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Abstract

There is a rapidly growing need for multimodal content
moderation (CM) as more and more content on social media
is multimodal in nature. Existing unimodal CM systems may
fail to catch harmful content that crosses modalities (e.g.,
memes or videos), which may lead to severe consequences.
In this paper, we present a novel CM model, Asymmetric
Mixed-Modal Moderation (AM3), to target multimodal and
unimodal CM tasks. Specifically, to address the asymme-
try in semantics between vision and language, AM3 has a
novel asymmetric fusion architecture that is designed to not
only fuse the common knowledge in both modalities but also
to exploit the unique information in each modality. Unlike
previous works that focus on representing the two modali-
ties into a similar feature space while overlooking the in-
trinsic difference between the information conveyed in mul-
timodality and in unimodality (asymmetry in modalities),
we propose a novel cross-modality contrastive loss to learn
the unique knowledge that only appears in multimodality.
This is critical as some harmful intent may only be conveyed
through the intersection of both modalities. With extensive
experiments, we show that AM3 outperforms all existing
state-of-the-art methods on both multimodal and unimodal
CM benchmarks.

1. Introduction
With the proliferation of multimodal social media and

online gaming, user-generated content followed by recent
AI-generated content (e.g., via DALL-E [40], GPT-3 [5],
ChatGPT [49] etc.) can spread across the internet at a faster
rate than ever. While this enables free speech and facilitates
information exchange, it comes with the risk of misuse for
fake news [35, 51] and hate speech [10, 44].

Leaving harmful content on social platforms can lead
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Figure 1. An example of a mean meme from Hateful Memes [20]
for illustrative purposes. The unimodal vision and language are
both benign while the multimodal meme is sarcastic and mean.
This is not an actual example of the CM dataset ⋆, which is hateful
and would be distasteful to show here.

to harmful consequences, but moderating the tremendous
amount of user/AI-generated content on the platforms man-
ually is infeasible due to the large scale and can be harmful
to the mental health of human moderators. Therefore, au-
tomated content moderation (CM) systems are necessary.
There has been extensive research on text-based content
moderation [51,54,55]. Recently, there is a study on image-
based pornographic content classification and sexual object
detection tasks [38]. As social platforms allow the use of
different modalities, unsafe multimodal content may evade
detection by existing unimodal content moderation systems.
Hence, multimodal harmful content detection benchmarks
[15, 20] have emerged followed by works [9, 63] aiming to
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automatically detect unsafe multimodal content, including
child abuse material, violence, hate speech, sexual content,
cyberbullying content, and disinformation [4].

One important form of multimodal content online is
memes, which are a combination of image and short text.
Understanding memes is a multimodal vision language
(VL) task. As noted in previous studies [15], offensive
terms by themselves may not necessarily signify hate. It
is the overall context that determines whether the intent is
harmful or not. Fig. 1 shows an example of mean meme,
where the text by itself is just a compliment and the im-
age also seems benign. However, when combining the two
modalities the meme becomes sarcastic and mean. This ex-
ample is for illustrative purpose only. For actual examples
which are indeed hateful, please refer to supplementary. To
combat the spread of harmful VL content such as hateful
memes on social platforms, different VL datasets have been
constructed: Facebook proposed a Hateful Memes Chal-
lenge and constructed a corresponding dataset [20], which
contains memes designed to evade detection by unimodal
methods. MMHS150K [15], a large-scale image-text pair
dataset originated from Twitter postings, is proposed to
benchmark hate speech detection in multimodal publica-
tions.

In this work, we approach multimodal (image + text)
harmful content detection and propose a novel mixed-modal
(a mix of multimodality and unimodality) CM model,
Asymmetric Mixed-Modal Moderation (AM3). Image and
text are intrinsically different in the information they con-
vey: text is more structured and semantically at a higher
level (usually describing the main components of an image
while overlooking the subtle details, especially the back-
ground). On the other hand, image is unstructured: it is
composed of pixels that can provide more low-level details
of the context. For example, an image caption is likely to
focus on the foreground or the objects of interest in the im-
age. It may contain semantic details like the color or shape
of the objects, but unlikely to cover all the details, espe-
cially those in the background. We call this asymmetry
in semantics of VL content. To address this asymmetry,
we propose a novel fusion transformer architecture that at-
tempts to maintain the unique knowledge in each modality
while fusing the information from the asymmetric seman-
tic levels. As shown in Fig. 1, the knowledge learned from
the joint multimodality should contrast that from each uni-
modality due to this asymmetry in semantics. Sometimes
this subtle missing part in unimodality is the determinant
for content moderation decisions. We name the discrepancy
in the information conveyed by multimodality and each uni-
modality asymmetry in modalities. To tackle this challenge,
we propose a novel contrastive loss between the represen-
tation learned from multimodality versus each unimodality.
In order to learn domain-specific knowledge, we mix multi-

modal dataset with additional unimodal CM datasets in pre-
training, similar to [28]. We call this asymmetry in data as
either modality may be missing in the data, so that the con-
ventional multimodality (each sample contains both modal-
ities) setup becomes mixed-modality (mix of multimodal-
ity and unimodality, where each sample may contain both
modalities or each unimodality). By including unimodal
CM dataset in pretraining, AM3 learns the domain-specific
knowledge which helps the model adapt to the downstream
tasks. Hence, the downstream CM task performance is im-
proved.

We summarize the main contributions of work below,

• Asymmetry in semantics: We propose a novel fu-
sion transformer architecture to fuse different modali-
ties asymmetrically. It enhances the unique knowledge
in each modality while effectively fusing the informa-
tion from the asymmetric semantic levels.

• Asymmetry in modalities: We design a novel con-
trastive loss to squeeze out the distinct knowledge that
only exists in multimodality, which is essential in mul-
timodal content moderation.

2. Related Works
Harmful Content Detection. As social media platforms
have grown, so have the challenges of content moderation.
These challenges have pushed platforms toward automated
content moderation as a necessary tool for detecting harm-
ful content. Initially, most of the works are on text [3, 9].
In [10], 25K Tweets are collected and annotated based on
whether they contain hate speech keywords or have implicit
hate. Logistic regression and SVM are tested to automati-
cally detect hate speech. Besides web crawling data, a large
scale machine generated dataset of toxic and benign text
statements is provided in [16] using GPT-3 [5]. These la-
bels are then validated by human annotators, and over 95%
of the generated toxic labels are legitimately toxic. Over
time, images and videos have gained more attention as vi-
sual contents are easier to consume and more popular to
spread. A large scale dataset for pornographic visual con-
tent classification is given in [38]. In [46], videos of con-
versations are collected as a benchmark for deception de-
tection. Recently, multimodal harmful content detection
has attracted more attention. Facebook proposed a Hate-
ful Memes Challenge [20], where each image is associated
with a short text. The winner of the challenge [63] out-
performs the other competitors significantly by leveraging
external labels such as race, age, and entity. Following
the same practice, DisMultiHate [26] further improves the
performance by disentangling target entities in multimodal
memes. Hate-CLIPper [24] proposes a method of interme-
diate fusion to alleviate the ambiguity alignment between
image and text representations. The importance of each
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Figure 2. Architecture overview. It shows an example of the pretraining of AM3 with a (T, I) input. For text inputs, we sum up text
embeddings, positional embeddings, and the segment embeddings. Visual inputs consist of the text embeddings from detected objects’
category labels, the feature map from the vision encoder, positional embeddings, and the segment embeddings. The positional embeddings
of visual inputs are computed based on object bounding boxes so that they are permutation invariant to object order.

modality in the Hateful Memes dataset and the robustness of
SOTA multimodal classfication algorithms are investigated
in [32].

Vision-Language Pretraining. Recent years have wit-
nessed rapid progress in vision-language pretraining (VLP)
where vision and language modalities are jointly encoded
using a fusion model. The success of BERT [50] inspired
many follow-up multimodal fusion models, such as VL-bert
[47], VinVL [61], SimVLM [53], and OFA [52], where the
text features are concatenated with vision features from im-
age encoder and then fused by BERT or its variants. Besides
the masked language modelling (MLM) loss used in BERT
pretraining, various loss functions targeting multimodal fea-
ture fusion are used, e.g., image-text matching (ITM) loss,
region-of-interest (RoI) classification loss. Most of these
works learn the joint representation of vision and language
through a symmetric feature encoding and fusion process.
For example, VL-BERT [47] constructs the multimodal in-
puts symmetrically where every multimodal feature map
has the same components, i.e., text embedding, visual em-
bedding, segment embedding, and positional embedding.
Each text embedding is associated to the visual embedding
of the entire image while each RoI visual embedding is as-
sociated with a dummy text embedding. This simple sym-
metric architecture enables the fusion of multiple modali-
ties. However, each text token only contains a subset of
the entire image. Linking the entire image embedding to
it may introduce noise that decreases the performance. On

the other hand, the dummy text embedding does not contain
any meaningful information. VinVL [61] simply concate-
nates text embeddings with the object label embeddings as
well as RoI visual embeddings before feeding into the fu-
sion transformer. It assumes that the text embeddings and
the visual embeddings share the same (symmetric) level of
knowledge and processes them equally.

Recent works on VL foundation models show that
dual-encoder architectures can learn strong representation
through contrastive objectives on large scale noisy image-
text pairs [37, 39, 59]. Florence [59] developed a unified
contrastive objective [56] in VLP that enables the model
to be adapted for a wide range of vision and VL tasks.
Flamingo [2] utilizes an 80B-parameter language model
frozen in training and fused with a vision encoder. The
huge capacity of Flamingo enables the state-of-the-art per-
formance for few-shot learning.

Our method shares numerous ideas of the previous works
mentioned above. However, we pivot to looking at the mul-
timodal content moderation task from an asymmetric angle,
both in architecture and data, and target mixed-modality
(both multimodal and unimodal) downstream CM tasks. We
exploit the discrepancy in vision, language, and multimodal
VL pairs, to improve the model capability and training.

3. Method
In this paper, we present a novel fusion transformer ar-

chitecture pretrained on both VL datasets and unimodality
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datasets. To tackle the asymmetry in semantics of CM VL
content, we construct vision and language embeddings dif-
ferently to encourage the model to capture essential knowl-
edge in each modality. Meanwhile, we follow [61] to uti-
lize the object labels from detection as anchors to bridge the
language with the corresponding image RoI features. Due
to the asymmetry in modality, there is unique knowledge
that only exists in the intersection of both modalities. To
drive the model to obtain understanding of this, we intro-
duce a novel contrastive loss, Cross-modality Contrastive
Loss, as part of our pre-training tasks. We use an asymmet-
ric mix of multimodal datasets as well as domain-specific
unimodal datasets in pretraining, where a domain-specific
classification loss is included to improve downstream task
performance.

3.1. Model Architecture for Asymmetry in Seman-
tics

Fig. 2 illustrates the overview architecture of AM3. The
model takes mixed modality input: (T, I), (T ), or (I),
where T represents the text if it exists, and I is the image if
it exists. Unlike previous works that try to unify the feature
encoding process from both vision and language modalities,
we construct the text inputs and visual inputs to the fusion
transformer asymmetrically. T is first tokenized through a
tokenizer and then fed to a token embedding layer whose
outputs are added to positional embeddings and segment
embeddings to generate the sequence of linguistic embed-
dings of text w. The image I is processed as follows: we
first use an object detection model to detect objects exist-
ing in the image. We also include a bounding box for the
entire image (so the bounding box becomes the shape of
the image) without an object category associated. For each
object, its category label will go through the same token
embedding layer as the text input to obtain its text embed-
ding. Its bounding boxes are transferred to the positional
embeddings of the RoI through a linear layer. This makes
the positional embeddings permutation invariant to the input
order of the objects. The visual feature of each RoI is en-
coded through a feature extractor. We then sum up the text
embeddings of object labels, positional embeddings from
object bounding boxes, the features from the RoIs, and seg-
ment embeddings to obtain the sequence of visual embed-
dings v. The concatenated pair of (w, v) is fused through a
fusion transformer.

3.2. Cross-modality Contrastive Loss for Asymme-
try in Modalities

Cross-modality Contrastive Loss. Due to the asymmetry
in modalities, the capability of learning the unique knowl-
edge only existing in the intersection of different modali-
ties is critical to content moderation tasks, as demonstrated
in Fig. 1. Therefore, we propose the cross-modality con-

trastive loss, as given in Equation(1):

Lcon = max(0, cos (fV L, fV )) + max(0, cos (fV L, fL))
(1)

where cos(·) is the cosine similarity function. fV L, fV , and
fL are the CLS output tokens from the fusion transformer
for image + text, image only, and text only, respectively. As
shown in Fig. 2, 3 CLS tokens are added to the fusion trans-
former input. The CLS token is designed to summarize the
multimodal knowledge from all tokens while the CLS-I and
CLS-T tokens only extract information for vision and lan-
guage tokens, respectively. By summing up the similarity
between fV L vs. fV , and fV L vs. fL in the contrastive loss,
we push the joint multimodal representation away from the
unimodal representations, for the asymmetry in modality,
forcing the model to learn the distinct semantic knowledge
only in the intersection of both modalities. Fig. 3a illustrates
how the attention mask is modified to compute the multi-
modal and unimodal representations: the attention between
CLS and CLS-I/CLS-T as well as between CLS-I and CLS-
T tokens are masked out to prevent information leak among
different representations. The attention between the CLS-T
token and all image tokens are also masked out, and vice
versa. In this way, as displayed in Fig. 3b, the CLS output
token summarizes the fused information learned from both
modalities while CLS-I and CLS-T only contain unimodal
information in vision and language, respectively.
Binary classification on domain-related datasets. To help
the model effectively adapt to the new domain (CM in our
case) when porting a generic model to a specific domain, we
include a domain-specific classification loss (Ldomain) in
our pretraining objectives. We collect several content mod-
eration related unimodality datasets discussed in Sec.4.1
into the pretraining corpus. When an input is from these
datasets, its CLS output token is projected through a lin-
ear layer to predict if the input is harmful or not. We
show that this domain-specific classification loss improves
downstream performance on CM benchmarks. The domain-
specific classification loss is:

Ldomain = −EfV L
[logP (cd|fV L)] (2)

where cd is the domain category label and fV L is the fusion
transformer output of the CLS token. In our experiment,
we set cd = 1 for harmful inputs while cd = 0 for safe
ones. For inputs from generic multimodal VL datasets, we
set cd = −1 so that they are ignored in the domain-specific
classification task.

As shown in Fig. 2, there are 3 additional pretraining ob-
jectives for multimodal fusion: the Masked Language Mod-
eling loss (Lmlm on the text tokens similar to [17,22,47,61],
the Image-Text Maching loss (Litm) which is computed on
the CLS token of joint modalities same as [17, 22], and
the Masked RoI classification loss (Lroi-cls) similar to [47].
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Figure 3. (a): Modified attention mask for contrastive learning. Attention between image tokens (including CLS-I) and CLS-T tokens are
masked out, and vice versa. (b): Visualization of the 3 CLS tokens from Hateful Memes after t-SNE [14] reduction.

Overall, our pretraining objective consists of terms as in
Equation(3):

Loss = α Lcon+β Lmlm+γ Litm+λ Lroi-cls+ω Ldomain

(3)
where α, β, γ, λ, and ω are coefficients to balance the

various objectives. We set λ to 0.2 and all the other coeffi-
cients to 1 throughout the experiments.

4. Experiments
In this section, we first introduce the implementation de-

tails. We then discuss the results on downstream CM tasks.
Finally, we show an ablation study on the proposed method.

4.1. Implementation Details

Pretraining. As shown in Fig. 2, following [29], we use
pretrained FasterRCNN [42] for object detection, but other
object detection models, like Yolo [41], can be used as well.
We use DaViT [11] as the vision encoder, which encodes
the RoIs detected by FasterRCNN into vision embeddings.
Both FasterRCNN and DaViT are frozen during train-
ing. We use BERTbase (Layers = 12, Hidden size =
768, Attention heads = 12) for text embedding and fu-
sion transformer. The model is initialized with pretrained
BERTbase parameters and optimized using the AdamW
optimizer with a base learning rate of 10−5 and weight de-
caying of 10−2. The learning rate was warmed up for 100
training steps and then decayed linearly to zero for the rest
of the training. We use a probability of 0.15 in MLM and
Masked RoI classification random masking and 0.5 in ITM
random replacing. We assign segment tokens ‘C’ to all vi-
sual features. For captions, we set segment tokens to ‘A’,
while for questions and answers, we use ‘A’ and ‘B’, re-
spectively. We pretrain the model for 500K steps with a
batch size of 6144 on 72 NVIDIA V100 GPUs.

Pretraining corpus: We construct our pretraining corpus
based on three types of datasets: generic VL multimodal
datasets, CM language datasets, and a CM vision dataset.

• Generic VL multimodal datasets. We build our cor-
pus from image captioning and visual question-answer
datasets, including COCO [30], Conceptual Captions
(CC3M) [45], SBU captions [36], Flickr30k [57],
CC12M [7], Open-Images [25], GQA [18], and VG-
QAs datasets. Following [61], machine-generated cap-
tions are used for Open-Images dataset, while captions
and question-answer segments are used as text inputs
for the other datasets.

• CM language datasets. We use 4 language datasets
in CM domain: ToxiGen [16], Jigsaw [60], HateX-
plain [33], and ImplicitHate [12], where we preprocess
data so each sample has a harmful or safe label. We
use train sets in pretraining for ToxiGen, Jigsaw, and
HateXplain to avoid data leakage. For text samples
without images, we pad [PAD] to vision embeddings.
A text classification head predicts the label using the
domain-specific classification objective.

• CM vision dataset. We use LSPD (Large-Scale
Pornographic Dataset) [38] image dataset for CM vi-
sion task. Similar to the CM language datasets, we use
the train set with binary annotation for pretraining and
pad [PAD] tokens to the text inputs for fusion trans-
former. We use an image classification head to predict
binary labels using the same classification objective.

Downstream finetuning. All the CM downstream tasks in-
troduced in Sec.4.2 are formulated as classification tasks.
The output token on CLS from the fusion transformer is fed
into the classification head and trained with cross entropy
loss. Hyperparameters including batch size, learning rate,
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and training epochs are searched for each task. All classifi-
cation heads are implemented with an MLP consisting of 2
linear layers and 1 ReLU layer.
Downstream inference. In each task(Sec. 4.2), we utilize
the finetuning model and take the classification result from
the CLS token as output, the model is named as AM3. On
the downstream tasks, we conducted 5 experiments with
random seeds, reporting their mean and standard variation
across the multiple finetuning models. On CM VL tasks, we
assessed the model’s ability in learning cross-modal knowl-
edge using the best model with unimodal input as AM3-text
and AM3-image respectively. Additionally, we combine
the two unimodal results by taking the maximum classifica-
tion probability as the predicted outcome, and refer to it as
AM3-max.

4.2. Downstream Datasets

To validate the effectiveness of AM3, we adapt the pre-
trained model over the content moderation tasks in different
modalities.

For CM VL tasks, we adopted Hateful Memes,
MMHS150K, and Fakeddit datasets.

• Hateful Memes [20]. The Hateful Memes dataset
consists of more than 10,000 memes, some of which
are specially designed so that the text phrases and im-
ages are benign when considered separately, but hate-
ful when combined. Therefore, the typical unimodal
methods cannot yield good performance on them. To
compare with prior works [26, 63], we use 2 different
setups: (1) we finetune our model on the train set and
evaluate on the dev seen set. (2) We finetune our model
on the combination of train and dev unseen sets and
evaluate on the test unseen set. The task uses the Area
under Receiver Operating Characteristic curve (AU-
ROC) and accuracy metrics.

• MMHS150K [15] The MMHS150K dataset is based
on Twitter data consisting of both image and text. We
perform binary classification to decide whether a sam-
ple is hate or non-hate. We finetune on the train and
val sets and evaluate on the test set using F1-score,
AUROC, and accuracy metrics.

• Fakeddit [35]. The Fakeddit dataset is a large-scale
multimodal fake news dataset that consists of over 1
million submissions from Reddit, a social news and
discussion website where users can post submissions
on various subreddits. 2-way, 3-way, and 6-way la-
bels are provided for each sample. We follow the offi-
cial dataset partition to only use multimodal samples.
We focus on the 2-way classification and finetune our
model on the train set. We compute accuracy on the
val and test sets.

For CM text tasks, we use ToxiGen, HateXplain, and Jig-
saw datasets.

• ToxiGen [16]. ToxiGen is a machine-generated
dataset using the massive pretrained language model
GPT-3 [5]. The dataset is designed to focus on creating
hard-to-classify implicit abusive content in 13 minor-
ity groups. We use its train and test sets. The objective
of the task is to predict if each sample is toxic or not
and it is evaluated with AUROC.

• HateXplain [33]. The HateXplain dataset is con-
structed by collecting posts from Twitter and Gab for
research on Explainable Hate Speech Detection. The
task is evaluated using AUROC, accuracy, and F1-
score.

• Jigsaw [43]. The Jigsaw dataset is created using com-
ments from Civil Comments for researchers to develop
models to recognize toxicity and minimize this type
of unintended bias with respect to mentions of identi-
ties, including gender, sexual orientation, and religious
identity, etc. We use the train and test-public splits
for training and testing, respectively. AUROC is com-
puted for evaluation.

We use LSPD for CM vision task.

• LSPD [38]. LSPD is constructed for visual pornog-
raphy classification with 5 categories: porn, hen-
tai, drawing, sexy, and non-porn. We followed the
porn/non-porn binary classification approach as [38],
where the classes ’Hentai’ and ’Porn’ are grouped as
’porn’, while all other classes were labeled ’non-porn’
in the binary setting. To evaluate algorithms, accuracy,
precision, and recall are measured.

Table 1. Comparisons to the state-of-the-art methods on Hateful
Memes.

Dev seen Test unseen
Method AUROC Accuracy AUROC Accuracy

ERNIE-VIL [58] 78.7 69.0 - -
Uniter [8] 78.0 68.6 79.1 74.1
VILLA [13] 78.5 71.2 80.0 75.1
VL-BERT [47] 78.8 71.4 79.5 74.5
DisMultiHate [26] 82.8 75.8 - -
AM3-text(Ours) 59.1 65.2 62.2 64.1
AM3-image(Ours) 44.8 63.0 60.3 63.1
AM3-max(Ours) 56.7 64.3 64.0 64.5
AM3(Ours) 83.18(±0.19) 75.98(±0.67) textbf83.35 (± 0.23) 76.95(±0.36)

4.3. Result Analysis

Performance comparison on VL tasks: (1) Results on
the Hateful Memes comparing to the state-of-the-art ap-
proaches are shown in Table 1. We compare to the chal-
lenge winner’s solutions discussed in [63]: ERNIE-Vil [58],
UNITER [8], VILLA [13], and VL-BERT [47], where
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Table 2. Comparisons to the state-of-the-art methods on
MMHS150K.

Method AUROC Accuracy

TKM [15] 73.1 68.2
SCM [15] 73.2 68.5
FCM [15] 73.4 68.4
AM3-text(Ours) 72.7 68.3
AM3-image(Ours) 52.0 52.5
AM3-max(Ours) 72.2 67.7
AM3(Ours) 74.2 (±0.09) 68.57(±0.79)

Table 3. Comparisons to the state-of-the-art methods on Fakeddit.

Method Val acc. Test acc.

BERT+ResNet50 [35] 89.3 89.1
MVAE+ [27] - 90.1
MDID [23] 90.8 91.0
EMAF [27] - 92.3
AM3-text(Ours) 82.23 82.41
AM3-image(Ours) 76.2 75.9
AM3-max(Ours) 83.1 83.3
AM3(Ours) 93.04(±0.21) 93.2(± 0.11)

the results are reproduced in [26]. We also compare to
the state-of-the-art solution, DisMultiHate [26]. Further-
more, comparing to the baselines: AM3-text, AM3-image,
and AM3-max, the AM3 is at least 30% better in terms
of AUROC score, which verifies the efficiency of cross-
modality understanding in the finetuned model. We adopt
the same data augmentation method proposed in [63]: we
use Google Vision Web Entity Detection [31] to generate
entity tags of each image used as part of the text input.
(2) The MMHS150K result is shown in Table 2. We com-
pare to the Feature Concatenation Model (FCM), the Spatial
Concatenation Model (SCM), and Texual Kernels Model
(TKM) discussed in [15], where they are all CNN + RNN
models. It is worth noting that the AM3-text achieves a
72.7 AUROC score, indicating that the dataset predomi-
nantly relies on its text modality. Merely considering the
maximum classification probability to combine the image
modality results leads to a decrease in performance. (3)
The Fakeddit result is shown in Table 3. In [35], the au-
thors of the Fakeddit dataset utilize BERT and ResNet50
to encode language and vision, respectively, and then use
max-pooling to fuse the multimodal features. MAVE [19] is
enhanced with BERT in [27], which is denoted as MAVE+
in the table. EMAF [27] is set up with BERTlarge uncased

(Layers = 24, Hidden size = 1024, Attention heads =
16), which is computationally more expensive than our
method. The AM3 outperforms unimodal results, AM3-
text, AM3-image, and AM3-max,by at least 12.0% in terms
of accuracy. On all three datasets, our proposed method
achieves the best performance against previous state-of-the-
art works. This demonstrates the efficacy of the proposed
asymmetric mixed-modal approach. It effectively captures
the distinct information that only appears in the intersection
of modalities, which is critical in CM decision-making.
Performance comparison on text tasks: AM3 can also

handle unimodal CM tasks. We first evaluate our approach
on the content moderation text tasks. (1) Results on Toxi-
Gen Classification are listed in Table 4, where we compare
to HateBERT [6] and ToxDectRoBERTa [62] on the top-
k only version of the dataset. (2) Results on HateXplain
dataset are shown in Table 5. Adaptive Length Reduction
(AdapLeR) [34] is a method based on BERT while opti-
mizing inference speed. BERT, BERT-HateXplain, BERT-
MLM, BERT-RP, and BERT-MRP are different BERT vari-
ants discussed in [21]. (3) Results on Jigsaw are shown
in Table 6, where we compare to the Toxiciology [1] and
Limerobot [1], the top 2 solutions on the leaderboard. On
all three CM text datasets, our approach outperforms all the
state-of-the-art language models, suggesting the efficacy of
the proposed method on mixed-modal (both multimodal and
unimodal) downstream CM tasks.

Table 4. Comparisons to the state-of-the-art methods on ToxiGen.

Method AUROC

ToxDectRoBERTa [16] 85.0
HateBERT [16] 88.0
AM3(Ours) 91.52 (± 0.16)

Table 5. Comparisons to the state-of-the-art methods on HateX-
plain.

Method AUROC Accuracy F1

AdaptLeR [34] - 68.6 -
BERT [48] 85.1 68.9 68.2
BERT-HateXplain [33] 85.1 69.8 68.7
BERT-MLM [21] 85.4 70.0 67.5
BERT-RP [21] 85.3 70.7 69.3
BERT-MRP [21] 86.2 70.4 69.9
AM3(Ours) 88.25 (±0.25) 81.17(±0.45) 80.37(±0.42)

Table 6. Comparisons to the state-of-the-art methods on Jigsaw.

Method AUROC

Limerobot [1] 94.7
Toxiciology [1] 94.7
AM3(Ours) 95.76(±0.27)

Performance comparison on vision task: Results on the
LSPD dataset are presented in Table 8, where we compare
them to the outcomes of different methods discussed in [38].
Our approach outperforms previous state-of-the-art meth-
ods in terms of accuracy and obtained the highest recall
score. Similar to the CM text datasets, this shows the ca-
pability of our mixed-modal method on downstream CM
vision task, benefiting from a richer representation space
with the mixed-modality pretraining.

4.4. Ablation Study

We selected Hateful Memes and MMHS150K for the ab-
lation study of different design choices. To accelerate the
analysis, all ablations are performed on a smaller pretrain-
ing corpus (Flickr30k, SBU, and COCO), and we pretrain
our model for 50K iterations.
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Table 7. Ablation study of mixed-modality and cross-modality contrastive loss.

Hateful Memes MMHS150K
Text dataset Vision dataset Cross-modality Contrastive Loss AUROC Accuracy AUROC Accuracy

no no no 80.28(±0.18) 74.28(±0.29) 71.91 (± 0.02) 67.44(±0.05)
no no yes 81.18(±1.0) 74.82(±0.51) 72.76(±0.08) 68.21(±0.05)
no yes no 80.65(±0.2) 73.82(±0.36) 72.52(±0.05) 68.03(±0.09)
no yes yes 81.49(±1.25) 74.98(±0.46) 72.98(±0.13) 68.18(±0.05)
yes no no 82.39(±0.08) 76.38(±0.02) 72.79(±0.21) 68.70(±0.09)
yes no yes 82.65(±0.2) 75.92(±0.17) 73.36(±0.07) 68.62(±0.09)
yes yes no 82.44(±0.23) 75.5(±0.31) 72.85(±0.10) 68.45(±0.07)
yes yes yes 82.94(±0.15) 76.45(±0.36) 73.96(±0.08) 68.73(±0.05)

Table 8. Comparisons to state-of-the-art methods on LSPD for
binary classification.

Method Accuray Precision Recall

Mask-RCNN 86.70 98.33 88.00
YOLOv4 92.59 97.03 87.86
SSD 85.32 94.11 85.64
Cascaded Mask RCNN 92.62 95.01 89.95
CNN classifier 87.22 84.86 90.59
AM3(Ours) 92.86(±0.03) 92.85 (±0.15) 92.73(±0.14)

Table 9. Ablation study of fusion architecture design.

Hateful Memes MMHS150K
Architecture AUROC Accuracy AUROC Accuracy

archV L−Bert 80.26(±0.38) 75.72(±0.62) 73.31(±0.15) 68.54(±0.06)
archvinV L 80.53(±0.23) 75.49(±0.17) 73.39(±0.12) 68.4(±0.07)

archbbox−position 80.74(±0.29) 75.0(±0.09) 73.43(±0.21) 68.4(±0.11)
AM3(Ours) 82.94(±0.15) 76.45(±0.36) 73.96(±0.08) 68.73(±0.05)

Model Architecture. To understand the effect of our pro-
posed asymmetric fusion transformer, we create two fu-
sion transformer variants following VL-Bert (archV L−Bert

[47]) and vinVL (archvinV L [61]), two symmetric fusion
designs. Specifically, archV L−Bert constructs the multi-
modal embeddings symmetrically so that each text embed-
ding adds to the visual feature of the entire image while
each RoI visual embedding adds to a text embedding of a
dummy token. archvinV L creates multimodal embeddings
for fusion transformer by simply concatenating the text em-
beddings from text input and object detection labels, along
with visual embeddings. As shown in Table 9, our proposed
asymmetric fusion architecture outperforms both symmet-
ric designs, indicating the efficacy of our asymmetric fusion
architecture in response to the asymmetry in semantics.
Vision Position Embedding from Bounding Box. To val-
idate the effectiveness of using bounding boxes for posi-
tional embeddings, we created a variant using the count-
ing index of the tokens for positional embeddings (used
in [47, 61]). As shown in Table 9, positional embeddings
generated from bounding box captures the ordering infor-
mation in image (permutation invariant to the input order).
Therefore, it achieves a better performance.
Cross-modality Contrastive Loss. As shown in Table
7, the average baseline scores on Hateful Memes and
MMHS150K are 80.28% and 71.91%, respectively, mea-
sured in terms of AUROC. By adopting the cross-modality

contrastive loss, the score is improved by +1.1% on Hate-
ful Memes and +1.2% on MMHS150K. The significant im-
provements show that our approach to the asymmetry in
modalities has a strong capability to capture distinct knowl-
edge from the intersection of different modalities.
Pretraining on Unimodal CM Datasets. Table 7 shows
the result w/ and w/o the unimodal CM datasets in the pre-
training corpus. Using the CM text datasets improves the
task scores by +2.6% and +1.2% from baseline, respec-
tively. Using the CM image datasets improves the score by
+0.5% and 0.8%, respectively. This shows that introduc-
ing asymmetry in data into the pretraining stage, with the
datasets relevant to the domain, is effective and can improve
downstream tasks by a significant margin.
Combination of Cross-modality Contrastive Loss and
Unimodal CM Datasets. As shown in Table 7, utilizing
the CM text dataset and the CM vision dataset together
leads to further improvement (+0.6% on Hateful Memes
and +0.8% on MMHS150K) in comparison to the best
score when using either CM text dataset or CM vision
dataset. Adding cross-modality contrastive loss on top of
the unimodal CM text and vision datasets further improve
the performance: when enabling all of these components,
we achieve the highest average AUROC score of 82.94%
for Hateful Memes and 73.96% for MMHS150K. It indi-
cates the efficacy of our proposed method.

5. Conclusion
In this paper, we present a novel mixed-modal CM

model, Asymmetric Mixed-Modal Moderation (AM3),
for both multimodal and unimodal content moderation.
We propose an asymmetric fusion architecture to fuse
multimodal knowledge. Furthermore, we design a novel
cross-modality contrastive loss to learn the distinct
knowledge that can only be conveyed when combining
both modalities, which is critical for multimodal CM
tasks. Besides using multimodal VL datasets, we also
include unimodal CM datasets in pretraining, which
not only relaxes data constraints but also improves
downstream task performance. With extensive experi-
ments, we show AM3 achieves the new state-of-the art
on various multimodal and unimodal CM benchmarks.
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