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Abstract

Scene Graph Generation (SGG) plays an important role
in enhancing visual image comprehension. However, ex-
isting approaches often struggle to represent implicit re-
lationship features, resulting in a limited ability to distin-
guish predicates. Meanwhile, they are vulnerable to skewed
instance distributions, which impairs effective training for
fine-grained predicates. To address these problems, we
propose a novel feature refinement and data redistribu-
tion framework (RAR). Specifically, a multi-domain fusion
(MDF) module is designed to acquire comprehensive predi-
cate representations, integrating global knowledge from the
contextual domain and local details in the spatial-frequency
domains. Then, we introduce a dynamic label assignment
(DLA) strategy to tackle the long-tailed problem. Different
predicate categories are adaptively grouped, accommodat-
ing varying training conditions. Guided by this strategy, we
leverage a hierarchical auto-encoder to generate siamese
samples, expanding the label cardinality. Furthermore, we
explore the updated sample space to derive reliable samples
and assign tailored labels, ultimately achieving the data
rebalancing. Experiments on VG and GQA demonstrate
that our model contributes to correcting prediction bias and
achieves a significant improvement of approximately 10% in
mean recall compared to baseline models.

1. Introduction
Scene Graph Generation (SGG) aims to detect a compact

graphical structure that expresses rich semantic information
from images. It organizes the visible objects and their inher-
ent relationships as nodes and edges, converting the abstract
visual features into intelligible linguistic descriptions. Ad-
ditionally, SGG serves as a fundamental block for advanced
visual tasks, including cross-modal retrieval [11], image
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Figure 1. Two insights for eliminating bias. 1) Feature refinement
involves the multi-domain fusion to enhance the predicate repre-
sentation, distinguishing “on” from informative “standing on”. 2)
Data redistribution employs the label assignment strategy to derive
balanced instances for each class, which provides sufficient train-
ing for infrequent “painting on” and facilitates accurate inference.

captioning [4], and visual question answering [14]. How-
ever, existing SGG approaches encounter challenges such
as imbalanced instance distribution and suboptimal perfor-
mance, underlining the potential for further optimization.

As research advances, the issue of long-tailed distribu-
tion [34] in training data has become increasingly serious.
This is compounded by the inherent ambiguity of visual in-
formation and the scarcity of data annotations, leading to an
evident bias in predicate reasoning. In response to this is-
sue, crafting an informative scene graph has become a pop-
ular research topic, originating from the introduction of the
mean recall metric [5, 26] and the release of the unbiased
scene graph benchmark [25]. As shown in Fig. 1, some
methods propose improvements in network design [3, 8, 9],
which significantly enhance the ability of relationship gen-
eration, but they overlook the data-level processing. While
techniques such as re-weighting [2, 24] and re-sampling
[10] have been developed to correct the long-tailed distri-
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bution, they may lead to overfitting in the tail classes and
impair the performance of the head classes. Fig. 1 also
demonstrates the impact of data balancing techniques.

Intuitively, we can integrate the above strengths into a
comprehensive solution. To implement this intention, we
first propose a feature refinement framework incorporat-
ing multi-domain fusion, which introduces predicate at-
tributes from distinct perspectives. Within this, the contex-
tual domain employs stacked Transformer to compute self-
attention maps for both object and relationship sequences,
thereby capturing global semantic information. Subse-
quently, we concentrate on the region of interest for object
pairs, where the most descriptive local information about
relationships is contained. We introduce a local saliency
adapter: The ROIs are subdivided into smaller patches, al-
lowing attention maps to be exchanged through sliding win-
dows. These maps are then utilized by deformable con-
volutions to characterize the irregular predicate. Moving
forward, we apply the adapter in spatial and frequency do-
mains, driven by the fact that both domains can offer valu-
able visual insights. Especially, frequency components re-
flect the edge details and behavioral tendencies, making
them excel in distinguishing tail classes that typically ex-
hibit single behavioral pattern. Leveraging the adapter out-
puts, we feed them into feedforward networks for spatial
feature encoding. Additionally, we adopt the Fourier Trans-
form for converting them into the frequency domain, trun-
cating high-frequency components of the adapter and en-
coding them through Transformer layers. Ultimately, we
align both global and local information as the refined fea-
tures, which exhibit both robustness and unbiasedness.

To address data imbalance, we propose a dynamic la-
bel assignment strategy that operates at the data level. Ini-
tially, we separate the training data into three exclusive
groups, applying different training conditions via stepwise
factors. During the training process, we continuously fine-
tune group elements based on prediction performances.
Subsequently, we devise an “expanding-balancing” pipeline
according to the groups. 1) To alleviate the scarcity of tail
group, we employ a hierarchical auto-encoder to mimic the
original instances themselves and generate siamese dupli-
cates, thereby expanding the sample cardinality and fea-
ture space. 2) Acknowledging the distribution disparities
between the head group and tail group, we derive samples
for the tail while removing redundant ones from the head.
Specifically, we learn from the reconstructed sample space
and partition the existing data into two distinct sets: the
annotated samples L+ and the unannotated ones L−. We
aggregate the limited labels from L+ to build high-quality
auxiliary-labels, which are directly utilized for optimizing
the predicate classifier. Meanwhile, we reabsorb some valid
instances from L− and recombine them with pseudo-labels,
which contribute to balancing the data distribution and en-

hancing the discriminative ability for the unbiased model.
The main contributions of our work are threefold:

• A feature refinement framework is proposed, which
aggregates feature knowledge from multiple domains
in parallel, forming more robust predicate representa-
tions in both global and local perspectives.

• A plug-and-play module called dynamic label assign-
ment is introduced, which adaptively sets distinct
training conditions through predicate grouping and
balances data distribution via the sample derivation
and label assignment.

• Our model exhibits superior capabilities in bias elimi-
nation compared to the typical baselines. Experimental
results on VG and GQA validate its effectiveness and
demonstrate the state-of-the-art performance.

2. Related Work

Scene Graph Generation SGG aims to achieve image
understanding through structured information. Early meth-
ods adopt message passing with graphs to update them-
selves by combining the receptive fields of adjacent nodes
[31]. Subsequent methods mostly employ recurrent neu-
ral networks to extract visual context and achieve two-stage
reasoning of objects and relationships. Then, more power-
ful and flexible Bi-LSTM and Bi-TreeLSTM are proposed
which can encode in both directions and adapt to the pos-
sible one-to-many cases of object combinations under the
current scenes [26, 32]. With the improvement of logical
theory, more complex models have been derived, such as hi-
erarchical graphs [28], probabilistic graphs [30] and aware
graphs [23]. However, these models still have limitations
in utilizing contextual information. With the popularity of
the Transformer, its feature extraction ability enables the
end-to-end structure to be implemented. The Transformer
framework is designed to bypass object detection and infer
through entity and predicate decoders, leading to significant
improvements in both speed and accuracy [8, 19].

Unbiased Scene Graph Generation The presence of
long-tailed distribution in scene graph tasks has attracted
significant attention, primarily focusing on eliminating per-
formance disparities among different predicates. The main-
stream approaches include re-weighting [2, 7, 13, 21], re-
sampling [10, 12, 13, 20], and pseudo-label generation [18,
27, 33]. RTPB [2] proposes resistance training, which fine-
tunes predicate weights based on prior biases to improve
the generalizability of tail classes. DT2-ACBS [10] intro-
duces an alternating class balance sampling strategy that
better captures interactions from imbalanced entity distribu-
tions in visual relationships. Despite the potential improve-
ment in overall model performance offered by re-weighting
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Figure 2. The overall structure of proposed method. It comprises two main components: MDF for refining predicate features, and DLA for
addressing data redistribution through the provision of additional training instances.

and re-sampling, these methods often encounter the trade-
off dilemma of overfitting to tail classes or underfitting to
head classes. Sparse R-CNN [27], in contrast, introduces
a learnable query and generates informative pseudo-labels
from a siamese network. Nevertheless, this approach ne-
cessitates an additional mechanism for label generation and
assignment. Distinct from the above methods, our novel
approach introduces dynamic balancing to scale up valid
samples and labels based on existing data, addressing the
long-tailed challenges.

3. Methodology
3.1. Methods Overview

Fig. 2 illustrates the overall process of our approach. We
extract global contextual features cr, local ROI features sr
and fr to refine visual representations (see Section 3.2). To
alleviate the long-tailed distribution, we employ a dynamic
label assignment strategy, which effectively achieves data
redistribution for balanced training (see Section 3.3).

3.2. Element Feature Refinement

To refine object and relationship features, we introduce a
framework that integrates multi-domain fusion (MDF), sig-
nificantly boosting the representation learning in SGG.

We adopt the Faster R-CNN for object detection and in-
fer the object class O = { oi }Ni=1. To explore the rela-
tionships within candidate oi, we devise a visual context
encoder to extract the essential global information. As the
Transformer network excels in establishing self-attention
for oi sequences, we merge the FPN backbone output vo,
position information poso, and word embeddings Embo to
serve as its input. This process yields the contextual repre-
sentation cr, as expressed by the following formulation:

co = Transformero(Wo[vo, poso, Embo])

cr = Transformerr(Wr[csub, cobj ])
(1)

where Wo and Wr stand for fully-connected layer. csub,
cobj are the context of subject and object calculated by co.

We further delve into the exploration of oi combinations
which exhibit higher attention coefficients. Our focus lies
on the predicate’s regions of interest U , namely the bound-
ing boxes union of subject and object. This region directly
contains the visual features of the predicate, where we in-
troduce a local saliency adapter (LSA) to extract: Breaking
down region U into equally sized patches, we calculate at-
tention maps within sliding windows. This strategy encour-
ages the exchange of channel information among shuffled
patches, extracting the salient features from patches with
strong interactions. Due to the irregular predicate regions
occupied in images, traditional rectangular boxes may not
effectively capture them. To overcome this limitation, we
intersperse 3x3 deformable convolution layers among the
standard convolution at alternating positions, enhancing the
scope of the receptive field. The deformable convolution is
equipped with a 3× 3 offset field, uniquely designed to ac-
curately locate features and adapt to the changes in shape.
Finally, we use linear enhancement based on MLP and add
skip connections to boost the robustness of deformable fea-
tures. The outcome ui→j is calculated as follows:

ui→j = LN([Att(U(x, y)),∆U(x, y)] + U(x, y)) (2)

where Att is the attention map and LN is the LayerNorm
operation, ∆U is the learnable offset between subject i and
object j. Each block is processed by LeakyReLU to fa-
cilitate thorough information exchange, allowing secondary
extraction of local visual features for predicates.

We then utilize LSA in both the spatial and frequency
domains of U , which are essential representational spaces
in image comprehension. Guided by LSA, we can precisely
extract cross-domain knowledge, thereby enhancing predi-
cate representation. Specifically, in the spatial domain, we
focus on shallow visual characteristics such as color and
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Figure 3. Illustration of the proposed dynamic label assignment strategy (DLA). We dynamically partition predicates and apply an
“expanding-balancing” pipeline for data redistribution. This strategy introduces three label types: siamese labels augment the internal
data, expanding instance cardinality; auxiliary-labels La and pseudo-labels Lp incorporate external data to achieve balanced training.

texture. Leveraging LSA and feedforward network to adap-
tively extract representations denoted as sr. In contrast, we
take measures to mitigate the impact of visual attributes like
color in the frequency domain. This involves normalizing
the region U to grayscale and resizing it to the predefined
size through linear interpolation and average pooling. Next,
we apply a two-dimensional Fast Fourier Transform (FFT)
to shift region U into the spectral space UF . The transfor-
mation formulation is provided below:

UF (u, v) =

M−1∑
x=0

N−1∑
y=0

U(x, y)Wux
M W vy

N ,

W k
K = e

−j2πk
K

(3)

where (x, y) represents spatial domain pixel and (u, v) rep-
resents frequency domain pixel. Building upon the abil-
ity of high-frequency components to capture unique be-
havioral patterns for informative predicates, we devise ex-
tracting these components using a Gaussian filter, concur-
rently eliminating low-frequency components located at the
center of the spectrum. Subsequently, we further adopt
LSA to mine the local information via the truncated fea-
ture maps. To establish long-time dependencies in high-
frequency components across different patches, we employ
the Transformer layers to process the outcome of LSA, ul-
timately yielding the representation fr.

The integration of knowledge from diverse domains en-
riches the representation space, resulting in more precise
and robust features. Furthermore, through feature fusion,
we align the global information cr, local information sr and
fr using self-attention matching, ultimately producing a re-
fined predicate representation er.

3.3. Data Balance Enhancement

In this section, we alleviate the long-tailed distribution
from the perspective of data redistribution. Illustrated in
Fig. 3, we introduce a novel architecture named dynamic
label assignment (DLA).

Dynamic Groups Scheduling To ensure balanced train-
ing, it’s necessary to handle predicates differently based on
their prior and posterior states. Toward this end, we ini-
tialize three mutually exclusive groups, denoted as Grel =
Ghead∪Gbody∪Gtail, determined by the volume of training
instances. Intuitively, we expect a decline in performance
from Ghead to Gtail, which requires a corresponding in-
crease in training intensity. Within this perspective, we em-
ploy the true positive rate (TP) from the confusion matrix
as the metric and compare it against confidence scores in
the training process, dynamically fine-tuning the members
within each group: if the TP of a certain head class de-
creases, it will be transferred from Ghead to Gbody with a
higher emphasis on training; in case a tail class exhibits
overfitting, it will be shifted from Gtail to Gbody while
moderating the training intensity. Additionally, as the con-
straints applied on distinct groups should display diversity,
we adopt a stepwise factor α ∈ (0, 1) to emulate this de-
sign. For instance, rather than using the initial confidence
scores Tc equally across all groups, we iteratively mod-
ify the conditions, leading to an asymmetric set of scores
{Tc ∗ αi, i = 0, 1, 2}. The merit of this approach lies in
classifying each predicate into its respective group and sub-
sequently offering customized training.

Siamese Space Augmentation Undoubtedly, samples
from tail classes are extremely rare in terms of their abso-
lute count, making it challenging to train robust classifiers.
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Hence, we consider reconstructing samples from the origi-
nal data, which share identical distribution and augment the
siamese sample space (SSA).

We design an auto-encoder architecture to simulate two-
dimensional feature reconstruction, ensuring precise align-
ment between the generated siamese duplicates and the
original samples. The encoder qϕ(z|f) projects the input
feature f into a latent space and induces the basis vectors of
the sample distribution. This block is composed of a cou-
ple of fully-connected layers, gradually reducing the chan-
nel dimensions of the feature map. Meanwhile, the decoder
qψ(f |z) assists the basis vectors in reconstructing samples
from a random normal distribution, adopting dual layers.

Furthermore, we employ a hierarchical auto-encoder to
better capture intricate predicate representations. We design
L stacked encoder blocks, qϕ(zl+1|zl), which sequentially
yield a series of latent variables {z0, z1..., zn, f = z0}.
The output of zl is passed as the input to zl+1 in an au-
toregressive manner. During the decoding stage, we intro-
duce relation-aware skip connections between correspond-
ing layers of the encoder and decoder to inject the inherent
characteristics of predicates. These ensure the consistency
of generated samples in visual content. Then, we restore
the latent variables and employ a progressive optimization
approach to approximate the source data. The outputs of
the last layer serve as the reconstructed siamese samples,
assigned labels consistent with the inputs. The overall loss
is the cumulative sum of individual decoders. Each block
is composed of both the Mean Squared Error for the recon-
structed features and the Kullback-Leibler Divergence loss
for the distinct distribution. The formulation is as follows:

LSSA(f, ϕ, ψ) = Eqψ(z|f)[log(pψ(f |z))]

−
L∑
l=1

Eqϕ(z<l|f)[KL(qϕ(zl|z<l, f)||pψ(zl|z<l))]

(4)
where ϕ and ψ denote the model parameters.

Auxiliary-Label Optimization While siamese samples
do contribute to augmenting in-distribution data, their
category-agnostic nature prevents achieving instances bal-
ance across all predicates. To tackle this problem, we
collect the annotated samples L+ from the original data,
learning category-specific knowledge to derive out-of-
distribution samples and thus achieve data rebalancing.

When considering a sample, we recognize that each
component of its feature vector holds individual meanings.
This leads to the existence of some specific components for
which variations in the attributes they represent have mini-
mal impact on the ultimate semantic label [29]. Leveraging
these components enables us to assign extra labels denoted
as auxiliary-labels La. Particularly, we first aggregate all
samples within each category. Taking category pi as an
example, we normalize the collected feature matrixes, es-

timating the mean µi as the centroid of pi. This implies
the rotation stability among categories, guaranteeing that
reconstructed samples must remain close to their original
center µi. To identify variable semantic directions for mod-
ification, we compute the intra-class covariance matrix σi
and pinpoint the component with the largest value as the ad-
justable direction ∆σi. σi provides translation variance for
augmenting samples, which indicates that moderate varia-
tions will bring acceptable supplementary samples. Then,
we employ conditional sampling guided by the acquired µi
and σi. To establish equilibrium spanning from Ghead to
Gtail, we iteratively formulate sampling rates Ts regulated
by the stepwise factor α and grouping results. This yields an
array of values {Ts/αi, i = 0, 1, 2}, maximizing the likeli-
hood of choosing tail samples.

The auxiliary-labels are introduced from the ground-
truth distribution of L+, closely aligning with the inher-
ent samples and demonstrating high quality and confidence.
As a result, they can be directly utilized for supervised
training as a strong regularization constraint, significantly
promoting the performance of classifiers. To better distin-
guish predicates, we introduce the notion of category mar-
gin δi =

n0.5
i∑C

j=1 n
0.5
j

, where ni means the number of training

instances in the prior statistics. By incorporating δi into the
cross-entropy loss, the decision boundary shifts towards the
more general classes. In other words, it can partially lift up
the confidence scores of tail classes and alleviate the impact
of imbalanced data again. We define margin-CE as follows:

LALO = −
∑
i

Lai log(
ePi−δi∑
j e
Pj−δj

) (5)

where Lai refers to auxiliary-label. Pi and Pj are the pre-
dicted probabilities.

Pseudo-Label Discrimination Owing to the issue of
sparse labeling within the data, the quantity of unannotated
samples in L− far exceeds the annotated samples in L+.
However, we discover that a portion of L− contains poten-
tial semantic relationships and can be reabsorbed as valid
training samples. These samples are constructed as pseudo-
labels Lp, establishing a more balanced distribution.

Specifically, our process begins with the selection of
suitable samples. The probabilities of the samples are es-
timated by a pre-trained classifier and the corresponding
thresholds {Tc ∗ αi, i = 0, 1, 2} are adjusted in a step-wise
manner across three groups. When the predicted probabil-
ity of a sample matches the category pi and its confidence
score surpasses the threshold of the group where pi belongs,
the condition is satisfied. Next, this sample is collected and
assigned a preprocessed label L̃p. It can be observed that
higher threshold filters out the redundant samples in Ghead.
In contrast, Gtail employs more lenient criteria, aiming to
accommodate candidate labels as much as possible.
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PredCls SGCls SGDet

Model mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

KERN [5] - 17.7 19.2 - 9.4 10.0 - 6.4 7.3
GPS-Net [22] 17.4 21.3 22.8 10.0 11.8 12.6 6.9 8.7 9.8
DTrans [2] 15.1 19.3 21.0 9.9 12.1 13.0 6.6 9.0 10.8
MDF 17.0 20.4 22.1 10.5 12.4 13.3 7.5 9.7 11.3

Motifs [32] 11.7 14.8 16.1 6.7 8.3 8.8 5.0 6.8 7.9
+TDE [25] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
+BPL [13] 22.6 27.1 29.1 13.0 15.3 16.2 9.7 12.4 14.4
+NICE [18] 25.6 29.9 32.3 14.3 16.6 17.9 9.1 12.2 14.4
+RTPB [2] 28.8 35.3 37.7 16.3 20.0 21.0 9.7 13.1 15.5
+Inf [1] 30.9 35.3 38.2 18.0 19.8 20.7 10.9 14.1 16.8
+DLA 31.2 35.9 38.2 18.6 20.8 21.9 11.2 14.7 17.1

VCTree [26] 13.1 16.7 18.1 9.6 11.8 12.5 5.4 7.4 8.7
+TDE [25] 18.4 25.4 28.7 8.9 12.2 14.0 8.9 9.3 11.1
+BPL [13] 23.8 28.4 30.4 15.6 18.4 19.5 9.9 12.5 14.4
+NICE [18] 24.9 30.7 33.0 16.8 19.9 21.3 9.0 11.9 14.1
+RTPB [2] 27.3 33.4 35.6 20.6 24.5 25.8 9.6 12.8 15.1
+Inf [1] 28.9 35.3 35.7 20.3 23.6 25.4 10.1 13.4 15.5
+DLA 29.3 34.5 36.4 21.2 24.7 26.3 10.8 14.0 16.0

RelTR [8] 22.6 28.2 31.1 14.1 18.2 19.7 9.7 14.2 16.3
EOA [6] 30.8 36.7 39.2 14.9 17.3 18.3 10.5 14.2 16.1
SQUAT [16] 25.6 30.9 33.4 14.4 17.5 18.8 10.6 14.1 16.5
RAR(ours) 32.8 37.0 39.4 18.9 21.7 23.1 12.4 16.1 18.6

Table 1. Comparisons of different approaches on VG in terms of mR@20/50/100. Three tasks of PredCls, SGCls and SGDet are evaluated
in model-based, model-agnostic and complete-model modes. The sign “+” denotes the combination with the universal de-biased module.

However, given that L̃p originate from background in-
stances, there could be semantic ambiguity associated with
the labels. To avoid this, we adopt a mixed augmentation
approach. This involves choosing a sample from L+ and
another from L̃p, which share a certain degree of semantic
similarity. These selected samples are then matched in pro-
portion of β, aiming for recombining hybrid samples in both
feature and label spaces. Operations are shown as follows:

Xp = βX+
s + (1− β)X̃p

t

Lp = βL+
s + (1− β)L̃pt

(6)

where s and t represent arbitrary pairs, with s ∈ L+and
t ∈ L̃p. Here, Xp denotes the generated sample while Lp is
defined as the pseudo-label updated from hard label to soft
label. The benefit is that even if the information of L̃p may
not be entirely reliable, a portion of L+ is still incorporated,
preventing the model from learning blindly. Lastly, we train
the model by recycling pseudo-labels as a weak regulariza-
tion constraint, which provide robust discriminative ability.
The soft-CE loss is defined as:

LPLD = −
∑
i

∑
k

I(Lpik > 0)log(
ePk∑
j e
Pj

) (7)

where I is indicator function and Lpik shows whether
pseudo-label Lpi contains component pk. Pk and Pj are the
predicted probabilities.

To better coordinate the auxiliary-label optimization
(ALO) and pseudo-label discrimination (PLD), we devise
a positive feedback loop. The ALO functions as a pre-
classifier to provide prediction proposals for the PLD.
Meanwhile, the PLD supplements huge out-of-distribution
samples for extensive training, which in turn contributes to
the improvement of the ALO. The overall loss is formulated
as LALO + λLPLD, with λ denoting a hyper-parameter.

4. Experiments

4.1. Experimental Settings

Dataset We conduct experiments on two datasets. Visual
Genome (VG) [17] is the benchmark for SGG task, consist-
ing of 108K images and 2.3M relationship annotations. Fol-
lowing prior works [12, 25], we adopt the most commonly
used VG150 split, which contains the most frequent 150 ob-
ject classes and 50 predicate classes. GQA [15] is a scene
graph based visual question answering dataset consisting of
over 200K images and 113K questions. We follow prior
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PredCls SGCls SGDet

Model mR@50/100 mR@50/100 mR@50/100

Motifs [32] 16.4 / 17.1 8.2 / 8.6 6.4 / 7.7
VCTree [26] 16.6 / 17.4 7.9 / 8.3 6.5 / 7.4
SHA [12] 19.5 / 21.1 8.5 / 9.0 6.6 / 7.8

MDF 20.2 / 21.7 10.7 / 11.4 7.7 / 9.0
+TED [25] 21.0 / 22.5 11.3 / 12.5 8.7 / 9.9
+RTPB [2] 27.2 / 28.7 17.8 / 18.5 12.7 / 14.5
+Inf [1] 28.3 / 30.1 19.3 / 20.5 14.5 / 15.9
+DLA 32.1 / 33.6 20.3 / 21.2 15.3 / 17.4

Table 2. Comparisons of different approaches on GQA in terms
of mR@50/100. Three tasks of PredCls, SGCls and SGDet are
evaluated in model-based and model-agnostic modes.

work [12] in using the GQA200 split, selecting the most
frequent 200 object classes and 100 predicate classes.

Tasks We evaluate our model on the widely used tasks:
1) Predicate Classification (PredCls). 2) Scene Graph Clas-
sification (SGCls). 3) Scene Graph Detection (SGDet).

Metric Following previous works [12, 25], we use mean
Recall@K (mR@K) for unbiased SGG, which is defined as
the average of each predicate in Recall@K (R@K).

Implementation Details We adopt a similar approach
to the SGG benchmark [25], freezing the pre-trained Faster
R-CNN and fine-tuning the multi-domain fusion network.
For dynamic label assignment, we recommend a two-stage
learning to prevent biased models from affecting unbiased
inference. The initial partition for Ghead, Gbody, Gtail is
according to their instance quantity, two thresholds 20000
and 5000 are set for dividing. We initialize Ts = 1 and
Tc = 0.8, signifying the sampling rate and confidence
score. We use a stepwise factor α = 0.5 to guide the group
training. The SGD optimizer with learning rate and batch
size of 0.0005 and 8 is employed. All experiments are con-
ducted in Pytorch 1.9.0 and a single RTX3090.

4.2. Comparisons with State-of-the-Arts

We evaluate our proposed model against state-of-the-art
approaches, categorized into three modes: model-based,
model-agnostic and complete-model. From the experimen-
tal data in Tab. 1, our model achieves the best performance
across the three tasks. We compare our baseline MDF
with several representative approaches, including MOTIFS,
VCTree and DTrans. MDF offers more precise seman-
tic features and leads to significant metric improvements
in both SGCls and SGDet. Meanwhile, in the context of
our model-agnostic DLA, we contrast it with TED, BPL,
NICE, RTPB, etc. DLA achieves label redistribution by cre-
ating a balanced dataset. Unlike re-weighting methods such
as RTPB that utilize fixed weights for distinct categories,

Model SGDet

MDF† MDF DLA mR@20 mR@50 mR@100 FPS

6.0 8.1 9.6 3.20
✓ 6.6 8.7 10.0 2.89

✓ 7.5 9.7 11.3 2.86
✓ ✓ 10.9 13.6 16.8 2.69

✓ ✓ 12.4 16.1 18.6 2.67

Table 3. Ablation studies on VG, which validate the effectiveness
of our proposed frameworks: MDF and DLA, where MDF† means
the absence of the local saliency adapter.

Model SGDet

λ SSA mR@20 mR@50 mR@100

λ = 0.5
w/o 11.0 13.8 16.9
w/ 11.3 14.2 17.3

λ = 1
w/o 12.0 15.6 18.1
w/ 12.4 16.1 18.6

λ = 2
w/o 10.1 13.2 15.9
w/ 10.4 13.4 16.3

Table 4. Analysis on VG for the impact of expanding module SSA
and two balancing branches, ALO and PLD, where “w/” and “w/o”
respectively indicate the presence or absence of the SSA.

our dynamic strategy allows flexibly weighting. This pre-
vents overfitting in the tail and underfitting in the head.
When compared to re-sampling approaches like BPL, we
introduce an extensive dataset of newly generated out-of-
distribution labels. This approach surpasses the effective-
ness of recurrently sampling from the original data, result-
ing in enhanced unbiasedness. The experiments conducted
on MOTIFS+DLA and VCTree+DLA reveal our significant
performance. Moreover, our holistic framework RAR in-
corporates the MDF and DLA. In contrast to the one-stage
Transformer architecture RelTR, RAR leverages two-stage
debiasing and more extensive data adjustments, leading to
superior performance in SGDet. However, we have also
observed a minor decrease in SGCls results. This can be
attributed to the static object features provided by SGCls,
which replace the refined fusion features from MDF, result-
ing in the loss of crucial information.

To validate the generalization performance of our model,
we also conduct experiments on GQA, which is considered
more challenging with a severe long-tailed distribution. The
results are presented in Tab. 2. Our MDF and DLA continue
to outperform the state-of-the-art approaches.
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4.3. Ablation Studies

Analysis for Model Components As aforementioned,
we mainly incorporate two modules in our approach. To
evaluate the effectiveness of each part, we conduct ablation
experiments on VG and report the model performance in
Tab. 3. “✓” denotes that the module is employed. Com-
pared to the simple baseline, our modified MDF extracts
features from three distinct domains, guaranteeing comple-
mentary representations. This contributes to a 0.5% per-
formance enhancement. Then, local saliency adapter fine-
tunes the ROIs, focusing on essential pixels and generating
an almost 1% performance boost. Moreover, the plug-and-
play DLA significantly improves performance by over 2%
through data-level operations. We also analyze the algo-
rithmic complexity and computational load of the pipeline,
revealing that our implementations effectively double per-
formance with a relatively moderate time investment.

We further delve into the principles of DLA. Firstly, we
notice that the intention of SSA is the augmentation of sam-
ple cardinality. Compared to solely relying on existing
limited data, siamese samples enhance the feature space,
providing stronger support for classifier training. This en-
hancement is evident in Tab. 4, confirming a 0.5% improve-
ment. Additionally, the nucleus of data redistribution lies in
the ALO and PLD branches. ALO optimizes the margin-CE
loss via feature aggregation, while PLD employs label re-
combination to drive discriminative learning based on soft-
CE loss. To ensure effective fusion, we iteratively adjust
their proportion λ, finding that λ = 1 delivers optimal out-
comes. Namely, regardless of which branch takes the domi-
nant position, it would render the regularization constraints
ineffective, leading to inaccurate label assignment. Further-
more, we compute the mR@100 for the head, body, and tail
groups, resulting in values of 19.2, 18.2, and 18.1, respec-
tively. This emphasizes the collaboration of the DLA again,
which prevents the head classes from experiencing under-
fitting due to prolonged inadequate training. Conversely, it
ensures timely adjustments for tail classes, mitigating the
potential occurrence of overfitting.

Analysis for Hyper-parameters The stepwise factor α
plays a pivotal role in DLA, determining the execution con-
ditions of distinct groups. As shown in Tab. 5, we employ
two strategies for applying α: iterative and linear. In the lin-
ear approach, the initial Tc uniformly varies with α, while
the iterative method follows an exponential change. For in-
stance, {Tc, Tc−α/2, Tc−α} or {Tc, Tc ∗α, Tc ∗α2}. It’s
crucial to control both the step size and its variation rate.
Larger step size is more adaptable to the long-tailed distri-
bution, displaying significant results when α = 0.5. As for
the variation rate, constraints should be more relaxed when
moving towards tail classes. Thus, utilizing a non-uniform
approach ensures distinctiveness across different groups.

Additionally, we design pseudo-labels with a mixed ra-

SGDet

α Strategy mR@20 mR@50 mR@100

α = 0.3
Linaer 10.8 13.2 16.3

Iterative 10.3 12.8 15.3

α = 0.5
Linaer 11.3 14.5 17.2

Iterative 12.4 16.1 18.6

α = 0.7
Linaer 11.5 14.6 17.2

Iterative 11.1 14.0 16.7

Table 5. Analysis on VG for the impact of the stepwise factor α.
Two strategies are employed for its implementation.

Figure 4. The visualization results for MDF and MDF+DLA.
Green predicates represent correct matches with the ground-truth,
while red ones are incorrect. Purple predicates represent accept-
able predictions generated by our model (not in ground-truth).

tio β between real and preprocessed labels. Given the un-
certainty linked to the latter, we prioritize real labels. Ex-
periments validate our assumption for β = 0.7. Lastly, we
set the auto-encoder layers L = 3. This choice balances
against the risk of overfitting in deeper networks and the
challenge of reconstructing high-quality labels with shallow
layers. Details are reported in supplementary material.

Qualitative Results We visualize the results on VG. As
shown in Fig. 4, our model ensures mostly accurate predic-
tions through MDF and DLA.

5. Conclusion

In this paper, we tackle two critical challenges in gener-
ating unbiased scene graphs. We propose a domain fusion
network that leverages the deformable adapter for spatial-
frequency feature refinement, improving the representation
performance. Additionally, we introduce a dynamic label
assignment strategy that generates balanced instances and
assigns reliable labels to alleviate the long-tailed distribu-
tion. Our model outperforms the state-of-the-art methods.
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