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Abstract

Monocular 3D object detection (M3OD) is a significant

yet inherently challenging task in autonomous driving due

to absence of explicit depth cues in a single RGB image.

In this paper, we strive to boost currently underperform-

ing monocular 3D object detectors by leveraging an abun-

dance of unlabelled data via semi-supervised learning. Our

proposed ODM3D framework entails cross-modal knowl-

edge distillation at various levels to inject LiDAR-domain

knowledge into a monocular detector during training. By

identifying foreground sparsity as a main culprit behind

existing methods’ suboptimal training, we exploit the pre-

cise localisation information embedded in LiDAR points to

enable more foreground-attentive and efficient distillation

via the proposed BEV occupancy guidance mask, leading

to notably improved knowledge transfer and M3OD per-

formance. Besides, motivated by insights into why exist-

ing cross-modal GT-sampling techniques fail on our task

at hand, we further design a novel cross-modal object-

wise data augmentation strategy for effective RGB-LiDAR

joint learning. Our method ranks 1st in both KITTI valida-

tion and test benchmarks, significantly surpassing all exist-

ing monocular methods, supervised or semi-supervised, on

both BEV and 3D detection metrics. Code will be released

at https://github.com/arcaninez/odm3d.

1. Introduction

3D object detection represents a fundamental prob-

lem for applications in autonomous driving and robotics.

Among 3D object detection from scene representations of

different modalities such as LiDAR, RADAR, range im-

ages, and stereo images, monocular 3D object detection

(M3OD) possesses unique advantages for practical appli-

cations. M3OD allows for easy, lightweight, and low-cost

deployment on a moving platform since it only requires a

single RGB camera. By performing passive sensing, cam-

eras are also free from interference that active sensors such

(a) (b)

Figure 1. Two types of inefficiency identified in the state-of-the-art

CMKD [16]: (a) object sparsity leads to insufficient training sig-

nals for the network to learn from; (b) object sparsity leads to fore-

ground (marked with dashed boxes) signals being overwhelmed by

background signals in BEV dense distillation.

as LiDAR and RADAR are susceptible to, which is essential

to safe autonomous driving.

Despite these benefits, M3OD is arguably the most chal-

lenging compared to 3D object detection receiving LiDAR,

RADAR, or stereo images as input. On popular 3D object

detection benchmarks such as KITTI [13], M3OD methods

lag behind their LiDAR-based or stereo counterparts by a

daunting margin. This is perhaps not surprising, given that

an RGB image does not contain any explicit 3D measure-

ments of a scene. Indeed, inferring 3D attributes from a

single 2D image is an ill-posed problem, as pointed out in

many previous works [35, 36, 40, 48].

To mitigate this dilemma of 2D-to-3D inference, many

existing M3OD approaches resort to incorporating explicit

depth estimation for enhanced depth awareness [10, 40, 45,

52], lifting 2D images to 3D ªpseudo-LiDARº representa-

tion via off-the-shelf depth estimators [37,48,56,57], or di-

rectly utilising matched depth maps in training for RGB-

depth feature fusion [18, 58, 64]. Other methods tackle

the ill-posed M3OD problem by imposing geometric con-

straints such as inter-keypoint [4, 23, 29, 33] or inter-object

[6, 55] relations to regularise 3D predictions. These have

led to consistent and incremental improvements on M3OD.

Parallel to advancements in M3OD, semi-supervised
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learning (SemiSL) has emerged as a powerful paradigm

that enables learning from additional unlabelled data. Mo-

tivated by its success, in this paper we advocate exploit-

ing large amounts of unlabelled data to boost M3OD per-

formance. Among preliminary works on semi-supervised

M3OD [16, 42, 62], CMKD [16] employs a simple cross-

modal knowledge distillation framework to acquire the ca-

pability of learning from both images and LiDAR point

clouds, labelled and unlabelled, delivering state-of-the-art

monocular detection performance.

Despite its impressive results, upon in-depth investiga-

tion we made two insightful observations as to how CMKD

lacks efficiency in its training as a result of foreground spar-

sity (illustrated in Fig. 1): (i) Autonomous driving scenes

often contain too few or even no objects of interest, lead-

ing to insufficient training signals for the network (Fig. 1a).

In particular, CMKD utilises large amounts of unlabelled

samples from the KITTI Raw dataset [12], in which scenes

containing no objects at all are common. (ii) In dense dis-

tillation, object sparsity results in foreground signals being

overwhelmed by the background noise of a much larger area

in bird’s-eye view (BEV) (Fig. 1b), which undermines ac-

curate feature extractions for cross-modal learning.

To mitigate (i), we design a novel object-wise cross-

modal data augmentation technique to paste additional ob-

jects into training scenes. GT-sampling-based [61] cross-

modal augmentation [26,51,65] has recently been employed

by several multi-modal 3D object detectors [5,24,26]. How-

ever, these strategies are limited since their augmented

scenes are produced via IoU-based collision tests, which

fail to consider the relative depth of objects, as discussed in

Sec. 4.3. To alleviate this issue, we propose an occlusion-

aware cross-modal GT-sampling strategy to augment the

training scenes for enhanced RGB-LiDAR distillation.

For (ii), inspired by foreground-attentive distillation in

2D [53, 63, 67] and 3D object detection [9, 14, 68], our pro-

posed distillation method focuses on regions where objects

more likely exist rather than treating all locations indif-

ferently. In the absence of ground-truth labels indicating

where objects are, we resort to the underlying point loca-

tion knowledge embedded in point clouds, which serves as

an implicit indicator of where objects and foreground might

be. Intuitively, locations containing LiDAR points more

likely contain an object or part of an object, and vice versa.

Hence, we propose to exploit LiDAR point occupancy as a

guidance for distillation in BEV.

Our designs effectively alleviate aforementioned issues

caused by foreground sparsity, leading to a top-performing

M3OD framework based on cross-modal distillation and

semi-supervised learning. Besides, our designs are only in-

volved in training and therefore do not introduce any addi-

tional computational or memory overhead at inference.

In summary, our contributions include:

1. We propose occupancy-guided cross-modal distilla-

tion for M3OD, utilising the underlying localisation

information in LiDAR as guidance for foreground-

attentive knowledge transfer.

2. We design CMAug, a new and versatile cross-modal

augmentation strategy built upon a novel occlusion-

aware collision criterion, which suits both supervised

and semi-supervised learning settings.

3. Our ODM3D framework achieves 1st place in KITTI

val and test benchmarks, in term of both AP3D and

APBEV , among all published supervised and semi-

supervised monocular methods.

2. Related Work

2.1. Monocular 3D Object Detection

Monocular 3D object detection (M3OD) methods can

be primarily categorised into image-only, geometric-pior-

assisted, and depth-assisted methods. Image-only methods

[1,34,38,47,54] directly regress objects’ 3D attributes from

an RGB image. Prior-assisted methods introduce complex

geometric constraints in forms of keypoint [4, 23, 29, 33],

inter-object relational [6, 55], camera extrinsic [69] and

temporal [2] regularisation. Depth-assisted methods make

explicit use of depth to alleviate inherent depth ambigu-

ity in images. Among them, some [37, 44, 48, 56, 57]

leverage off-the-shelf depth estimators (e.g. DORN [11])

to convert images into a ªPseudo-LiDARº representation,

on which standard LiDAR-based detectors can be applied;

some [10, 40, 45, 52] introduce depth estimation as an aux-

iliary task to learn depth-aware features for accurate 3D

inference through RGB-depth fusion or multi-task learn-

ing; others [7, 59] exploit depth in the form of dispar-

ity maps. Besides, uncertainty modelling is commonly

adopted [4, 6, 35, 38, 66] for more accurate and robust es-

timation of 3D attributes. More recently, transformer [3,50]

has been utilised for more effective contextual and depth-

aware feature aggregation [18, 58, 64, 70, 71]. A few meth-

ods [9, 58, 72] also utilise external data during training via

knowledge distillation, which are detailed in Sec. 2.2.

2.2. Knowledge Distillation for M3OD

A popular technique to transfer knowledge from a

stronger model to a weaker one, knowledge distillation

[15] has been under-explored in the context of M3OD.

Among early efforts, SGM3D [72] distills the knowledge

of a teacher trained with stereo images to a monocular

CaDDN [45] student; MonoDistill [9] and ADD [58] have

their teacher and student based on an identical architec-

ture. MonoDistill’s teacher directly takes as input LiDAR-

projected depth maps and guides a MonoDLE [38] detector.

In contrast, ADD’s teacher receives the depth maps as ex-

tra input, and is shown to boost multiple monocular detec-
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Figure 2. The ODM3D framework. Knowledge distillation is conducted in both feature and prediction spaces in BEV, both guided by a

BEV occupancy map derived from ground-truth point clouds. The teacher model is frozen during knowledge distillation, and is discarded

at inference. All modules and operations within the grey shaded region are not involved at inference.

tors [36, 45, 64]. Contrary to these approaches, we directly

employ a LiDAR-based teacher and distill stronger, more

3D-aware knowledge learnt from raw point clouds.

2.3. Semi-Supervised M3OD

Semi-supervised learning (SemiSL) enables learning

from both labelled and unlabelled data. In the context of

M3OD, KM3D [22], MVC-MonoDet [31], and Lian et al.

[30] enforce consistency in terms of object keypoints [22],

bounding box predictions [30, 31], or object-level photom-

etry [31] between teacher and student responses. More

akin to our method are pseudo-labelling-based approaches

[16, 42, 62], which employ a teacher model pre-trained on

labelled data to produce predictions (i.e. pseudo-labels) for

unlabelled data. Instead of directly using the teacher’s de-

tection results as in LPCG [42] and Mix-Teaching [62],

CMKD [16] lets the student learn the teacher’s intermediate

features and dense prediction maps via knowledge distilla-

tion, achieving state-of-the-art M3OD performance.

2.4. Cross-Modal Data Augmentation

Data augmentation has been a major driver behind the

enormous success of deep learning. In LiDAR-based 3D

object detection, GT-sampling [61] pastes ground-truth ob-

ject points into training scenes to diversify and prolifer-

ate objects that can be used to train the detector, and

is widely adopted by subsequent LiDAR-based detectors

[17, 20, 39, 46]. However, extending it to RGB-LiDAR

cross-modal learning tasks is less straightforward due to

difficulties in maintaining scene-level consistency between

augmented RGB and LiDAR data. Recently, several cross-

modal augmentation strategies based on GT-sampling have

been proposed [8, 26, 51]. They all crop and paste im-

age regions corresponding to pasted object points, and con-

duct collision tests to avoid severe overlapping in perspec-

tive view (PV), with promising results yielded on recent

multi-modal 3D object detectors [5, 19, 24, 26]. Yet, to

our best knowledge, such strategies have not been explored

for cross-modal distillation and semi-supervised learning.

In this work, we show that existing strategies lead to aug-

mented scenes extremely challenging if not infeasible for

the monocular detector to learn from, and alleviate the issue

with our proposed designs.

3. Methodology

3.1. Overall Framework

Our proposed ªOccupancy-Guided Distillation for

Monocular 3D Object Detectionº (ODM3D) framework

follows a teacher-student paradigm with cross-modality

knowledge distillation, as shown in Fig. 2. The teacher is

a pre-trained LiDAR-based 3D object detector which pro-

duces intermediate BEV features within its pipeline and

performs subsequent 3D object detection in the BEV space.

The student is a monocular detector which takes as input a

single RGB image and also involves intermediate BEV fea-

tures. It is trained to mimic the teacher’s intermediate BEV

features at its BEV encoder and dense prediction maps at

its detection heads. In this process, the student acquires

LiDAR-induced knowledge from the teacher. Throughout

the cross-modality training, a BEV occupancy mask ob-

tained by projecting each scene’s point cloud (detailed in

Sec. 3.2) is used to guide distillation in both feature and pre-

diction domains (Sec. 3.3). Due to object sparsity in train-

ing scenes, we design and apply cross-modal data augmen-

tation, pasting ground-truth objects into each training scene

to enrich supervisory signals (Sec. 3.4). At inference, the
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Figure 3. Examples of the same scene augmented with collision

tests using IoU and our proposed OAIS thresholds.

LiDAR-based teacher is discarded and only the monocular

student is deployed.

3.2. LiDAR-Projected BEV Occupancy Mask

Given raw point cloud L in a continuous 3D domain,

we first project the voxelised L into BEV to obtain a 3D

BEV map M
′ ∈ R

WBEV×HBEV×D that has the same width

WBEV and height HBEV as intermediate BEV features of

the teacher and student networks used for feature distilla-

tion. Next, we perform ªpixelisationº of M′. Specifically,

we consider BEV representation M
′ an indicator of point

occupancy status in the 3D space. Each element in M
′

can be regarded as a grid that corresponds to a 3D volume

in the voxelised LiDAR space. We let an element in M
′

equal to one if its corresponding 3D volume in the LiDAR

space contains at least one point, and zero if the 3D vol-

ume contains no points. Consequently, a ªoneº grid rep-

resents an active occupancy grid and a ªzeroº grid repre-

sents an empty occupancy grid. Afterwards, we collapse

M
′ along dimension D to form our 2D BEV occupancy

mask MOCC ∈ R
WBEV×HBEV . Concretely, an element in

MOCC is one if there is at least one active grid among all

D grids at this location in M
′; an element in MOCC is zero

if all D grids at this location in M
′ are empty.

In our experiments, voxelised point cloud L has a shape

of (W = 1,120, H = 1,540, D = 40), which is

determined by our choice of voxelisation resolution and

point cloud range, and the intermediate BEV feature has

WBEV = 140 and HBEV = 188. Hence, a grid in the pro-

posed occupancy mask corresponds to a total of 8×8×40 =
2,560 voxels, equivalent to a cubic volume of dimension

[0.32m, 0.32m, 4m].

3.3. Occupancy-Guided Knowledge Distillation

Occupancy-guided feature distillation. Feature-level dis-

tillation is carried out between intermediate BEV features of

the teacher and the student, FTea
BEV ∈ R

WBEV×HBEV×CBEV

and F
Stu
BEV ∈ R

WBEV×HBEV×CBEV , respectively. The mean

square error (MSE) loss is adopted as feature distillation

loss LFeat, on which the proposed 2D BEV occupancy mask

MOCC is imposed, guiding the distillation to focus on fore-

ground regions while ignoring unimportant and interfering

background. In addition, we apply Gaussian smoothing to

the BEV occupancy mask which is originally binary. Con-

verting a hard occupancy mask to a soft one effectively mit-

igates potential misalignment between occupancy maps and

feature maps incurred in calibration, projection, or feature

extraction. Mathematically, the occupancy-guided feature

distillation loss is given by:

LFeatKD = ∥(G(σ)⊛MOCC)⊙ LFeat(F
Stu

BEV,F
Tea

BEV)∥
2

(1)

where G(σ) is a Gaussian kernel with standard deviation σ

determined by the kernel size; ⊛ is the convolution opera-

tor; ⊙ denotes the Hadamard product operator; the process

of broadcasting MOCC to match the channel dimension of

F
Tea
BEV and F

Stu
BEV is omitted here for brevity.

Occupancy-guided response distillation. Inheriting the

spirit of occupancy-guided feature distillation, we further

impose occupancy guidance in the response space (i.e.

dense predictions). This design is made feasible and ra-

tional by the fact that predictions of both our teacher and

student, along with pre-defined anchors, are made in the

BEV space, carrying similar physical connotation to BEV

features and BEV occupancy masks. As such, we again ap-

ply the BEV occupancy mask on the dense prediction maps

generated by both the teacher and student networks.

Nevertheless, considering how anchors and boxes are

defined and carried on these dense maps, we argue that

it would be more desirable to adopt slackened occupancy

guidance rather than stringent, pixel-to-pixel dictation. Es-

sentially, the validity of direct pixel-wise multiplication be-

tween a BEV occupancy mask and a BEV feature mask

stems from a pixel-to-pixel correspondence between the

two representations (even though we have chosen to slacken

this correspondence), which however does not hold between

a BEV occupancy mask and boxes or anchors defined on

prediction maps. It is perfectly normal for the centre of

an anchor not to be in the immediate vicinity of points of

the ground-truth object to which the anchor is matched. In

light of this, we once again opt for Gaussian smoothed oc-

cupancy masks, whose benefits will be shown in Sec. 4.3.

Our teacher and student both adopt SSD-style [32] detec-

tion heads, comprising a classification head, a localisation

head, and a direction head. The occupancy-guided distilla-

tion loss for the classification head is given by:

LClsKD = ∥(G(σ)⊛MOCC)⊙ LCls(P
Stu

cls ,P
Tea

cls )∥2 (2)

where PStu
cls and P

Tea
cls are student’s and teacher’s classifica-

tion prediction maps, and other symbols follow Eqn. 1. The

localisation and direction distillation losses (i.e. LLocKD

and LDirKD), based on LLoc and LDir respectively, are de-

fined likewise and omitted for brevity. We adopt the quality
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Figure 4. A schematic comparison of IoU and the proposed OAIS.

focal loss (QFL) [25], smooth L1 loss, and cross-entropy

loss for LCls, LLoc, and LDir, respectively. The occupancy-

guided response distillation loss LRespKD is a weighted sum

of distillation losses of all three detection heads. Finally, the

overall distillation loss to train the teacher-student frame-

work is a weighted sum of LFeatKD and LRespKD. Note

that while a concurrent work [21] also exploits LiDAR-

projected masks as guidance, we stress that our occupancy

guidance generalises to both feature and response domains

and is used in a different setting (i.e. cross-modal distilla-

tion and semi-supervised learning) and task (i.e. M3OD).

3.4. Cross-Modal Data Augmentation

IoU is flawed. Existing cross-modal GT-sampling strate-

gies for 3D object detection [8, 26, 65] universally adopt

Intersection of Union (IoU) as a measure of the extent of

overlap between pairs of objects in PV to avoid severe oc-

clusion which harms training. However, we argue that IoU

is a suboptimal criterion that often fails to indicate severe or

even complete occlusion. In Fig. 3, an existing car in Box 1

is largely occluded by the pasted car in Box 2, leaving very

limited visual cues for the monocular detector to learn from.

The pasted pedestrian in Box 4 is almost entirely occluded

by the car in Box 2 and indeed entirely occluded by another

pasted pedestrian in Box 3. These severe occlusion cases

successfully passed collision tests with an IoU threshold of

0.5. They cause objects having very limited or zero pixels

to remain in the augmented scene, and only serve to mislead

and harm the monocular detector’s learning.

An occlusion-aware criterion. The root of IoU’s malfunc-

tion lies in its inability to reason about relative depth of

boxes. In simple words, IoU measures the extent of overlap

of boxes on a 2D plane, but is unaware of which box is being

occluded by which in 3D space. We avoid this shortcoming

of IoU by introducing a novel Occlusion-Aware Intersec-

tion Score (OAIS), which instead calculates the intersection

over the area of the 2D box that has a larger depth value.

Mathematically:

OAIS(B1, B2) =
Area(B1 ∩B2)

Area(MaxD(B1, B2)))
(3)

where B1 and B2 are 2D boxes projected from 3D boxes

with respective depth values; MaxD(·) is an operator that

selects the box with a larger depth value (a random selec-

Figure 5. A pasted object (marked with red boxes) can result in an

adequately distinguishable cluster of points in LiDAR but a tiny

patch in the image.

tion if equal depth values). For the case B1 ∩ B2 ̸= ∅,

this translates into intersection over area of the box being

occluded. In practice, we take the depth of the ground-truth

3D bounding box from which a 2D box is projected as the

2D box’s depth.

As shown in Fig. 4, when using IoU as the collision met-

ric, significantly occluded Box 1 has a low IoU of 0.224
with Box 2. Box 4 has an even lower IoU of 0.145 with

Box 3 despite being fully occluded by the latter. In com-

parison, OAIS between Box 1 and Box 2 is 0.629 which

provides an intuitive measure of how much of Box 1 has

been occluded. Box 3 and Box 4 yield a maximal OAIS of

1.0, implying that ªwhichever box being occluded has itself

100% occludedº. Under a nominal collision threshold of

0.5, these two severe occlusion cases are kept when using

IoU, but would have been avoided with the proposed OAIS.

Filtering objects by PV size. We further observed exper-

imentally that excessively tiny patches pasted into images

can harm the training of the monocular detector. Tradition-

ally, GT-sampling [61] filters off objects with very few Li-

DAR points (e.g. < 5 points). Yet, we observed that while

a faraway object may very well contain a dozen of points,

clearly distinguishable in the LiDAR scene, it can occupy

a rather limited number of pixels in the image (e.g. pasted

ªPedestrianº in Fig. 5 takes up 30 × 13 pixels - 0.083%
of the entire PV space) due to perspective, which is further

exacerbated when occluded by other pasted objects. There-

fore, we design an extra filter to prevent objects excessively

small in PV from being pasted into the image. As shown

in Sec. 4.3, this simple design leads to a further 0.3AP3D

increase on moderate cars.

Pseudo-labels for collision tests. It is noteworthy that col-

lision tests demand knowledge on the location of objects

existing in a scene. This has been conveniently obtained

from the ground-truth annotations of labelled data in prior

works [5, 8, 24, 26, 65]. Our semi-supervised setting, how-

ever, involves large amounts of unlabelled scenes. To ac-
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Method Venue Extra Data
Test AP3D@IoU=0.7 Test APBEV @IoU=0.7 Val AP3D@IoU=0.7

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

CaDDN [45] CVPR’21 LiDAR 19.17 13.41 11.46 27.94 18.91 17.19 23.57 16.31 13.84

MonoFlex [66] CVPR’21 - 19.94 13.89 12.07 28.23 19.75 16.89 23.64 17.51 14.83

GUPNet [35] ICCV’21 - 20.11 14.20 11.77 30.29 21.19 18.20 22.76 16.46 13.72

MonoDTR [18] CVPR’22 LiDAR 21.99 15.39 12.73 28.59 20.38 17.14 24.52 18.57 15.51

MonoDistill [9] ICLR’22 LiDAR 22.97 16.03 13.60 31.87 22.59 19.72 24.31 18.47 15.76

MonoJSG [29] CVPR’22 - 24.69 16.14 13.64 32.59 21.26 18.18 26.40 18.30 15.40

DID-M3D [43] ECCV’22 - 24.40 16.29 13.75 32.95 22.76 19.83 22.98 16.12 14.03

DD3D [40] ICCV’21 Depth 23.22 16.34 14.20 30.98 22.56 20.03 - - -

MonoDETR [64] ICCV’23 - 25.00 16.47 13.58 33.60 22.11 18.60 28.84 20.61 16.38

ADD [58] AAAI’23 LiDAR 25.61 16.81 13.79 35.20 23.58 20.08 30.71 21.94 18.42

MonoNeRD [60] ICCV’23 LiDAR 22.75 17.13 15.63 31.13 23.46 20.97 - - -

MonoDDE [27] CVPR’22 - 24.93 17.14 15.10 33.58 23.46 20.37 26.66 19.75 16.72

MonoATT [71] CVPR’23 - 24.72 17.37 15.00 36.87 24.42 21.88 29.56 22.47 18.65

DD3Dv2 [41] ICRA’23 LiDAR 26.36 17.61 15.32 35.70 24.67 21.73 - - -

MoGDE [70] NeurIPS’22 - 27.07 17.88 15.66 38.38 25.60 22.91 - - -

3DSeMo* [28] arXiv’23 LiDAR 23.55 15.25 13.24 30.99 21.78 18.64 27.35 20.87 17.66

LPCG* [42] ECCV’22 LiDAR 25.56 17.80 15.38 35.96 24.81 21.86 31.15 23.42 20.60

Mix-Teaching* [62] CSVT’23 LiDAR 26.89 18.54 15.79 35.74 24.23 20.80 29.74 22.27 19.04

CMKD* [16] ECCV’22 LiDAR 28.55 18.69 16.77 38.98 25.82 22.80 30.20 21.50 19.40

ODM3D* (Ours) - LiDAR 29.75 19.09 16.93 39.41 26.02 22.76 35.09 23.84 20.57

Improvements - - +1.20 +0.40 +0.16 +0.43 +0.20 -0.15 +4.89 +2.34 +1.17

Table 1. AP3D|R40
and APBEV |R40

results of ªCarº objects on KITTI test and val sets. * denotes semi-supervised methods. ªImprove-

mentsº indicates absolute AP improvements compared to a CMKD baseline. Best results within each sub-category are marked in bold.

quire the rough location of unannotated objects, we apply

the pre-trained teacher for inference on unlabelled scenes

and utilise the generated pseudo-labels for collision tests

in CMAug. During the teacher’s inference, we adopt a

lower confidence threshold to discourage false negative de-

tections, since a missed detection may cause intermingled

existing and pasted objects in both images and point clouds.

CMAug workflow. Finally, we outline the procedures of

our proposed CMAug strategy. Prior to cross-modal dis-

tillation, we first build a database of all objects in labelled

training samples, similar to [61]. Next, we generate pseudo-

labels for all unlabelled training samples and store them as

their labels. Afterwards, cross-modal distillation training

starts and we randomly select an arbitrary number of ob-

jects from the object database to paste into each training

scene. Objects whose projected box in PV is less than a

pre-defined size are discarded. Remaining object points are

pasted into the scene’s point cloud, and object patches into

the image, using 3D and projected 2D bounding boxes, re-

spectively. Each time a new group of objects is sampled,

point cloud collision tests are conducted in BEV using IoU,

and image patch collision tests in PV using OAIS, between

each pair of existing objects and to-be-pasted objects as well

as among all to-be-pasted objects. Objects that fail any col-

lision tests will be discarded. Eventually, all kept objects

are pasted into the scene in a far-to-near order. In Sec. 4.3,

we show that CMAug also generalises beyond cross-modal

distillation and M3OD.

4. Experiments

4.1. Implementation Details

Datasets. We validate our framework on the KITTI 3D [13]

dataset, which consists of 7,481 training and 7,518 test im-

ages with corresponding point clouds. For local evalua-

tion, we follow the convention to divide training images

into a training subset of 3,712 images and a validation set

of 3,769 images, dubbed KITTI train and val, respectively.

The best model determined by KITTI val is evaluated on

the test set, denoted as KITTI test. Objects in KITTI 3D

are annotated into three difficulty levels: ªEasyº, ªModer-

ateº, and ªHardº, with Average Precision (AP) as the of-

ficial evaluation metric. KITTI 3D is an annotated subset

of the KITTI Raw dataset [12], which further comprises

around 42k unannotated images and corresponding point

clouds in sequence form, which are exploited under our

semi-supervised learning framework. For validation, we

follow [16, 30] and use the eigen-clean subset [48] of

KITTI Raw to avoid data leakage due to scenes overlapping

with KITTI val.

Network details. We choose the state-of-the-art CMKD

[16] as our baseline and implement our framework based
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Figure 6. Qualitative comparison of detection results by our

method and CMKD [16].

on the OpenPCDet [49] codebase. We use SECOND [61]

as our LiDAR-based teacher and CaDDN [45] our monoc-

ular student. Our CaDDN student follows the same settings

as in [45] and [16], except that depth maps are not utilised

for supervising categorical depth estimation since our train-

ing scenes have been altered by CMAug. Instead, depth

estimation is supervised implicitly by dense distillation.

Training details. Our framework is trained on a single

NVIDIA RTX 3090 GPU with a batch size of 4. We fol-

low a two-stage distillation strategy and train the framework

for 30 epochs in stage 1 (LFeatKD only) and 15 epochs in

stage 2 (LFeatKD and LRespKD), using both labelled and

unlabelled data. The proposed CMAug is applied in both

stages. More experimental details are provided in the sup-

plementary material.

4.2. Comparisons with Prior Arts

Quantitative results. We make a detailed quantitative com-

parison of our method against recently published super-

vised and semi-supervised monocular 3D object detectors

on both KITTI test and val sets. We report the results on

the ªCarº category since it is the most important category

in the KITTI 3D dataset (ªPedestrianº and ªCyclistº results

are provided in the supplementary material). As shown in

Tab. 1, our method drastically boosts a CaDDN [45] model

Expt. FD RD O-FD O-RD CMA
Val AP3D@IoU=0.7

Easy Mod. Hard

1 ✓ ✓ 32.67 21.54 18.79

2 ✓ ✓ ✓ 31.50 22.18 19.34

3 ✓ ✓ 33.02 21.89 18.19

4 ✓ ✓ 34.69 23.68 20.55

5 ✓ ✓ 34.84 23.77 20.04

6 ✓ ✓ ✓ 35.09 23.84 20.57

Table 2. Ablation experiments on core components of our method.

ªFDº and ªRDº stand for vanilla feature and response distilla-

tion, respectively. ªO-º denotes their occupancy-guided variants.

ªCMAº denotes the proposed CMAug.

Expt. OFD-V ORD-V OFD-G ORD-G
Val AP3D@IoU=0.7

Easy Mod. Hard

1 ✓ ✓ 34.11 23.36 19.50

2 ✓ ✓ 34.58 23.72 19.83

3 ✓ ✓ 34.63 23.59 19.85

4 ✓ ✓ 34.84 23.77 20.04

Table 3. Ablation experiments on the use of Gaussian smooth-

ing in occupancy-guided feature and response distillation. ªOFD-

Vº and ªORD-Vº denote vanilla occupancy-guided feature and re-

sponse distillation, respectively, whereas ª-Gº indicates their vari-

ants using Gaussian-smoothed occupancy masks.

from AP3D 13.41 to 19.09 (a 42.4% increase) on moderate

cars owing to effective usage of extra LiDAR and unlabelled

data. Our method surpasses all existing methods, super-

vised or semi-supervised, by considerable margins, includ-

ing the current state-of-the-art CMKD [16]. Specifically, on

KITTI test, ODM3D outperforms CMKD by 0.40 and 0.20
on AP3D and APBEV , respectively. Larger performance

gains are observed on KITTI val, where ODM3D is ahead

of CMKD by 2.34AP3D on moderate cars and outperforms

all other methods by at least 0.4AP3D.

Qualitative results. Fig. 6 visualises detections by our

method and CMKD. In the first scene, it is clear that

ODM3D precisely detects the two cars on the left and

another car further down the street which are missed by

CMKD. In the second scene, ODM3D picks up two cars

on the right and one occluded by a tree with higher accu-

racy. These examples show that our method better han-

dles faraway and occluded objects, which is likely owing to

our occlusion-aware augmentation and foreground-attentive

occupancy-guided distillation.

4.3. Ablation Studies

Effectiveness of core designs. Tab. 2 studies the effec-

tiveness of each core component of our framework. It is

clear that the proposed occupancy-guided feature distilla-

tion and occupancy-guided response distillation lead to in-

creased detection results both individually (Expt. 1→3,

4) and collectively (Expt. 1→5) compared to baseline re-
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Expt. CD LD DD CD-G LD-G DD-G
Val AP3D@IoU=0.7

Easy Mod. Hard

1 ✓ ✓ ✓ 34.63 23.59 19.85

2 ✓ ✓ ✓ 34.66 23.71 19.98

3 ✓ ✓ ✓ 34.50 23.75 19.81

4 ✓ ✓ ✓ 34.97 23.75 20.03

5 ✓ ✓ ✓ 34.84 23.77 20.04

Table 4. Ablation experiments on the use of Gaussian smooth-

ing for various heads in occupancy-guided response distillation.

ªCDº, ªLDº and ªDDº denote vanilla classification, localisation

and direction distillation, respectively, whereas ª-Gº denotes their

variants using Gaussian-smoothed occupancy masks.

sults (Expt. 1). It can be inferred from Expt. 3 and 4

that improvements brought about by the use of BEV oc-

cupancy guidance (Expt. 1→5) are primarily accounted for

by occupancy-guided feature distillation. This also suggests

that high-quality BEV feature maps can be a prerequisite

for accurate and effective response distillation and detec-

tion that take place downstream. The proposed CMAug

leads to improved results on both CMKD [16] (Expt. 1→2)

and occupancy-guided distillation (Expt. 5→6) baselines,

highlighting its effectiveness and potential as a versatile,

plug-and-play gadget for boosting joint LiDAR-RGB learn-

ing. Finally, the highest detection results are achieved using

occupancy-guided feature distillation, occupancy-guided

response distillation, and CMAug altogether (Expt. 6).

Effectiveness of occupancy-guided distillation designs.

The benefits of smoothed BEV occupancy masks are illus-

trated in ablation experiments in Tab. 3. Performance drops

take place with Gaussian smoothing ablated in either fea-

ture (Expt. 4→2) or response (Expt. 4→3) distillation, and

worst performance is observed when it is absent in both dis-

tillations (Expt. 4→1). We further study the effect of Gaus-

sian smoothing in distilling each detection head in Tab. 4.

The results show that smoothed occupancy masks result in

improved detection when applied either individually to each

detection head (Expt. 1→2,3) or to multiple heads in com-

binatorial ways (Expt. 1,2,3→4,5).

Effectiveness of CMAug designs. From Tab. 5, naively

applying the commonly adopted MixedAug [26], which

performs simple IoU-based collision tests, leads to signif-

icantly degraded detection performance. Replacing the IoU

score with the proposed OAIS immediately gives rise to

drastic increases in performance (a notable 21.2% increase

on moderate cars), turning data augmentation’s contribu-

tion from negative to positive and surpassing the baseline.

Besides, filtering by PV sizes also boosts detection perfor-

mance on moderate and hard cars.

Generalisation studies of CMAug. We further apply

our CMAug to representative and high-performance multi-

modal 3D object detectors VFF [26], FocalsConv [5] and

LoGoNet [24]. As shown in Tab. 6, by simply replacing

Method
Val AP3D@IoU=0.7

Easy Mod. Hard

Baseline 32.67 21.54 18.79

+ MixedAug [26] 27.77 18.58 16.44

Improvements -4.90 -2.96 -2.35

+ OAIS 32.42 21.87 18.99

+ MinPxFilter 32.57 22.21 19.43

Improvements -0.10 +0.76 +0.64

Table 5. Ablation experiments on the components of CMAug and

performance comparison between CMAug and MixedAug [26].

Method
Val AP3D@IoU=0.7

Easy Mod. Hard

VFF±Voxel-RCNN [26] 92.80 83.53 82.78

+ CMAug 92.64 83.68 82.97

Improvements -0.16 +0.15 +0.19

FocalsConv±PV-RCNN [5] 91.89 85.31 83.10

+ CMAug 92.55 85.53 83.33

Improvements +0.66 +0.22 +0.23

LoGoNet [24] 91.92 85.02 82.88

+ CMAug 92.16 85.20 83.02

Improvements +0.24 +0.18 +0.14

Table 6. A generalisation study on CMAug applied to multi-modal

3D object detectors. Baseline results are produced from official

code for a fair assessment of CMAug’s effectiveness.

their default augmentation, the proposed CMAug consis-

tently boosts the detection accuracy of these multi-modal

detectors, with all other settings unchanged. These results

corroborate our previous arguments that the identified ªIoU

defectº is universal among 3D object detectors employing

cross-modality GT-sampling, and our proposed fix to it gen-

eralises beyond monocular detectors.

5. Conclusion

In this paper, we proposed ODM3D, a novel knowledge

distillation framework that alleviates the foreground spar-

sity issue in autonomous driving scenes for enhanced semi-

supervised monocular 3D object detection. We showed that

exploiting the inherent ground-truth 3D occupancy knowl-

edge in point clouds significantly benefits knowledge dis-

tillation in both feature and prediction spaces, as the net-

work is encouraged to attend to regions that more likely

contain objects. We also demonstrated that our proposed

cross-modal data augmentation strategy not only enriches

supervisory signals throughout the cross-modality learn-

ing process, but also generates more realistic and learner-

friendly augmented scenes. Extensive experiments on the

KITTI dataset have validated the effectiveness of the pro-

posed method.
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Manuel LÂopez Antequera, and Peter Kontschieder. Disen-

tangling monocular 3d object detection. In ICCV, 2019. 2

[48] Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Peter
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