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Abstract

RGB-based surface anomaly detection methods have ad-

vanced significantly. However, certain surface anomalies

remain practically invisible in RGB alone, necessitating the

incorporation of 3D information. Existing approaches that

employ point-cloud backbones suffer from suboptimal rep-

resentations and reduced applicability due to slow process-

ing. Re-training RGB backbones, designed for faster dense

input processing, on industrial depth datasets is hindered

by the limited availability of sufficiently large datasets. We

make several contributions to address these challenges. (i)

We propose a novel Depth-Aware Discrete Autoencoder

(DADA) architecture, that enables learning a general dis-

crete latent space that jointly models RGB and 3D data for

3D surface anomaly detection. (ii) We tackle the lack of di-

verse industrial depth datasets by introducing a simulation

process for learning informative depth features in the depth

encoder. (iii) We propose a new surface anomaly detection

method 3DSR, which outperforms all existing state-of-the-

art on the challenging MVTec3D anomaly detection bench-

mark, both in terms of accuracy and processing speed. The

experimental results validate the effectiveness and efficiency

of our approach, highlighting the potential of utilizing depth

information for improved surface anomaly detection. Code

is available at: https://github.com/VitjanZ/3DSR

1. Introduction

Surface anomaly detection addresses localization of im-

age regions that deviate from normal object appearance.

Most of the works consider the problem of RGB-based

detection, which has witnessed remarkable progress in re-

cent years, with several methods approaching perfection

on the widely adopted MVTec anomaly detection dataset

[1]. However, since certain surface anomalies in practi-

cal applications are not detectable in RGB (Figure 1), re-

cent works [2, 3, 9, 17] consider a new research problem of

RGB+3D anomaly detection.

Figure 1. Certain anomalies are practically imperceptible in RGB,

requiring depth for precise detection. Parameterized generative

model yields images sufficiently describing depth statistics for

training general depth-reconstruction backbones.

The state-of-the-art methods typically rely on features

extracted by general backbone networks [14, 15, 17, 20],

pretrained on large datasets. The current state-of-the-art

3D anomaly detection method M3DM [19] applies two

backbones, one pretrained on RGB, the other on point-

cloud datasets. However, the general point-cloud datasets

do not represent well the depth appearance distribution

of industrial setups, leading to suboptimal representations.

Furthermore, the point-cloud backbone substantially slows

down processing, reducing the method’s practicality. The

inference could be sped up by considering depth image

as a grayscale image and replacing the point-cloud back-
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bone with an RGB-pretrained one, but evidence shows [9]

that RGB-pretrained backbones insufficiently represent the

depth properties relevant for anomaly detection.

Alternatively, RGB backbones could be re-trained on

industrial depth datasets, but the current industrial depth

datasets are too small to efficiently train the large back-

bones. Recent work DSR [22] proposed utilizing Vector-

quantized autoencoders (VQVAE) [13], which learn only a

fixed number of discrete latent representation vectors, thus

potentially enable learning from smaller datasets. Neverthe-

less, our experience shows that training DSR on the avail-

able industrial depth dataset MVTec3D [2] leads to subop-

timal results, indicating that the existing data is too small

even for the representation-efficient VQVAEs. Advances in

RGB+3D surface anomaly detection are thus hindered by

the lack of sufficiently large datasets that would enable pre-

training general depth backbones and allow development of

methods fast enough for practical applications.

We address the aforementioned issues by making an in-

sight that it is possible to summarize statistical properties

of spatial and intensity content typical for industrial surface

anomaly inspection depth data, which allows the creation

of a parameterized generative models for such data. We hy-

pothesize that such a model can then be used to generate a

large training set for pre-training a depth-specific backbone

(Figure 1, bottom). Furthermore, we note that the process-

ing time constraint requires efficient architecture design for

encoding of the RGB and depth data to jointly exploit both

modalities for detecting complex anomalies.

The main contributions of this work are three-fold: (i)

A novel Depth-Aware Discrete Autoencoder (DADA) archi-

tecture is proposed, that enables learning a general discrete

latent space that jointly models RGB and depth data for 3D

surface anomaly detection. (ii) We directly address the lack

of a diverse industrial depth dataset by proposing an indus-

trial depth data simulation process that facilitates the learn-

ing of informative depth features by the DADA module.

(iii) We demonstrate the effectiveness of the learned fea-

ture space by proposing 3DSR, a novel discriminative 3D

surface anomaly detection method that significantly outper-

forms all competing state-of-the-art methods on the most

challenging MVTec3D anomaly detection benchmark [2].

Owing to its efficient design, 3DSR also outperforms the

current state-of-the-art [19] in speed by by an order of mag-

nitude.

2. Related work

The MVTec anomaly detection dataset [1] has been

widely adopted for unsupervised surface anomaly detec-

tion research. The training dataset comprises only normal

cases, while the testing dataset includes both normal and

anomalous instances. Most top performing anomaly de-

tection methods [5, 14, 15, 17, 20] rely on strong pretrained

backbones for informative feature extraction. After obtain-

ing a good representation of each anomaly-free image in

the training set a simple statistical model is typically built

that tightly binds the anomaly-free feature space [5, 14].

This enables the detection of anomalies based on a cho-

sen distance function to the anomaly-free representation

model. Flow-based methods that utilize pretrained fea-

ture extractors to train a flow model also achieve state-of-

the-art results [15–17, 21]. Certain discriminative meth-

ods [10, 22, 23] do not need a strong pretrained backbone

but instead rely on simulated anomalies using an out-of-

distribution dataset to build a strong classifier that gen-

eralizes well to real anomalies at test-time. It has been

shown that top-performing RGB anomaly detection meth-

ods do not generalize well to 3D surface anomaly detec-

tion [2, 9, 17].

In the problem setup of 3D surface anomaly detection,

the MVTec-3D anomaly detection dataset [2] is the most

comprehensive dataset containing RGB and 3D informa-

tion. In [2] reconstruction-based anomaly detection meth-

ods have been applied to the 3D anomaly detection prob-

lem as an initial baseline. In [3], a 3D student-teacher net-

work was proposed that focuses on point cloud geometry

descriptors. In [9] a memory-based method akin to [14]

was proposed, that utilizes pretrained backbone features for

RGB and FPFH [18] features for 3D representation. In [17]

a teacher-student flow-based model is proposed that uses

pretrained backbone features for RGB data but raw depth

pixel values are used for 3D representation. In [19] 3D fea-

tures are extracted by a point transformer [24] pretrained on

a general point cloud dataset not adapted to industrial 3D

data. A lack of 3D data from the industrial domain and the

lack of strong domain-specific feature extractors presents a

significant challenge since better 3D representations are re-

quired for improving the accuracy of 3D surface anomaly

detection methods.

3. Our approach: 3DSR

We propose a novel 3D surface anomaly detection

method based on dual subspace reprojection (3DSR). The

input image is encoded into a discrete feature space and is

then reprojected into image space by two decoders. The

object-specfic decoder and the general object decoder re-

construct the anomaly-free and the anomalous appearance,

respectively. The anomaly detection module then segments

potential anomalies based on the difference between the two

reprojections. 3DSR is trained in two stages. First, a novel

Depth-Aware Discrete Autoencoder (DADA) is trained on

RGB and depth image pairs to learn a general joint discrete

representation of RGB+3D depth data.

In the second stage, DADA is integrated into the

DSR [22] surface anomaly detection framework, produc-

ing 3DSR, which is then trained on 3D anomaly detection
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datasets [2, 4]. In Section 3.1 the architecture of the pro-

posed Depth-Aware Discrete Autoencoder (DADA) module

is described. The industrial depth data simulation process

is then described in Section 3.2. The final 3DSR surface

anomaly detection pipeline is described in Section 3.3.

3.1. Depth­aware discrete Autoencoder

To learn a representation of both RGB and depth data, a

naive approach may be to train a vector quantized autoen-

coder [13] with 4 input channels to represent both RGB and

depth. This approach has some drawbacks due to the prop-

erties of both RGB and depth images. In Figure 2 an exam-

ple of a cable gland is shown. A region of interest is marked

with a green rectangle in IRGB and ID and is shown in more

detail in RGB (TRGB) and depth (TD). TRGB exhibits sig-

nificant local variation due to shadows but barely any vari-

ation is visible in TD. In depth images, even slight depth

variations can be informative for defect detection so repre-

senting variations in TD is vital. Discrete autoencoders are

typically trained using the L2 loss, which is less sensitive

to variation types in TD, where values change minimally,

but is sensitive to changes in TRGB , where local gradients

are higher. Subtle changes in TD therefore contribute very

little to the final loss leading to a higher emphasis on the

reconstruction of RGB data during training.

Figure 2. Example of a cable gland from the MVTec3D dataset [2].

Local variations are clearly visible in TRGB and barely perceptible

in TD .

To ensure a good representation of both RGB and depth,

a new Depth-Aware Discrete Autoencoder (DADA) archi-

tecture is required and is shown in Figure 3. The input Iin to

the discrete autoencoder is a 4 channel tensor, a concatena-

tion of an RGB image I and a depth image D. The encoder

is a convolutional network, where RGB and depth informa-

tion is separated by grouped convolution layers [8] which

ensure that RGB and Depth features do not interact. This

channel-wise separation is necessary to prevent the over-

whelming influence of a single modality in the loss func-

tion.

To minimize the information loss due to discretization at

a low spatial resolution, a two-stage discretization architec-

ture is used [13]. First, the DADA Encoder 1 encodes the

input and downsamples the spatial resolution by 4× produc-

ing features f1, where fI1 and fD1 stand for RGB and depth

features, respectively. The second encoder stage, DADA

Encoder 2, further downsamples the features to a total 8×
downsampling, producing f2. f2 features are quantized to

the nearest neighbors of the codebook V Q1 in terms of the

L2 distance. The quantized features Q1 are then input into

a decoder module which upsamples the spatial resolution

2× to fU . The features f1 and fU are then concatenated

and channel-wise reordered to group image features fI1 and

fIU and depth features fD1 and fDu. This reordering of fR
is necessary to maintain the separation of RGB and depth

features in the grouped convolutions of the decoder. The

resulting features fR are then quantized to nearest neigh-

bor codebook vectors in V Q2, producing Q2. Q1 is then

upsampled to fit the spatial resolution of Q2, after which

Q1 and Q2 are input into the second decoder module which

outputs the reconstructions of RGB Io and depth Do con-

catenated as Iout. We use the VQ-VAE [13] loss function,

modified to address the added depth information, to train

DADA:

Lae = λDL2(D,Do) + λIL2(I, Io)

+ L2(sg[f2],Q1) + λKL2(f2, sg[Q1])

+ L2(sg[f1],Q2) + λKL2(f1, sg[Q2]), (1)

where L2(·) is the Euclidean distance and sg[·] is the stop

gradient operator. λI and λD are loss weighing factors and

are both set to 1 in all experiments unless stated otherwise.

λK controls the reluctance to change the codebook vectors

corresponding to f1 and is fixed to 0.25 in all experiments

following [13].

Figure 3. The Depth-Aware Discrete Autoencoder (DADA) mod-

ule.

3.2. Depth data generative model

Simulated data is necessary for training DADA due to

the absence of industrial depth datasets. Consideration of

key properties of industrial depth data is required for an ef-

fective simulation process. Firstly, object depth can vary
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continuously from closest to farthest from the sensor. Sec-

ondly, small dents and bumps can either cause significant

intensity changes in RGB or are completely invisible, de-

pending on the lighting. In depth, such minor changes are

always detectable through a minimal local depth value al-

teration. Finally, the average of a depth image can vary

significantly. Simulated data must capture local changes

and variable average object depth in industrial images. The

simulated depth image generation process is thus designed

to explicitly address these properties. The core generator

of the simulated images is the Perlin noise generator [12]

that produces a variety of locally smooth textures that sim-

ulate the gradual changes in depth well, addressing the first

property. Subtle local changes and varied average object

distance are then simulated by adapting the Perlin noise im-

age with a randomized affine transform.

To generate a single simulated depth image a Perlin noise

image P is first generated and normalized between 0 and 1.

P is then multiplied by a uniformly sampled α ∈ (0.0, 1.0)
to produce Pα. At lower α values the maximum and mini-

mum values of Pα will differ only slightly. To model the

variation of the average object distance, Pα is translated

with a uniformly sampled β ∈ (0, 1 − α). The final simu-

lated depth image D is therefore D = αP + β.

Examples of simulated depth images with various α and

β parameters are shown in Figure 4. α controls the dif-

ference between the minimum and maximum values of D,

simulating local changes in depth and β controls the mini-

mum value of D.

Figure 4. Impact of parameters α and β on the simulated depth

maps. α is the scaling parameter and β is the translation parameter.

DADA is then trained on RGB and depth image pairs.

RGB images are sampled from ImageNet [6] and depth im-

ages are simulated (Figure 4) and unrelated to the input

RGB data.

3.3. 3D anomaly detection pipeline

In the second stage, DSR [22] is used as a discrimina-

tive anomaly detection framework. The VQ-VAE-2 [13]

network that is used by DSR for RGB surface anomaly de-

tection is replaced with DADA, pretrained to extract infor-

mative representations from both 3D and RGB data. Ad-

ditionally, DADA’s vector-quantized feature space enables

efficient simulated anomaly sampling. The architecture of

3DSR is shown in Figure 5.

The DADA encoder modules extract and quantize the

features Q1 and Q2. Then Q1 and Q2 are modified by the

anomaly generation process to produce Q1A and Q2A that

contains simulated feature-level anomalies. Q1A and Q2A

are then input into the subspace restriction module that at-

tempts to restore the extracted features to an anomaly free

representation Q1S , Q2S . Note that the anomaly generation

process is performed only during training so at inference

Q1 and Q2 are directly input into the subspace restriction

module since they may already contain an anomaly during

testing.

For clarity, the steps that are only performed during train-

ing are marked with blue and steps only done at inference

are marked with orange in Figure 5, while the trainable

modules are marked with red in Figure 5. The Subspace

restriction module is trained with an L1 loss to reconstruct

anomaly-features Q1 and Q2 from Q1A and Q2A, respec-

tively.

The Object specific decoder is trained to reconstruct

the anomaly free appearance from the reconstructed fea-

tures Q1S and Q2S . The pretrained general appearance

decoder reconstructs the anomaly appearance IG and DG

from Q1A and Q2A at training or Q1 and Q2 at inference.

Then, IG,DG,IS and DS are concatenated and input into

the Anomaly detection module. The Anomaly detection

module is trained to localize the simulated anomalies dur-

ing training and real anomalies at test time. It directly out-

puts an anomaly segmentation mask Mout and is trained us-

ing the Focal loss [11]. Following [22, 23], the image-level

anomaly score is estimated by first smoothing Mout with a

Gaussian filter and then taking the maximum value of the

smoothed mask.

During training, anomalies are generated by modifying

the quantized feature maps Q1 and Q2 as follows. First an

anomaly map M is generated by thresholding and binariz-

ing a Perlin noise map, following previous works [22, 23].

M is then resized to fit to the spatial dimensions of Q1 and

Q2. Feature vectors of Q1 and Q2 in regions correspond

to positive values of M are replaced with feature vectors

randomly sampled from codebooks V Q1 and V Q2 respec-

tively, generating modified feature maps Q1A and Q2A that

contain simulated anomalies.
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Figure 5. The architecture and second stage training process of 3DSR. The modules marked in red are trainable during the second stage of

training.

4. Experiments

Datasets. 3DSR is evaluated on two recent 3D anomaly

detection benchmarks, the MVTec3D dataset [2] and the

Eyecandies dataset [4], each containing 10 different object

classes. The MVTec3D [2] anomaly detection benchmark

contains 4147 scans obtained by a high-resolution industrial

3D sensor that also acquires RGB data. Of the 4147 scans,

894 are anomalous containing various defects that are vis-

ible in either RGB or 3D data. 3DSR is also evaluated on

the Eyecandies dataset [4], a difficult rendered dataset with

RGB and 3D anomalies. It contains 10000 anomaly-free ex-

amples for training and 500 examples for testing of which

250 are anomalous.

Evaluation problem setup. The evaluation is divided

into 3 different problem setups, where only the depth (3D

setup), RGB images (RGB setup) or both the depth and

RGB images (3D+RGB) are used. Since 3DSR is a 3D and

RGB+3D method, we provide DSR [22] results instead in

the RGB setup.

Evaluation metrics. Anomaly localization and image-

level anomaly detection capabilities of each method are

evaluated. For the image-level detection the standard

image-level AUROC metric is used. For anomaly localiza-

tion the PRO metric [1] is used. Additionally, the mean

pixel-level AUROC is used for localization evaluation.

4.1. Implementation details

In the first stage of training, the DADA module is trained

using the simulated depth data for 3D and the ImageNet

dataset [6] for RGB supervision. DADA is trained using a

batch size of 64 for 100K iterations using a learning rate of

0.0002. The vector quantization codebooks contains 2048
embeddings of dimension 256. In the second stage, 3DSR

is trained on the MVTec3D dataset [2] or the Eyecandies

dataset [4]. In both datasets the 3D data is given in the

form of a sorted point cloud. The data is preprocessed by

first normalizing the depth map to values between 0 and 1.

Then, the missing values in each depth image are replaced

with the average of all the valid pixels in a 3 × 3 neigh-

borhood. If there are no surrounding valid pixels, the value

is set to 0. A foreground mask is obtained by classifying

points as either foreground or background by it’s distance

to the background plane. The background plane equation is

obtained from valid points at the edges of the sorted point

cloud. During training, anomalies are generated only on the

foreground object. 3DSR is trained on an individual object

class of each dataset as is standard for surface anomaly de-

tection methods [14, 17, 22, 23]. It is trained with a batch

size of 16 for 30K iterations with a learning rate of 0.0002.

4.2. Results

Anomaly detection results in terms of image-level AU-

ROC are shown in Table 1. 3DSR significantly outperforms

competing methods in the 3D settings, where only depth in-

formation is used. The 3D image-level AUROC is improved

by approximately 5 percentage points. This demonstrates

the informative depth representations learned by DADA and

validates the 3DSR pipeline.

In classes where depth information is vital for anomaly

detection, such as Tire and Foam, the improvement in the

3D setting is even greater. Additionally, 3DSR outperforms

competing methods in the 3D+RGB setup by 3.3 percent-

age points demonstrating the ability of DSR to efficiently

utilize information from both the depth and RGB modal-

ities again emphasizing the powerful joint representations

of 3D and RGB learned by DADA using the proposed data

simulation process. In Table 1 the first, second and third

best performing methods are marked for each object class.

Note that 3DSR achieves first place on 7 out of 10 classes

for the 3D setup and 5 out of 10 classes on the 3D+RGB

setup, while staying in the top 3 in every object class.

Anomaly localization results are shown in Table 2 in

terms of the AUPRO metric [1]. 3DSR achieves second

place in segmentation results. It achieves comparable re-

sults to M3DM in the 3D problem setup while outper-

forming it in the RGB+3D setup. A comparison of 3DSR

and state-of-the-art methods in terms of mean pixel-level
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Table 1. Anomaly detection results on the MVTec3D dataset for the 3D, RGB and 3D+RGB problem setups. The results are listed as

image-level AUROC scores (higher is better). The results of evaluated methods are ranked and the first, second and third place are marked.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3
D

Voxel AE [2] 69.3 42.5 51.5 79.0 49.4 55.8 53.7 48.4 63.9 58.3 57.1

Depth GAN [2] 53.0 37.6 60.7 60.3 49.7 48.4 59.5 48.9 53.6 52.1 52.3

Depth AE [2] 46.8 73.1 2 49.7 67.3 53.4 41.7 48.5 54.9 56.4 54.6 54.6

FPFH [9] 82.5 55.1 95.2 79.7 88.3 3 58.2 75.8 88.9 92.9 65.3 3 78.2

3D-ST [3] 86.2 48.4 83.2 89.4 3 84.8 66.3 76.3 68.7 95.8 2 48.6 74.8

AST3D [17] 88.1 3 57.6 96.5 2 95.7 2 67.9 79.7 2 99.0 1 91.5 3 95.6 3 61.1 83.3 3

M3DM3D [19] 94.1 2 65.1 3 96.5 2 96.9 1 90.5 2 76.0 3 88.0 3 97.4 1 92.6 76.5 2 87.4 2

3DSR3D 94.5 1 83.5 1 96.9 1 85.7 95.5 1 88.0 1 96.3 2 93.4 3 99.8 1 88.8 1 92.2 1

R
G

B

PatchCore [14] 87.6 88.0 79.1 68.2 91.2 70.1 69.5 61.8 84.1 70.2 77.0

DifferNet [15] 85.9 70.3 64.3 43.5 79.7 79.0 78.7 64.3 3 71.5 59.0 69.6

PADiM [5] 97.5 1 77.5 69.8 58.2 95.9 66.3 85.8 53.5 83.2 76.0 76.4

CS-Flow [16] 94.1 93.0 1 82.7 79.5 2 99.0 2 88.6 3 73.1 47.1 98.6 2 74.5 83.0

ASTRGB [17] 94.7 2 92.8 3 85.1 3 82.5 1 98.1 3 95.1 1 89.5 3 61.3 99.2 1 82.1 2 88.0 2

M3DMRGB [19] 94.4 3 91.8 89.6 2 74.9 95.9 76.7 91.9 2 64.8 2 93.8 76.7 3 85.0 3

DSRRGB [22] 84.4 93.0 1 96.4 1 79.4 3 99.8 1 90.4 2 93.8 1 73.0 1 97.8 3 90.0 1 89.8 1

3
D

+
R

G
B

Voxel AE [2] 51.0 54.0 38.4 69.3 44.6 63.2 55.0 49.4 72.1 41.3 53.8

Depth GAN [2] 53.8 37.2 58.0 60.3 43.0 53.4 64.2 60.1 44.3 57.7 53.2

Depth AE [2] 64.8 50.2 65.0 48.8 80.5 52.2 71.2 52.9 54.0 55.2 59.5

PatchCore+FPFH [9] 91.8 74.8 96.7 88.3 93.2 58.2 89.6 91.2 3 92.1 88.6 3 86.5

AST [17] 98.3 2 87.3 2 97.6 2 97.1 3 93.2 3 88.5 3 97.4 2 98.1 1 100 1 79.7 93.7 3

M3DM [19] 99.4 1 90.9 1 97.2 3 97.6 2 96.0 2 94.2 2 97.3 3 89.9 97.2 3 85.0 3 94.5 2

3DSR 98.1 3 86.7 3 99.6 1 98.1 1 100 1 99.4 1 98.6 1 97.8 2 100 1 99.5 1 97.8 1

Table 2. Anomaly localization results on the MVTec3D dataset for the 3D, RGB and 3D+RGB problem setups. The results are listed as

AUPRO scores (higher is better). The results of evaluated methods are ranked and the first, second and third place are marked.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3
D

Depth AE [2] 14.7 6.9 29.3 21.7 20.7 18.1 16.4 6.6 54.5 14.2 20.3

Depth GAN [2] 11.1 7.2 21.2 17.4 16.0 12.8 0.3 4.2 44.6 7.5 14.3

Voxel AE [2] 26.0 34.1 58.1 35.1 50.2 23.4 35.1 65.8 1.5 18.5 34.8

FPFH [9] 97.3 1 87.9 1 98.2 2 90.6 1 89.2 2 73.5 2 97.7 1 98.2 1 95.6 2 96.1 1 92.4 1

M3DM [19] 94.3 2 81.8 3 97.7 3 88.2 2 88.1 3 74.3 1 95.8 3 97.4 3 95.0 3 92.9 2 90.6 3

3DSR 92.2 3 87.2 2 98.4 1 85.9 3 94.0 1 71.4 3 97.0 2 97.8 2 97.7 1 85.8 3 90.7 2

R
G

B

CFlow [7] 85.5 91.9 95.8 3 86.7 96.9 50.0 88.9 93.5 90.4 91.9 3 87.1

PatchCore [14] 90.1 94.9 3 92.8 87.7 89.2 56.3 90.4 93.2 90.8 90.6 87.6

PADiM [2] 98.0 1 94.4 94.5 92.5 1 96.1 3 79.2 3 96.6 2 94.0 3 93.7 3 91.2 93.0 3

M3DM [19] 95.2 2 97.2 1 97.3 2 89.1 2 93.2 84.3 2 97.0 1 95.6 1 96.8 1 96.6 2 94.2 2

DSR [22] 92.3 3 97.0 2 97.9 1 85.9 97.9 1 89.4 1 94.3 3 95.1 2 96.4 2 98.0 1 94.4 1

3
D

+
R

G
B

Depth AE [2] 43.2 15.8 80.8 49.1 84.1 40.6 26.2 21.6 71.6 47.8 48.1

Depth VM [2] 38.8 32.1 19.4 57.0 40.8 28.2 24.4 34.9 26.8 33.1 33.5

Voxel AE [2] 46.7 75.0 80.8 55.0 76.5 47.3 72.1 91.8 1.9 17.0 56.4

3D-ST [3] 95.0 48.3 98.6 1 92.1 90.5 63.2 94.5 98.8 1 97.6 2 54.2 83.3

PatchCore + FPFH [9] 97.6 1 96.9 2 97.9 3 97.3 1 93.3 3 88.8 3 97.5 3 98.1 2 95.0 97.1 3 95.9 3

M3DM [19] 97.0 2 97.1 1 97.9 3 95.0 2 94.1 2 93.2 2 97.7 2 97.1 97.1 3 97.5 2 96.4 2

3DSR 96.4 3 96.6 3 98.1 2 94.2 3 98.0 1 97.3 1 98.1 1 97.7 3 97.9 1 97.9 1 97.2 1

and image-level AUROC on the RGB+3D setup is shown

in Table 3, where 3DSR outperforms both AST [17] and

M3DM [19] on both image-level and pixel-level AUROC.

Table 4 shows the comparison between 3DSR and the

previous top performing method M3DM [19] on the Eye-

candies [4] dataset in terms of the image-level AUROC

on the 3D and 3D+RGB problem setups. 3DSR outper-

forms M3DM [19] on the 3D anomaly detection setup

and achieves an image-level AUROC score that is 3 per-

centage points higher than that of M3DM [19]. On the

3D+RGB anomaly detection setup 3DSR achieves state-

Method I-AUROC P-AUROC

PatchCore + FPFH [9] 86.5 99.2

AST [17] 93.7 97.6

M3DM [19] 94.5 99.2

3DSR 97.8 99.5

Table 3. Mean image-level AUC and pixel-level AUC values on

the 3D+RGB setup on the MVTec3D dataset.

of-the-art performance, slightly outperforming M3DM [19]

in the mean AUROC score, while achieving a lower vari-
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Method Candy Chocolate Chocolate Confetto Gummy Hazelnut Licorice Lollipop Marshmallow Peppermint Mean

cane cookie praline Bear truffle sandwich candy

3DSR3D 60.0 76.8 74.2 77.0 76.1 74.9 81.1 83.1 81.1 91.7 77.6

M3DM3D 48.2 58.9 80.5 84.5 78.0 53.8 76.6 82.7 80.0 82.2 72.5

DSRRGB [22] 70.6 96.5 95.0 96.6 87.0 79.0 88.5 85.7 99.8 99.2 89.8

M3DMRGB 64.8 94.9 94.1 100 87.8 63.2 93.3 81.1 998 100 87.9

3DSR3D+RGB 65.1 99.8 90.4 97.8 87.5 86.1 96.5 89.9 99.0 97.1 90.9

M3DM3D+RGB 62.4 95.8 95.8 100 88.6 75.8 94.9 83.6 100 100 89.7

Table 4. Comparison between M3DM [19] and 3DSR on the Eyecandies dataset in terms of image-level AUROC (higher is better).

ance in scores across classes. The results suggest that in

the Eyecandies dataset [4] most anomalies that are percep-

tible in 3D are also visible in RGB, since similar results are

achieved in the RGB and the 3D+RGB problem setups.

In Figure 6, qualitative examples for the MVTec3D [2]

and Eyecandies [4] datasets are shown. The first two rows

contain the RGB and depth images, respectively. The third

row shows the 3DSR output mask overlaid on the RGB im-

age. The ground truth anomaly masks are shown in row

4. In classes such as Cookie (Column 4), Peach (Column

7) and Potato (Column 8), anomalies are subtle in the RGB

image, but are visible in the depth image and are detected by

3DSR. In Column 6, the anomaly on the foam is only visi-

ble in the RGB space and is also detected by 3DSR. In other

columns the anomalies are visible in both RGB and depth

images. The last two columns show examples from the Eye-

candies dataset [4]. Column 11 contains a 3D anomaly and

column 12 contains an anomaly only visible in the RGB

image. 3DSR segments all of these examples accurately.

5. Ablation study

The results of the ablation study are shown in Ta-

ble 5. First, the naive approach of training the VQVAE

of DSR [22] on RGB+depth image pairs of all classes in

the MVTec3D [2] training set is evaluated in experiment

DSRnaive. This results in poor anomaly detection per-

formance showing the need for better RGB+3D represen-

tations enabled by the proposed contributions.

The contribution of the simulated training data is eval-

uated in the 3DSRno affine and 3DSRno perlin experi-

ments. In the 3DSRno perlin experiment the use of Per-

lin noise maps for training DADA is omitted and the depth

training data is replaced with ImageNet images converted

to grayscale. Grayscale images do not sufficiently model

the properties of depth images and the image-level AU-

ROC score drops significantly by approximately 8 percent-

age points. In 3DSRno affine only the perlin noise map

scaled from 0 to 1 is used without the additional scaling

with α and β as described in Section 3.2. This leads to an

approximately 3 percentage point drop in the image-level

AUROC. Experiments 3DSRno affine and 3DSRno perlin

demonstrate the effectiveness of using Perlin noise as a sim-

ulation source of industrial depth and the benefit of using

an affine transformation of the simulated data to model the

characteristics of the data.

The contribution of the DADA module is evaluated in

experiments 3DSRV QV AE , 3DSRweighted. In these ex-

periments, a VQVAE from [22] is used to learn the joint

RGB and depth representations, where the RGB and depth

representations are not separated by grouped convolutions.

In 3DSRV QV AE the proposed DADA module is replaced

with a VQVAE [13] model which causes an approximately

2 percentage point drop in image-level AUROC. This ex-

periment shows the benefit of separating the RGB and depth

data in the DADA architecture and shows that this separa-

tion leads to an improved downstream anomaly detection.

Experiment 3DSRweighted also uses a vector quantized au-

toencoder from [22] but the λD and λI values in the loss in

Equation (1) are set to the best-performing values λD = 10
and λI = 1, increasing the loss contribution of depth image

reconstruction. This leads to a 1.3 percentage point drop in

image-level AUROC suggesting that replacing DADA with

VQ-VAE and a simple loss reweighing is not sufficient. The

change in λI ,λD also accounts for the difference between

3DSRweighted and 3DSRV QV AE , showing the impact of

the choice of λI ,λD.

Method I-AUROC P-AUROC PRO

DSRnaive 87.6 96.5 92.3

3DSRno perlin 90.0 98.3 93.3

3DSRno affine 94.8 99.2 95.9

3DSRV QV AE 95.8 99.3 96.3

3DSRweighted 96.5 99.4 96.7

3DSR 97.8 99.5 97.2

Table 5. Ablation study results.

Inference efficiency. The performance in terms of

frames-per-second (FPS) is evaluated on an NVIDIA RTX

A4500 GPU and shown in Table 6. Compared to other re-

cent methods such as M3DM [19], 3DSR is very fast and

can run in real-time on a GPU due to the efficiency of the

DADA and the anomaly segmentation module. The pre-

vious best method M3DM [19] that uses point-cloud data

requires heavy preprocessing and two large transformer net-
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Figure 6. Qualitative results of 3DSR on the MVTec3D and Eyecandies benchmarks.

works. 3DSR is an order of magnitude faster than M3DM

and is also almost twice as fast as AST [17] in terms of FPS.

Method AST [17] M3DM [19] 3DSR

FPS 18 2 0.6 3 33 1

Table 6. Method performance in terms of frames-per-second (FPS)

on the NVIDIA RTX A4500 GPU.

Limitations. Figure 7 shows Eyecandies dataset [4] ex-

amples that are particularly difficult for 3DSR. In row one,

the anomaly is a small dent at the object edge. It is not vis-

ible in the RGB image or distinguishable from the natural

edge in the depth map making it difficult to detect. In rows

2 and 3, the anomalies are depth-based and result in mi-

nor changes to the object’s surface. They are hardly visible

in the RGB images. Nonetheles, 3DSR is able to segment

them with a lower confidence. In row 4, the anomaly is a

deformation visible in the RGB image, however due to the

object’s transparency, such anomalies are difficult to detect.

Note that the Eyecandies dataset [4] contains challenging

anomalies that closely resemble the object’s normal appear-

ance, making them difficult to detect, even for humans.

6. Conclusion

We proposed a 3D anomaly detection method 3DSR,

which is capable of detecting 3D anomalies in industrial

depth data and can even utilize depth and RGB data to

further improve the anomaly detection performance. Our

first contribution is the novel Depth-aware Discrete Au-

toencoder (DADA) that separately encodes 3D and RGB

data during training thus learning better representations

of individual modalities. The second contribution is the

simulated depth generation process for learning robust

representations of industrial 3D data. The new method

Figure 7. Difficult cases on the Eyecandies dataset.

3DSR (third contribution), achieves state-of-the-art results

on the MVTec3D [2] and Eyecandies [4] datasets. On

the MVTec3D anomaly detection dataset [2], 3DSR sur-

passes competing methods significantly in the 3D and

3D+RGB anomaly detection setups demonstrating a strong

3D anomaly detection capability validating the proposed

contributions. 3DSR is faster than competing methods

and is an order of magnitude faster than the previous best

method M3DM [19] which uses a point-cloud-based 3D in-

formation extraction. The proposed depth simulation may

also help transfer the recent progress in RGB anomaly de-

tection methods to the 3D domain by improving the repre-

sentations extracted by backbone networks by training on

simulated data with self-supervision.
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