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Abstract

Vision-Language Models (VLMs) are expected to be ca-
pable of reasoning with commonsense knowledge as human
beings. One example is that humans can reason where and
when an image is taken based on their knowledge. This
makes us wonder if, based on visual cues, Vision-Language
Models that are pre-trained with large-scale image-text re-
sources can achieve and even surpass human capability in
reasoning times and location. To address this question, we
propose a two-stage RECOGNITION & REASONING prob-
ing task applied to discriminative and generative VLMs to
uncover whether VLMs can recognize times and location-
relevant features and further reason about it. To facili-
tate the studies, we introduce WikiTiLo, a well-curated im-
age dataset compromising images with rich socio-cultural
cues. In extensive evaluation experiments, we find that
although VLMs can effectively retain times and location-
relevant features in visual encoders, they still fail to make
perfect reasoning with context-conditioned visual features.
The dataset is available at https://github.com/
gengyuanmax/WikiTiLo.

1. Introduction

Vision-Language Models (VLMs) have exhibited re-
markable advancements in enhancing multi-modal learn-
ing. On the one hand, discriminative VLMs such as
CLIP [25], BLIP [19], and ImageBind [11] offer powerful
encoders that possess excellent representation and demon-
strate significant transferability on recognition and under-
standing tasks. On the other hand, generative VLMs like
LLaMA Adapter [10, 39], BLIP2 [18], Flamingo [2], and
LLaVA [22] combine visual encoders from discrimina-
tive VLMs with Large Language Models (LLMs) such as
LLaMA [33] and GPT3 [5] to further bridge visual features
and leverage the exceptional reasoning abilities of LLMs.

Figure 1. An example image of times and location reasoning in
WikiTiLo: Can you tell where and when is this picture taken?

With VLMs trained on extensive knowledge corpora
comprising multi-modal data, an intriguing question arises:
can VLMs reason about the implicit sociocultural back-
grounds associated with an image, such as its times and lo-
cation? Just as in the popular game ‘GeoGuesser,’ where
players are tasked with locating an image based on visual
cues, we contemplate whether VLMs can also exhibit a sim-
ilar aptitude for being a ‘good guesser.’ This kind of com-
monsense understanding necessitates that the model can in-
fer the times and location of an image by comprehending
not only the local visual evidence but also the underlying
concepts. For example, from Fig. 1, humans with related
experience can easily infer that the image was most likely
taken in Germany and during the famous Oktoberfest based
on the cues such as people wearing traditional Bavarian
clothes and celebrating with beers and barrels.

Under this background, our work aims to investigate the
times and location reasoning capabilities of VLMs. Conse-
quently, we put forward two research questions:
RQ1: Can discriminative VLMs recognize times and
location-relevant features from visual input?
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RQ2: Can generative VLMs reason about times and loca-
tions associated with images based on visual cues?

To address these questions step by step, we devise a
two-stage probing task: RECOGNITION and REASONING,
applied to discriminative and generative Vision-Language
Models (VLMs) as illustrated in Fig. 2. Discriminative and
generative VLMs are not just parallel, but generative VLMs
are also built upon the encoders of discriminative models.

In the first stage RECOGNITION, we assess whether the
visual encoders within discriminative VLMs can success-
fully identify distinctive features for location and times rea-
soning using a classification task. Visual features of dis-
criminative VLMs are context-agnostic, which means they
are not dependent on tasks and questions. In the second
stage REASONING, assuming that the visual encoder can
identify salient features within its pre-trained representa-
tions, we evaluate the ability of generative VLMs, with the
visual encoder intact, to conduct times and location reason-
ing through an open-ended question-answering task. The
generative VLMs are now based on context-conditioned vi-
sual features and the powerful reasoning ability of large lan-
guage models.

We also construct a new dataset for times and location
reasoning, WikiTiLo (WikiCommon Times and Location),
which comprises images captured over a broad time range
and is geographically balanced to mitigate cultural bias.
The dataset has been carefully curated to ensure that each
image contains distinct visual cues that align with human
expert knowledge.

This is one of the first works to investigate whether state-
of-the-art large pre-trained Vision-Language Models, en-
hanced with Large Language Model techniques, are capa-
ble of times and location reasoning. Our contributions to
this work include:

1. we construct a new dataset, WikiTiLo, for times and
location reasoning, with a focus on the socio-cultural
background behind images;

2. we propose a two-stage probing strategy, RECOG-
NITION and REASONING, to evaluate the ability of
VLMs to recognize times and location-relevant visual
cues and subsequently reason about times and location
in a generative setting;

3. we evaluate three discriminative VLMs and two gen-
erative VLMs on this same benchmark. Experiments
show that visual encoders in discriminative VLMs
can generate context-agnostic visual features that help
identify times/locations, but generative VLMs fail to
reason based on the visual cues.

This photo is in Germany because people
are wearing traditional Bavarian clothes 
and celebrating with beers and barrels…

Where is this 
photo taken?

Generative
VLMs

This is a photo taken in China
Discriminative

VLMs This is a photo taken in Germany

This is a photo taken in India
Recognition

Reasoning

Figure 2. We apply a two-stage probing task RECOGNITION and
REASONING to both discriminative and generative VLMs. We
evaluate RECOGNITION on discriminative VLMs and REASON-
INGon generative VLMs with the visual encoder intact.

2. Related Work

Vision-Language Model Vision-language models bridge
the gap between flourishing studies in computer vision and
natural language studies. Recent works, including [6, 8, 11,
16, 17, 19, 20, 23–25, 36–38] aim to learn a representation
of images and texts in a joint feature space and unify vi-
sion and language tasks like and visual question answer-
ing [16, 17, 31]. Along with the boost of pre-training gen-
erative Large Language Models (LLM) like GPT-3 [5],
LLaMA [33] manifest their excellent commonsense rea-
soning ability in broad tasks and are fastly adapted to
multi-modal scenarios as in works including Flamingo [2],
LLaMA-adpter [10], BLIP-2 [18].

Times and Location Reasoning Recent studies on im-
age times and geo-location prediction [15, 29, 35] show an
interesting capacity of deep learning models. CLIP [25]
also reports a similar Geolocalization classification. Some
geolocation datasets such as Cross-View Time Dataset
(CVT) [27], GT-CrossView [34], and Cross-View Image
Geolocalization (CVIG) [21] have been provided for the
downstream task as Geolocalization. But unlike geoloca-
tion estimation, our work is more focused on common-
sense knowledge-based reasoning and pays more attention
to the sociocultural perspective of images when construct-
ing the dataset. TARA [9] is a preceding work on exploring
CLIP’s commonsense knowledge in this regard; compared
to TARA, we construct a dataset consisting of images with
a wider timespan and unbiased location distribution and
evaluate on a wider range of VLMs.

Model Probing Model probing is first proposed in Natu-
ral Language Processing to investigate whether represen-
tations of Language Models have already learned specific
linguistic properties [13, 30]. [4] proposes a framework to
probe visual superpixels as an equivalence of word tokens.
However, probing multimodal models is a relatively new
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area. [7, 25, 26, 28] attempt to investigate multimodal prob-
ing tasks such as object counting and position identification
to learn whether VLMs are capable of understanding mul-
timodal concepts. Our work aims to utilize a simple lin-
ear probing [1] method to probe whether VLMs can reason
commonsense knowledge like times and location.

3. Dataset: WikiTiLo
We construct the WikiTiLo (WikiCommon Times and

Location) dataset, which consists of 6296 images with an-
notation of the specific time and country where images are
taken. The dataset covers 30 countries in Europe, Asia,
America, and Africa and the years from 1826 to 2021. We
also consider regions as a higher level of geological con-
cept other than countries since the country border does not
equate with cultural borders [32]. We partition these coun-
tries into 8 regions according to UNESCO based on geog-
raphy and cultural proximity. The designation can be found
in Supplementary Material.

3.1. Data Curation

Wikimedia Commons1 which is a project of the Wikime-
dia Foundation, contains a media repository of open images,
sounds, videos, and other media. The images of Wikimedia
Commons are accumulated from different countries and re-
gions around the world, from different historical periods,
and in various categories.

We select the images manually based on such a crite-
rion that the location identity and time period features of
each image can be distinguished from architectural patterns,
costume styles, languages, social events, photo colors, and
quality or other fine-grained features by humans. In partic-
ular, to avoid image distribution bias, we attempt to control
image origins and balance the ratio of countries that range
from more visible areas like Europe and America to less
attended areas like Africa and Central Asia, according to
socio-cultural characteristics and geographical regions. A
detailed selection paradigm is in Supplementary Material.

In total, we have included 30 countries from which im-
ages can meet our criteria to represent different regions.
Fig. 3 presents some example images in WikiTiLo.

3.2. Statistics

The times and location proportions of WikiTiLo are
demonstrated in Supplementary Material. All images are
nearly evenly distributed in 8 regions. Half of the images
are taken after 2000 due to the multimedia era and 10% are
before 1900 due to limited resources and bad quality. For
training tasks in the linear probing setting, we use 80% of
the entire dataset as the training set, 10% as the validation
set, and 10% for the evaluation reported.

1https://commons.wikimedia.org/wiki/Main Page

4. Methodology
Given an image i, the model estimates the posterior prob-

ability of answer space a. As in Fig. 4, in RECOGNI-
TION stage, the posterior probability P(a) is conditioned
on context-agnostic visual feature v like visual features
of CLIP. In REASONING stage, P(a|vc) is conditioned on
context-aware visual feature vc as in MLLMs, contexts in-
clude instructions, interleaved image-text demonstrations,
and questions. vc is conditioned not just on raw images, but
also on task-specific and question-related contexts.

We probe whether context-agnostic visual features of
discriminative VLMs contain prominent times/location-
relevant cues in the RECOGNITION step and probe whether
generative VLMs can reason about times and location on
context-conditioned visual features in the REASONING .
For both stages, we evaluate models on three tasks, Times,
Location(Region), and Location(Country), to determine
in which era/region/country the photo is taken.

4.1. RECOGNITION

In the RECOGNITION probing stage, we test whether dis-
criminative VLMs can recognize prominent times/location-
relevant visual features via probing the features of visual
encoders on multi-class classification tasks. RECOGNI-
TIONTIMES is a fine-grained image classification task where
models predict the occurrence time of an image. This task
evaluates whether visual representations of a model con-
tain commonsense knowledge of historical times. RECOG-
NITIONLOCATION is a fine-grained image classification task
where models predict the location where an image is taken.
We test on both country level and region level that aligns
with the dataset information. We attempt to evaluate the vi-
sual encoders of discriminative VLMs in two settings: zero-
shot with a prediction calculated as in Eq. 1 and linear prob-
ing as in Eq. 2.

Pzs(ai|v) =
exp(sim(VE(v),TE(p ◦ ci)))∑C
j exp(sim(VE(v),TE(p ◦ cj)))

(1)

Plp(ai|v) = softmax(linear(VE(v)))i (2)

where p is hard prompts we use, VE and TE are visual and
textual encoders in VLMs, and c is the class label.

4.2. REASONING

Upon the hypothesis that visual encoders extract recog-
nizable visual features for times and location cues, we fur-
ther evaluate generative VLMs that can give us good rea-
soning about times and location based on the cues. We
propose using open-ended visual question-answering tasks
REASONINGTIMES and REASONINGLOCATION to reason times
and location.
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(a) Mexico in 1890 (b) Kazakhstan in 1890 (c) Germany in 1930 (d) Vietnam in 1940

(e) Afghanistan in 1980 (f) India in 1980 (g) South Africa in 2000 (h) China in 2010

Figure 3. Some example images in the WikiTiLo exhibit abundant visual cues with a sociocultural background, such as stylish buildings,
text on images, and traditional clothing. These visual cues enable humans to reason and draw conclusions based on the provided evidence.

𝑖 𝑣 𝑎

𝑐

𝑖 𝑎𝑣!𝑣

RECOGNITION REASONING

Figure 4. In RECOGNITION, we calculate discriminative VLMs’
posterior P(a|v) of the context-agnostic visual features v of an
image i. In REASONING, the context-conditioned visual features
vc are dependent on intact visual features v and question context c,
including instructions, prompts, and demonstrations; the posterior
probability of possible answers is denoted as P(a|vc).

As shown in Fig. 4, the posterior probability of the an-
swer space is conditioned on context-conditioned visual
features. A generative VLM generates answers that are con-
ditioned on visual features Vc, as in Eq. 3.

Pgen(ai|vc) =
∏
j

P(ai,j |ϕ(v, c), ai,1:j−1) (3)

ϕ is a bridge function that projects visual features v and
contexts c into the language space, as perceiver resampler
in Flamingo [2], adapters in LLaMA-adpter [10], and Q-
Former in BLIP-2 [18]. Generative VLMs can excellently
leverage the commonsense reasoning abilities of large lan-
guage models when predicting the answers.

5. Experiments

Model selection For RECOGNITION stage, we compare
three Vision-Language models: ViLT [16], CLIP [25], and
BLIP [19]. In the Linear Probing setting, we also choose
one pre-trained ResNet-50 [12] as a pure vision baseline.
For REASONING stage, we evaluate two generative VLMs,
OpenFlamingo [3] and LLaMA-adapter V2 [10], both with
CLIP-ViT-L/14, which is one of the best-performing en-
coders in the RECOGNITION task.

OpenFlamingo Cloze Test
<image> Output: This is a local photo taken in country China. <|endofchunk|>
Open Flamingo VQA
The photograph was taken in one of the following 30 countries. 30 countries are ...
<image> Question: In which country was this photograph taken?
Short answer: China. <|endofchunk|>
OpenFlamingo VQA - CoT
The photograph was taken in one of the following 30 countries. 30 countries are ...
<image> Question: In which country was this photograph taken?
Answer: Because in the photo, there is an elderly person wearing a turban standing in a
barren land, with houses built on a hill and a snow-capped mountain in the background,
which are consistent with the attire and landscape of Afghan, this photo was taken in
Afghanistan.<|endofchunk|>

Figure 5. We list templates for each protocol for REASON-
INGLOCATION. For OpenFlamingo, few-shot examples are used to
facilitate in-context learning. In the case of the zero-shot setting,
two text samples are retained but without image tokens <image>.

Evaluation We evaluate models on three tasks as mentioned
above: Times, Location(Region), and Location(Country).
Answer space for Times includes 4 time periods: pre-1900,
1900-1950, 1950-2000, and post-2000, and includes 8 dif-
ferent regions. For Location(Country), the model should
predict in which of the 30 countries the photo is taken.

For all experimental settings, we evaluate the perfor-
mance using accuracy, precision, and F1 score averaged
across classes. For RECOGNITION, we retrieve the top-
1 rank answer as the prediction for all models with the
prompts mentioned above. For REASONING, considering
the free-form responses generated by language models, we
post-process all the predictions and filter the keywords that
are relevant to the questions. We require an Exact Match
for evaluating generative VLMs. The only exception is that
for RECOGNITION on Times, we remap the prediction of
LLaMA-Adapter V2-Instructionb to the time intervals in
our settings since strict instruction following is hard to guar-
antee. Any generated answer that does not directly address
the question is considered a mismatch.

Human Performance serves as an important baseline. Hu-
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LLaMA-Adapter V2 Instructiona

Instruction: The photograph was taken in one of the following 30 countries. These 30
countries are ... In which country was this photo taken?
LLaMA-Adapter V2 Instructionb

Instruction: In which country was this photo taken?

Figure 6. For the LLaMA-Adapter V2, we use a simple question
as the instruction. For the case with labels, the label sentence was
added in the instruction before the question.

man common sense knowledge about times and location
reasoning varies substantially between individuals depend-
ing on their background and education. Hence we con-
ducted tests with 12 participants, each assigned 60 ran-
domly sampled images from the test set. All participants
have varied backgrounds from six countries across four re-
gions and do not receive any pre-training prior to the test.
We report the average accuracy as the human-level baseline.

5.1. Experimental Setups

Zero-shot Setting To evaluate the zero-shot performance
of discriminative VLMs, we adopt a prompt “A histori-
cal/recent/contemporary image with black-and-white/color
taken in [times period]” for RECOGNITIONTIMES classifica-
tion and “a local photograph from [country] in [region]”
for RECOGNITIONLOCATION classification. We calculate the
image-text similarities across all candidates and retrieve the
top rank as predicted classes.

Linear Probing Setting We used a single linear layer with
vision encoders’ embedding size as input size. The class
size is 4 for predicting times, 8 for regions, and 30 for coun-
tries. The visual encoders of the model were frozen during
training. Each linear probe was trained for 18 epochs. We
search the hyperparameter, including learning rate in the
range from 0.05 to 0.0001 and learning rate decay among
[0.1, 0.2, 0.5] with ray.tune2. For each task, we use CE loss.

Generation Setting We employ two evaluation protocols
for OpenFlamingo: VQA and Cloze Test. In both proto-
cols, we utilize either in-context demonstrations or explicit
prompts to constrain the generated answer to be within the
set of candidate answers. If the generated answer fails to di-
rectly address the given question, it is considered incorrect.
The results were averaged on 4 trials with different random
seeds. We also conduct tests with varying numbers of in-
context shots in the range of [0, 4, 8, 16, 32]. In the zero-
shot setting, we retain two text samples while excluding
image tokens <image> and image samples. To solicit ra-
tionale, we also attempt to output Chain-of-Thought(CoT)
for prediction by annotating a subset of samples with ratio-
nales, which is showcased in Supplementary Material. For
LLaMA-Adapter V2, we use two different instructions for

2https://www.ray.io/ray-tune

question answering on times and location reasoning. De-
tails of all the prompts used can be found in Fig. 5 to Fig. 6.

6. Results

6.1. RECOGNITION

We compare the model performance on zero-shot and
linear probing in RECOGNITION stage.

Zero-shot Performance Tab. 1 shows the results of the
zero-shot performance of VLMs on RECOGNITIONTIMES

and RECOGNITIONLOCATION tasks. We notice that CLIP
variants achieve impressive performance on both tasks and
outperform other models by a large margin, which corre-
sponds with the findings of excellent zero-shot performance
in [25]. Amongst all variants, model performance on times
classification does not vary much from model architecture.
By contrast, BLIP performs poorly on both tasks.

We also find that among each VLM family, models with
a larger visual encoder perform slightly better than others on
times classification but have a bigger advantage on location
classification. Datasets also are critical for model perfor-
mance. CLIP is trained on large-scale image-text data and
manifests the best capabilities of reasoning times and loca-
tion. However, we still cannot ground the failure of ViLT
and BLIP fully since the domain shift between pre-training
datasets and WikiTiLo might be huge.

Compared to human performance, all CLIP models out-
perform our testee on both tasks. Noteworthily, human per-
formance varies individually according to their background,
with a variance of 10.41% in times classification and 8.69%
in location classification.

Linear Probing Performance Tab. 2-3 shows the results
of model performance on the Times and Location(Region)
task in the linear probing setting. We report the models’
best performance after the hyperparameter search. We use
pre-trained ResNet-50 as a pure-vision baseline. ResNet-50
shows non-inferior performance on the Times task but can-
not compare to most Vision-Language models on the Loca-
tion(Region) except ViLT.

All models enjoy a prominent performance improvement
compared to their zero-shot baselines. CLIP models still
achieve much better performance than other VLMs. In par-
ticular, BLIP models also enjoy a large improvement in both
tasks. Thus, we deduce that both CLIP and BLIP have
learned comparably informative and discriminative features
for these two tasks in pre-training already, which profits
from their pre-training data scale.

We conclude that reasoning location is a harder and more
interesting task than reasoning times. This could be ex-
plained by the fact that location classification is a more
fine-grained task, which requires the model to distinguish
more detailed visual cues at a commonsense level, like un-
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Model Accuracy Precision F1-score Accuracy Precision F1-score Accuracy Precision F1-score

CLIP-ViT-B/32 78.57% 70.66% 70.66% 44.28% 43.11% 40.19% 63.65% 67.34% 64.42%
CLIP-ViT-B/16 75.71% 67.94% 70.08% 55.23% 54.16% 53.71% 77.62% 77.23% 76.86%
CLIP-ViT-L/14 76.03% 69.73& 69.62% 68.25% 60.77% 61.87% 85.56% 86.47% 85.72%
CLIP-ViT-L/14@336px 79.05% 73.66% 73.75% 72.85% 64.52% 65.79% 88.25% 88.92% 88.43%
BLIP-129M 30.95% 46.81% 46.14% 35.23% 35.30% 30.07% 46.51% 57.02% 49.05%
BLIP-129M-Coco 32.22% 50.13% 43.49% 35.23% 34.25% 28.74% 47.78% 52.89% 48.14%
BLIP-129M-Flickr 58.57% 54.33% 56.19% 33.49% 29.84% 27.32% 48.89% 50.44% 47.46%
BLIP-ViT-L 44.44% 54.97% 52.86% 42.22% 43.30% 40.10% 54.60% 56.73% 54.57%
BLIP-ViT-L-Coco 42.06% 51.75% 49.40% 39.20% 38.93% 34.61% 47.78% 52.89% 48.14%
BLIP-ViT-L-Flickr 66.51% 58.37% 60.14% 40.47% 41.24% 37.54% 60.00% 61.08% 59.38%
ViLT-Coco 70.16% 58.51% 57.78% 3.65% 3.60% 3.10% 16.98% 17.39% 17.32%
ViLT-Flickr30K 51.90% 48.84% 49.21% 7.93% 4.00% 4.80% 20.32% 20.37% 19.81%

OpenFlamingo-Cloze Test 27.70% 26.36% 11.49% 3.89% 3.69% 2.18% 4.72% 8.62% 4.72%
OpenFlamingo-VQA 31.59% 30.36% 28.60% 48.88% 53.78% 41.19% 22.49% 30.49% 18.64%
OpenFlamingo-VQA CoT 35.21% 29.36% 28.42% 40.3% 45.24% 33.17% 24.04% 39.39% 19.27%
LLaMA-Adapter V2-Instructiona 58.02% 28.04% 32.88% 23.05% 52.64% 18.66% 19.07% 26.59% 13.01%
LLaMA-Adapter V2-Instructionb 34.34% 58.59% 37.70% 45.62% 51.57% 35.50% 11.12% 10.05% 5.99%

Frequency baseline 25.07% 25.29% 23.27% 3.33% 2.95% 2.88% 12.53% 12.59% 12.24%
Human baseline(average) 67.42% - - 48.30% - - 62.42% - -

Times Country Region
R

E
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O
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N
IT

IO
N

R
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A
S
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Table 1. Results of performance without training for RECOGNITION and REASONING. The highest performance among all models is
highlighted in bold, and the best performance of each VLM is marked in italic.

Model Accuracy Precision F1-score

ResNet-50 80.63% 73.71% 71.89%
CLIP-RN50 85.87% 81.26% 80.73%
CLIP-RN101 86.67% 80.71% 80.71%
CLIP-RN50x16 90.32% 86.24% 86.39%
CLIP-ViT-B/32 89.37% 85.67% 85.04%
CLIP-ViT-B/16 88.25% 83.04% 82.95%
CLIP-ViT-L/14 90.63% 86.20% 86.14%
CLIP-ViT-L/14@336px 92.70% 89.40% 89.64%
BLIP-129M 86.51% 81.36% 80.51%
BLIP-129M-Coco 85.87% 81.16% 80.77%
BLIP-129M-Flickr 86.67% 82.42% 80.91%
BLIP-ViT-L 88.41% 84.72% 84.02%
BLIP-ViT-L-Coco 86.67% 82.45% 81.47%
BLIP-ViT-L-Flickr 87.94% 83.73% 83.23%
ViLT-Coco 80.00% 75.05% 72.72%
ViLT-Flickr30K 80.79% 75.86% 73.19%

Table 2. Results of Linear Probing for Times

derstanding distinct geological and cultural elements.
We also find that visual encoders have an impact on the

linear probing results. ViLT still shows a poor performance
and is even worse than ResNet-50. Since CLIP-RN50 with
the same encoder structure and BLIP trained with the same
datasets still shows a good performance, we can only at-
tribute it to ViLT with a simple linear patch embedding can-
not produce informative visual features for such tasks.

Visualization Inspired by [16], we adopt a cross-modal
alignment of times/location tokens and image patches on
linear probing models for visualization, to show that visual
encoders can recognize relevant discriminative features. We
use the prompts in the zero-shot setting. We select the first
25% of visual patches that have more mass transported from
word tokens of labels in prompts to visual patches to empha-

Model Accuracy Precision F1-score

ResNet-50 54.13% 54.85% 54.45%
CLIP-RN50 72.06% 71.98% 72.04%
CLIP-RN101 74.44% 74.44% 74.41%
CLIP-RN50x16 86.67% 87.31% 86.93%
CLIP-ViT-B/32 79.37% 79.36% 79.11%
CLIP-ViT-B/16 84.60% 85.18% 84.88%
CLIP-ViT-L/14 90.95% 91.36% 90.92%
CLIP-ViT-L/14@336px 93.33% 93.90% 93.37%
BLIP-129M 75.08% 75.10% 75.26%
BLIP-129M-Coco 77.14% 76.77% 76.99%
BLIP-129M-Flickr 76.98% 77.01% 76.81%
BLIP-ViT-L 76.51% 77.37% 76.77 %
BLIP-ViT-L-Coco 78.10% 77.92% 78.04%
BLIP-ViT-L-Flickr 78.73% 78.64% 78.53%
ViLT-Coco 42.70% 45.61% 42.12%
ViLT-Flickr30K 45.08% 42.91% 43.01%

Table 3. Results of Linear Probing for Location(Region)

size. Fig. 7 and Supplementary Material. show the visual-
ization of location classification. For Times-relevant ques-
tions, the attended patches seem less specific. Generally,
visual tokens in the background instead of foreground ob-
jects have seemingly dominant contributions.

Interestingly, we find that for RECOGNITIONLOCATION,
models tend to attend to specific regions like scene texts and
human clothing. CLIP can locate the Chinese characters on
the board, as shown in Fig. 7(i) and banner texts reading
“Malaysian” in Fig. 7(f). When the model performs poorly,
as shown in Fig. 7(b), attended patches are less meaningful.
This shows us that VLMs can recognize distinct and dis-
criminative visual cues on an image that help reason com-
monsense knowledge about the location.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Visualization of transportation plan of word patch alignment on location classification. Best viewed zoomed in. Rows from
top to bottom: ViLT, CLIP, and BLIP. Columns from left to right: China (Eastern Asia) in 2010, Malaysia (South-Eastern Asia) in 1990,
Tajikistan (Central Asia) in 2000, Bangladesh (Southern Asia) in 1970.

6.2. REASONING

Performance of In-Context Learning-based Reasoning
From Tab. 1, we also find that OpenFlamingo Cloze Test
only achieves frequency baseline results. This reveals that
in-context demos can teach the generative LLMs the map-
ping to output label space but do not leverage any seman-
tic information from visual features. In the VQA proto-
col, OpenFlamingo has higher accuracy compared to the
Cloze Test protocol. However, enforcing the model to out-
put Chain-of-Thought does not improve the performance.
Regarding the impact of the number of shots in in-context
learning, we show that more shots do not improve perfor-
mance on location reasoning substantially, as in Supple-
mentary Material. Especially for REASONINGTIMES, we find
the output prediction is more unstable when having more
in-context shots and deteriorates the performance. Interest-
ingly, we find that models perform even worse on reasoning
regions than countries and the language models fail to re-
late the countries to their affiliated regions in some cases, of
which we include a case study in Supplementary Material.

Performance of Instruction-based Reasoning LLaMA-
Adapter V2 exhibits unsatisfying performance compared to
other models in general. With Instructiona, the model’s per-
formance declines when provided with label instructions.
With Instructionb, the model achieves performance that is
comparable to OpenFlamingo VQA as well as the averaged
human baselines. We also find different instructions have a
big impact on the model performance on REASONING.

6.3. Analysis

We notice the performance gap between RECOG-
NITION and REASONING. Generative models also can
hardly achieve averaged human baselines, which cannot live
up to the expectations since large-scale VLMs should bene-
fit more from a massive knowledge base in our assumption.

Based on the fact that in RECOGNITION stage, good per-
formance of discriminative VLMs shows visual encoders
can extract good visual features even without any task con-
texts, we reasonably speculate that the performance gap
lies in two aspects. (1) Context-conditioned visual features
vc cannot retain answer-relevant information, and (2) large
language models fail to reason based on the visual cues.

Since for most generative VLMs, the projection modules
are deeply coupled with the language models, like adapters
used in LLaMA-adapter, it is hard to probe the context-
conditioned visual features vc via linear prober. We con-
duct a qualitative study on failure cases. To validate our
hypotheses, we conducted a case study on the failure cases.

Failure Cases We investigate the failure cases in the REA-
SONING phase of generative VLMs. In Fig. 8, we an-
alyze different types of failure cases for OpenFlamingo
and LLaMA-Adapter V2. By requiring OpenFlamingo to
output Chain-of-Thought and providing clear instructions
to LLaMA-Adapter V2, both models can make grounded
guesses. However, failure guesses can occur in the follow-
ing scenarios: 1) when OpenFlamingo fails to generate a
grounded reason based on an image, and 2) when Open-
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there is a group of people 

dressed in traditional Bavarian 

costumes, playing musical 

instruments and dancing

OpenFlamingo

there is a horse-drawn carriage 

on the street

there is an Asian woman wearing 

a sari, standing in front of an 

Indian restaurant

there is an Asian man wearing a 
helmet and sitting on a 
motorcycle

❓In Which Country

this photo was taken in the 

United States. 

this photo was taken in the 

United States.

this photo was taken in 
Indonesia.

🤔 Reason 💡 Guess

this photo was taken in 

Germany.

OpenFlamingo

OpenFlamingo

LLaMa Adapter v2

This photo was taken in the 
Middle East, specifically in the 
city of Mecca, Saudi Arabia.

The photograph was taken in 
one of the 30 countries listed 
above, but it is not possible 
to determine the exact 
country from the image 
alone.

 

OpenFlamingo

 

 

 

 

LLaMa Adapter v2

Figure 8. Example cases of interest from OpenFlamingo VQA
with Chain of Thought, and LLaMA Adapter V2. We find that
the answers generated are not grounded on the visual cues and the
reasoning and predictions are not coherent, which both fail.

Flamingo cannot generate coherent answers based on the
reason. We find that these failures are primarily caused
by OpenFlamingo being heavily influenced by the few-shot
demos, which limits its ability to extract relevant and use-
ful information to a significant extent. On the other hand,
for LLaMA-Adapter V2, predictions are rejected when the
model fails to locate relevant visual cues in an image, de-
spite humans being able to reason effectively. This high-
lights that generative VLMs still struggle to fully leverage
the visual cues in images for times and location reasoning.

Dataset Bias Humans sometimes rely on extraneous infor-
mation such as image quality, color, or style to determine
times of photo-taking. Considering the images in WikiTiLo
come from different media resources, it is crucial to investi-
gate whether the performance of VLMs will also be affected
by these factors. We compare 8 models, including 3 dis-
criminative VLMs and 5 generative VLMs, on the original
test set, and 3 style-transferred test sets: images in lower
quality, in gray scale, and in sketch-version. We assume
that if the reasoning is based on image style bias instead of
image details, the model results will deteriorate after style
transfer.

As shown in Fig. 9, lower quality does not really influ-
ence the model performance since visual encoders always
reshape the input images, and images in sketches are always
unrecognizable and significantly deteriorate model perfor-
mance. However, grayscale images can evidently decrease
the performance of discriminative VLMs.

Nevertheless, generative VLMs are almost unaffected
by biases. Again, we conducted a failure case study as
in Supplementary Material. Generative VLMs are not re-
ally grounded by visual cues of images. Answers depend
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Figure 9. We investigate how different image biases influence
model performance on tasks related to Times and Location (Coun-
try). We compare the test set under four settings: original, lower
quality, grayscale, and sketch. Our findings reveal that for discrim-
inative VLMs, there is a significant drop in model performance
when we change image styles. However, generative VLMs are
less affected by these changes. Please zoom in for a better view.

on contexts, such as in-context demonstrations and instruc-
tions, and expose the hallucination problem [14]. There-
fore, both image details and styles cannot help reasoning.

7. Conclusion
In this work, we propose a two-stage probing task

RECOGNITION and REASONING and introduce a new
dataset WikiTiLo, to explore VLMs’ times and location rea-
soning ability Based on the findings of RECOGNITION and
REASONING tasks on the WikiTiLo dataset, we have probed
the capabilities of VLMs in times and location reasoning.
Experiments indicate that discriminative VLMs, such as
CLIP, effectively extract context-agnostic visual features for
identifying times and locations. However, generative VLMs
struggle to reason correctly due to the inability of context-
conditioned visual features to retain relevant information or
the language models’ failure to reason based on visual cues,
according to the experiments and case studies. This moti-
vates further exploration into how large language models
can better utilize visual features in future studies.
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