age, thereby using the GPS tag of the matched satellite
patch as the current localization estimate. To explore this
task, [31] and [11] proposed two large-scale ground-to-
satellite image benchmarks, namely CVUSA and CVACT.
In each image pair, a ground-view image corresponds to
a satellite image center, and the orientations of the two
views are aligned. This alignment ensures that the top part

of the satellite images (representing the North direction)
matches with the center of the street-view images. Re-
cent works [3, 8, 17, 20, 22, 30, 32] explore improving im-
age retrieval accuracy on these two benchmarks. CVM-
Net [8] applies NetVLAD [1] to generate view-invariant
descriptors for cross-view image pairs, enhancing match-
ing accuracy. SAFA [20] introduces a spatial attention
module to establish spatial associations across views. To
bridge domain gap between the ground and aerial views,
some works [13, 16, 17] adopt conditional Generative Ad-
versarial Networks (cGANs) [9] to synthesise one view
from another by utilizing depth or semantic information,
other works [20, 21] geometrically transform aerial view
to ground view via the association between azimuth direc-
tions in the satellite image and vertical lines in the street-
view image. Roughly eliminating the domain gap between
two views eases the descriptor learning process and im-
proves the cross-view image retrieval accuracy. Advanced
Transformer-based architectures have also been explored
in [30, 32], and the positional encoding of the Transformer
is helpful in integrating spatial correspondence between two
views. Cross-view image retrieval methods can effectively
find the corresponding satellite image patch, but it is not
practical for real-world applications as the location of the
street-view image is not invariably at the center of the satel-
lite image patch.

Cross-view Fine-grained Localization. To break one-
to-one center-alignment correspondence, [33] proposed a
novel benchmark called VIGOR, in which every ground-
view image is covered by four distinct satellite patches.
The ground-view images are captured at arbitrary loca-
tions within their corresponding satellite patches. [33] ap-
plies the same module in [20] to build global descriptors of
ground-view and satellite images. The extracted descriptors
from two views are fused to regress the offset between the
ground image and the satellite patch center. [28] employs a
Siamese-like network to encode a pair of ground-view and
satellite images into a global descriptor and N × N local
descriptors, respectively. The generated descriptors are em-
ployed to create an N × N similarity score map through
a correlation operation. Subsequently, following a U-Net-
like up-sampling process [18], the similarity score map is
up-sampled into a high-resolution heat map, which signi-
fies the probability of the ground-view location. However,
correlation operation as a linear matching process cannot ef-
fectively integrate complicated non-linear correspondences
between ground and aerial views, while the subsequent up-
sampling process can also contribute to prediction errors.

Transformer and Cross Attention. Transformer was
first proposed in [24] and has been widely applied in natural
language processing (NLP). Dosovitskiy et al. [5] were the
first to introduce the Transformer architecture in computer
vision tasks and applied it to image classification. DETR [4]
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Figure 2. Overview of the proposed architecture. The architecture mainly consists of three components: local feature extractor, cross-view
feature fusion network and prediction headers. Two local feature extractors separately extract features from ground-view and satellite
images.

follows the Encoder-Decoder architecture of Transformer
to achieve end-to-end objection detection. Recently, Trans-
formers have also been employed in the semantic segmen-
tation task and achieved state-of-the-art results [23, 29]. As
the core idea of the Transformer decoder, the cross-attention
mechanism can establish correlations between input and
output sequences of varying lengths, thereby achieving the
objective of sequence-to-sequence transformation. Moti-
vated by this, we argue that utilizing the cross-attention
mechanism instead of the correlation operation can better
integrate the correspondences between ground and aerial
views. Consequently, the fused features following the cross-
attention process are more informative and can be promis-
ing to improve localization accuracy and generalization
ability.

3. Methodology
This section introduces the proposed Transformer-based

method. Our proposed architecture consists of three main
components: local feature extractor, cross-view feature fu-
sion network and prediction header. The local feature ex-
tractor is a Siamese-like network for extracting local fea-
tures from ground and aerial views separately. The ex-
tracted features as input are passed through the cross-view
feature fusion network to establish correspondences be-
tween two views and obtain the cross-view fusion features.
Finally, a classification header and a regression header are
built on top of the fusion features for coarse-to-fine loca-
tion prediction. Further details of each components will be
illustrated in the subsequent parts and an overview of the
proposed method is presented in Figure 2.

3.1. Local Feature Extraction

We apply two modified ResNet50 [7] to extract features
from ground-view and satellite images separately. Specifi-
cally, we employ the convolutional layers from the first four

stages to extract features, change the downsampling stride
of the fourth stage to 1, and modify the stride of the dila-
tion convolution to 2. These adjustments aim to preserve
the high-resolution feature map while concurrently enlarg-
ing the receptive field. For the ground-view images G,
feature maps fg ∈ RC×Hg×Wg are obtained after passing
through the feature extractor, where Hg and Wg are 1/8 of
the height and width of the input ground-view image. For
the satellite images S, to ensure a consistent feature map
resolution for classification prediction, we incorporate an
adaptive pooling process at the end of the feature extrac-
tor. Finally, the branch of satellite image feature extraction
outputs feature maps fs ∈ RC×N×N . The channel dimen-
sion C will be reduced to D using a 1× 1 convolution layer
before feature fusion.

3.2. Cross-view Feature Fusion Network

We first briefly introduce the cross-view feature fusion
process and further details of attention mechanisms will
be presented later. Our proposed cross-view feature fu-
sion network mainly comprises self-attention blocks and
a cross-attention blocks, employed for enhancing and fus-
ing image features, respectively. Specifically, the ground
and aerial view feature maps from the feature extraction
stage are further flattened, obtaining feature representations
fg′ ∈ RD×HgWg and fs′ ∈ RD×N2

. As depicted in Fig-
ure 2, these two feature representations are first fed into two
separate self-attention blocks (SAB) for feature enhance-
ment. Subsequently, two followed cross-attention blocks
(CAB) receive feature information from both ground and
aerial views, facilitating correlation integration and feature
fusion. In this manner, the feature fusion module compris-
ing two SABs and two CABs will be repeated M times,
and another CAB will be utilized in the end to obtain the
ultimate cross-view fusion feature ffusion ∈ RD×N2

.
Multi-head Attention. The key component of the
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Transformer is the multi-head attention block. The in-
put feature representations are converted into three linear
projections with dimension d, conventionally named query
(Q), key (K) and value (V ), as the input of the attention
layers. The attention operation is denoted as:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

Intuitively, the query Q retrieves information from the value
V based on the attention weight. which is computed from
the scale dot-product of Q and the key K corresponding
to each value V . In practice, each Q, K and V is typ-
ically divided into k different heads, and all the k heads
participate in attention operation in parallel, as these mul-
tiple heads consider information from different representa-
tion subspaces at different positions [24].

Positional Encoding. Positional encoding is added to
maintain the positional information. Following DETR [4],
we apply fixed 2D positional encodings generated by a sine
function. In contrast to ViT [5], which adds positional en-
codings to the backbone output only once, in this work, the
fixed positional encodings are added to queries and keys in
every self-attention and cross-attention block, as illustrated
in Figure 3. We refer readers to the supplementary material
for more details of positional encoding.

Cross-attention Blocks. The core idea of our architec-
ture is to employ the cross-attention mechanism to estab-
lish correspondence between two views. The details of the
cross-attention block are shown in Figure 3. The cross-
attention block receives feature representations, fg′ and fs′ ,
from the ground and aerial views, respectively, in order to
create Query (Q), Key (K) and Value (V ):

Qg = WQg
× fg′

Ks = WKs
× fs′

Vs = WVs
× fs′ ,

(2)

where Query is projected from the ground view, Key and
Value are from the aerial view. WQg

, WKs
and WVs

are
weight matrices to be learned. The attention score can be
computed between the query and the key:

Scores = QT
g ×Ks. (3)

Then, the obtained attention score is normalized using Soft-
max function:

SoftmaxScores = Softmax(Scores) (4)

Finally, we obtain the new ground-view feature representa-
tions, f ′

g′ , by taking the weighted sum of the values vectors:

f ′
g′ = SoftmaxScores × Vs (5)

As a result, f ′
g′ will be the new ground-view feature rep-

resentations with cross-attention applied to them from the
satellite-view feature representations fs′ . In essence, the
cross-attention mechanism enables the model to weigh the
importance of different parts of fs′ when updating fg′ ,
thereby fusing relevant information from both the satellite
and gournd views.

Furthermore, a feed-forward network (FFN) module
consisting of two linear projection layers with ReLU ac-
tivation function in between is employed to further enhance
cross-attention features.

3.3. Multi-class Classification

We build a multi-class classification header on top of the
fusion features ffusion, which is a three-layer perceptron
with hidden dimension d and ReLU activation function.
The output of the classification header is a vector with di-
mension N2×1, indicating that there are N2 total classifica-
tion categories. As shown in Figure 4a, in our classification
task, the input satellite image is divided into N × N grid
areas, and the classification header aims to predict the grid
in which the current street-view image is located. We utilize
the standard categorical cross-entropy loss for training our
classification header, which is defined as:

Lce = −
C∑
i

yi log(softmax(pi)), (6)

where yi denotes the ground-truth label and pi denotes the
output of the classification header.

3.4. Coordinate Offset Regression

The offset regression header is another branch based on
the fusion features, of which the perception layers are sim-
ilar to the classification header. Unlike the classification
header, the regression output vector has dimension N2 × 2,
intended for coordinate offset regression. In [33], the pro-
posed model aims to regress the offset between the street-
view location and the center of the satellite image. Despite
the offset being normalized with the size of the satellite im-
age during training, the wide prediction range still poses
a challenge for accurate predictions. In contrast, our pro-
posed offset regression is based on the classification results.
Specifically, as shown in Figure 4b, the coordinates of any
point (gx, gy) in the N ×N grids can be defined as:

gx = σ(tx) + cx

gy = σ(ty) + cy,
(7)

where (cx, cy) is the coordinate corresponding to the top
left corner of the grid, and (tx, ty) is the offset relative to
the top left corner of the grid. σ is the Sigmoid activation
function, which limits the predicted offset between 0 and 1.
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Figure 3. Left: Self-attention Block (SAB). Right: Cross-attention
Block (CAB). The cross-attention block receives features from
two views. One view feature provides value V and key K, an-
other view feature provides query Q. The positional encoding is
added to Q and K to preserve spatial information.

(a) Illustration of multi-class classification predic-
tion

(b) Illustration of
offset regression.

Figure 4. Illustration of the coarse-to-fine localization process.
Our approach first predicts the located grid index in the N × N
grid map and regresses offset based on the classification results.

Consequently, our regression header aims to predict the off-
set tx and ty related to the grid selected by the classification
header. We employ the mean square error to train the offset
regression header. The regression loss can be defined as:

Lmse =
1

N

N∑
i=1

(yi − ŷi)
2, (8)

where yi denotes the ground-truth offset and ŷi denotes the
prediction offset values.

3.5. Model Optimization

Since each attention block requires new queries (Q),
keys (K), and values (V ) to participate in the calculations,
the number of parameters in our model will be higher than
that of the convolutional neural networks (CNNs)-based

model. This leads to a concern that the model might be
more prone to overfitting. In addition, for each ground-
aerial image pair, the orientations are aligned. There-
fore, simple data augmentation techniques like image ro-
tation or flipping cannot be performed. To address this is-
sue, we utilize the Adaptive Sharpness-Aware Minimization
(ASAM) [10] optimization method, which is also employed
in [32] for training transformer-based model. Specifically,
ASAM function is seeking parameters that lie in neighbor-
hoods having uniformly low loss value, rather than focus-
ing on paramters that only themselves have low loss value.
Consequently, ASAM can simultaneously minimize loss
value and loss sharpness to overcome the overfitting issue.
We refer readers to the supplementary material for more de-
tailed descriptions.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct experiments on two benchmarks, namely
VIGOR [33] and Oxford RobotCar [14, 15], to evaluate the
ability of cross-view fine-grained localization. We choose
the state-of-the-art multi-class classification-based method
(MCC) [28] as our baseline and compare all experimental
results on both benchmarks.

VIGOR Dataset. VIGOR contains 238 696 ground-
view panoramas and 90 618 aerial images from four cities,
i.e. New York City (Manhattan), San Francisco, Chicago,
and Seattle. As defined in [33], each ground-view panorama
corresponds to 1 positive and 3 semi-positive aerial im-
ages. If an aerial image is positive, it indicates that the
ground-view panorama is captured within the central quar-
ter area of the aerial image, otherwise, it is semi-positive.
As a result, ground-view locations could be placed arbitrar-
ily within a satellite image, not just at the center. [33] also
defined two training-testing protocols, namely the ’same-
area’ and ’cross-area’ protocols. In the same-area proto-
col, all ground-aerial images from the four cities are used
for both training and testing. Conversely, in the cross-area
protocol, images from New York and Seattle are used for
training, while images from the other two cities are used for
testing. The cross-area protocol introduces more challenges
to cross-view fine-grained localization task and enables the
evaluation of the model’s generalization ability. Further-
more, each aerial image with GPS tags corresponds to a
ground resolution of 0.114 meters, which can be employed
for meter-level evaluation. We conduct experiments us-
ing both positive and semi-positive aerial images and adopt
same-area and cross-area protocols for training and testing.

Oxford RobotCar Dataset. The Oxford RobotCar
dataset provides multiple sensor data, including 72 traver-
sals of a route through Oxford under different illumination,
weather, and traffic conditions [15]. Following the data split
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Same-Area Cross-Area
Model Positives Pos+Semi-Pos Positives Pos+Semi-Pos

Mean Median Mean Median Mean Median Mean Median
VIGOR [33] 10.55 9.31 16.64 13.82 11.26 10.02 18.66 16.73
MCC [28] 9.86 4.58 13.45 5.39 13.06 6.31 17.13 7.78
Ours 6.72 2.68 9.32 3.11 7.28 2.83 9.78 3.89

Table 1. Localization errors on VIGOR [33]. MCC [28] is the baseline method. Best performance in bold.

in MCC [28], we have 17067, 1698 and 5089 ground-level
front view images in the training, validation and test sets re-
spectively. The test set consists of three different traversals.
MCC [28] stitches all corresponding satellite image patches
provided by [26,27] together to create a continuous satellite
map. As described in [28], during training, satellite image
patches are randomly sampled from the continuous satellite
map around the ground image locations. The orientations
of each ground-satellite image pair are aligned, and the res-
olution of each satellite image patch is 800 pixels × 800
pixels corresponding to 73.92m × 79.92m on the ground.

Evaluation Metrics. Following the baseline method
MCC [28], we utilize the mean and median distance errors,
measured in meters, between the ground truth and predicted
locations for model evaluation. For the Oxford RobotCar
test set, we first obtain the mean and median distance er-
rors for each of the three distinct traversals individually, and
subsequently calculate the average and standard deviation
across the three tests.

4.2. Implementation Details

For the VIGOR dataset, ground-view panorama and
satellite images are resized to 256 × 512 and 256 × 256
respectively during both training and testing. For the Ox-
ford RobotCar dataset, front-view and satellite images are
resized to 256×384 and 512×512 respectively. The aerial-
view feature map dimension C ×N ×N is 1024× 32× 32
and the channel dimension C = 1024 will reduced to
D = 256 by 1 × 1 convolutional layers. The feature fu-
sion module will be repeated 4 times and the hidden di-
mension d of prediction headers is 256. The local feature
extractor parameters are initialized with ResNet50 [7] pre-
trained weights on ImageNet [19], and other parameters are
initialized with Xavier init [6]. We employ AdamW [12] for
model optimization and set feature extractor’s learning rate
to 10−5, other parameters’ learning rate to 10−4.

4.3. VIGOR Same-area Generalization

Our proposed architecture is trained and tested follow-
ing the VIGOR same-area protocol. A summary of the ex-
perimental results comparison between our approach and
the baseline MCC [28] is presented in Table 1 Same-Area.
Following the baseline MCC [28], we conduct two types

of testings, namely Positives and Pos+Semi-pos, as shown
in Table 1. For the Positive testing, only positive satellite
images are utilized for location prediction. In the case of
positive satellite images, the ground-view location is sit-
uated near the center of the satellite image, which makes
it comparatively easier for location prediction. The mean
distance error of our approach and MCC [28] are both
within 10 meters, and our approach has 32% and 41% lower
mean and median localization error than MCC [28]. For
the Pos+Semi-pos testing, all of positive and semi-positive
satellite images are employed for location prediction. Pre-
dicting ground-view locations within a semi-positive satel-
lite image is more challenging since some of the seman-
tic information, such as buildings and cars, may not be
present in the aerial view, especially when the ground-view
location is near the edge of the satellite image. Compared
to MCC [28], the mean distance error of our approach is
still within 10 meters, and our approach has 31% and 42%
lower mean and median localization error than MCC [28].
Improved Pos+Semi-pos testing results indicate that our
cross-attention blocks can effectively establish correspon-
dences between two views, even when the semantic infor-
mation is not consistent in the two views.

4.4. VIGOR Cross-area Generalization

Predicting the location of a new street-view image in an
unseen area is a more difficult task since street views look
very different in different cities. As shown in Table 1 Cross-
Area, our model generalizes well under this challenging set-
ting in terms of Positive testing and Pos+Semi-pos testing.
Compared to MCC [28], our cross-attention operates on the
feature maps of the two views, facilitating greater interac-
tions for the local features of both views. As a result, our
approach has 43% and 50% lower mean and median local-
ization error than MCC [28] in terms of the Pos+Semi-pos
testing.

In addition, we observed that our model shows little gaps
between the Same-area and Cross-area settings. Specif-
ically, for the Positive+Semi-positive test, our model ex-
hibits mean errors of (9.32 vs. 9.78) and median errors of
(3.11 vs. 3.89) in the Same-area and Cross-area settings,
respectively. In contrast, the performance of MCC [28] de-
generates severely as the test setting becomes more chal-
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Same-Area Cross-Area
Ablation Positives Pos+Semi-Pos Positives Pos+Semi-Pos

Mean Median Mean Median Mean Median Mean Median
Ours w/o ASAM 8.50 3.32 11.29 3.88 10.84 4.30 13.80 5.55
Ours 6.72 2.68 9.32 3.11 7.28 2.83 9.78 3.89

Table 2. Ablation study of ASAM on VIGOR [33]. Best performance in bold.

lenging. This demonstrates that our model exhibits en-
hanced robustness under difficult tests.

We argue that the Pos+Semi-pos testing under the Cross-
Area setting is more representative of real-world scenar-
ios for robot geo-localization. A robot should possess the
capability to localize itself in an unfamiliar environment,
where its location could be situated anywhere within the
area covered by the available satellite image. Drawing from
the aforementioned experimental results, our proposed ap-
proach holds greater promise for practical applications in
robot geo-localization.

4.5. Oxford RobotCar Results and Analysis

Following MCC [28], we trained and tested the proposed
model on the Oxford RobotCar benchmark, and the experi-
mental results are detailed in Table 3. Our model achieved
competitive results, specifically obtaining the same average
mean error but with a lower standard deviation of the aver-
age. Analyzing the results, we believe that there are two
reasons why our model’s performance is affected. First,
in comparison to ground-view panoramas, front-view im-
ages lack a significant amount of information. This leads
to the situation where most local features of satellite im-
ages cannot be effectively associated with the features from
front-view images in the cross-attention process. Another
reason is that the number of images in the Oxford RobotCar
dataset used for training is considerably smaller than that
of VIGOR. Insufficient data can hinder the effective train-
ing of the transformer-based model, even when employing
ASAM [10]. In future work, we can consider utilizing the
Oxford RobotCar’s multi-view street images to enhance the
performance of the model.

4.6. Ablation Study

ASAM. We did an ablation study on the impact of us-
ing ASAM [10] on the model performance, as shown in
Table 2. ASAM decreases all localization mean and me-
dian errors on the VIGOR dataset. In addition, ’Ours w/o
ASAM’ still outperforms the baseline MCC [28] by a large
margin, especially under the cross-area setting. This indi-
cates that the cross-attention-based feature fusion method
holds a significant advantage over the correlation operation-
based method.

Model Mean Median

VIGOR [33] 2.29±0.31 1.72±0.21
MCC [28] 1.77 ±0.25 1.24±0.10
Ours 1.77±0.20 1.32±0.08

Table 3. Experimental results on the Oxford RobotCar [15].
Shown are the average ± standard deviation of ‘mean’ and ‘me-
dian’ errors over 3 test traversals. Best results in bold.

5. Conclusions
In this work, we focus on cross-view fine-grained lo-

calization within a known satellite image. We propose
employing cross-attention instead of correlation operations
to establish correspondences between ground and aerial
views. Additionally, we combine multi-class classification
and offset regression to achieve accurate fine-grained local-
ization. Our proposed method exhibits a significant perfor-
mance improvement over the state-of-the-art approach on
the VIGOR dataset, particularly in the more challenging
setting (cross area). Competitive results are also achieved
on the Oxford RobotCar dataset. This demonstrates that
cross-attention-based cross-view feature fusion can enhance
the robustness and generalization ability of the model. Fu-
ture work will address ground-view image sequence input
and fine-grained orientation estimation.
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