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Abstract

Previous studies on unsupervised industrial anomaly de-
tection mainly focus on ‘structural’ types of anomalies such
as cracks and color contamination by matching or learn-
ing local feature representations. While achieving signifi-
cantly high detection performance on this kind of anomaly,
they are faced with ‘logical’ types of anomalies that vio-
late the long-range dependencies such as a normal object
placed in the wrong position. Noting the reverse distillation
approaches that are under the encoder-decoder paradigm
could learn from the high abstract level knowledge, we pro-
pose to use two students (local and global) to better mimic
the teacher’s local and global behavior in reverse distilla-
tion. The local student, which is used in previous studies
mainly focuses on accurate local feature learning while the
global student pays attention to learning global correla-
tions. To further encourage the global student’s learning
to capture long-range dependencies, we design the global
context condensing block (GCCB) and propose a contextual
affinity loss for the student training and anomaly scoring.
Experimental results show that the proposed method sets a
new state-of-the-art performance on the MVTec LOCO AD
dataset without using complex training techniques.

1. Introduction
The task of anomaly detection(AD) and localization

aims to identify whether an image is normal or anomalous
and localize the anomalies [5, 29]. It has a wide range of
real-world applications including industrial inspection of
products [2, 4]. As anomalous samples rarely appear in
manufacturing product lines and the unpredictable nature
of anomalies, most of the efforts are paid to unsupervised
AD methods, in which we have only anomaly-free samples
for training.

Recent studies showed that using intermediate features
of a deep pre-trained model is representative enough to
achieve state-of-the-art performance [26]. Knowledge dis-
tillation [15] is one of the most effective ways to achieve this
goal. Recent knowledge distillation-based AD approaches

Figure 1. Examples from MVTec LOCO [1]. We show one struc-
tural(the left one) and two logical(the right two) anomaly samples
with our detection results.

[1,3,8,30,34] try to transfer the knowledge of normal sam-
ples from a teacher which is pre-trained on a large-scale nat-
ural image dataset, e.g., ImageNet [9] into a student model.
The use of per-pixel [8, 34] or local patch-based regres-
sion loss [1,3] further improves the fine-grained knowledge
transfer and AD performance. The teacher model acts as
a knowledgeable feature extractor that could extract repre-
sentative feature embeddings for both normal and anoma-
lous samples, while the student is trained exclusively on
anomaly-free samples that it is expected to only mimic the
teacher’s behavior for normal features. During inference,
the anomaly scores are derived from the discrepancy be-
tween student and teacher features. As anomalies could
be of any size and at any abstract level, using multi-layer
features from the teacher could better cover more types of
anomalies.

Previous unsupervised anomaly detection and localiza-
tion datasets focus on concise scenes where each image con-
sists of only one product object, e.g., a capsule or one kind
of texture. They contain only the type of anomalies termed
structural anomalies [1], such as cracks and scratches. The
above-mentioned methods are effective for them. However,
there are different types of anomalies in complex scenarios
with global contextual constraints, termed logical anoma-
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lies. These are anomalies related to long-range dependen-
cies, such as a specific object in an incorrect position or
a missing object. Figure 1 shows structural and logical
anomaly examples from MVTec LOCO [1] dataset. The
first image of a screw bag contains an example of a struc-
tural anomaly, while cereals missing in the breakfast box
and two additional pushpins in one compartment are logi-
cal anomalies. The aforementioned methods struggle with
logical anomalies because deep high-semantic level features
from a pre-trained model exhibit source domain bias [28]
and lack precise low-level information [8].

To enhance the detection of both structural and logi-
cal anomalies, we propose a dual-student knowledge dis-
tillation framework (DSKD), leveraging the concept of re-
verse distillation [8]. Unlike conventional ensemble meth-
ods [10, 17, 27] where each model assumes identical roles,
we explicitly divide the student models into two models:
local and global students. The local student aims to recon-
struct the low-level features of the teacher model, primar-
ily focusing on detecting structural anomalies. Conversely,
the global student is trained to harness global contextual in-
formation, thereby improving logical AD. Recognizing the
inherent challenge of detecting logical anomalies, we incor-
porate a trainable module, named a global context condens-
ing block, in the global student. This block seeks to ef-
fectively condense global information derived from teacher
features [1, 21]. The training paradigm of our method is
based on the reverse distillation [8], where the teacher acts
as an encoder and the students play the role of decoders for
the feature reconstruction.

We also introduce a new loss function, termed contex-
tual affinity loss, designed to enhance the global student’s
ability to capture global contextual information. This is
achieved by calculating the cosine similarity between each
feature vector of the global student and the entire set of fea-
ture vectors from the teacher. These cosine similarity maps
are then transformed into probability distributions using a
softmax function. We then minimize the discrepancy be-
tween the probability distributions of the global student and
the teacher. Notably, our approach is distinct from meth-
ods like pair-wise distillation [22], which treat all features
uniformly. In contrast, our method captures vital contextual
information across the entire image.

We conduct extensive experiments on public unsuper-
vised AD datasets and achieve state-of-the-art performance.
Our contributions are threefold:

1. We present a novel dual-student knowledge distilla-
tion framework. The local student concentrates on
precise local feature reconstruction, while the global
student focuses on capturing global contextual infor-
mation. With these distinct roles, our framework en-
hances detection capabilities for both structural and
logical anomalies.

2. We propose the global contextual condensing block
and contextual affinity loss, further enforcing the
global contextual learning ability.

3. We demonstrate the effectiveness of our method,
achieving state-of-the-art performance on standard
public datasets.

2. Related Works
We briefly review recent research on unsupervised AD

as well as related knowledge distillation works on super-
vised dense prediction tasks. The recent works on AD
could be classified into three prototypes: generative models,
anomaly synthesis-based methods, and methods leveraging
features extracted by pre-trained networks.

Generative models aim to reconstruct normal samples
from the encoded feature space. Autoencoders (AEs) and
Generative Adversarial Nets [12] are popularly used for
sample reconstruction. These models are trained exclu-
sively on normal images. Since the input image is encoded
into a compact feature space to only keep the most useful
information, the unseen anomalies are expected to be aban-
doned during inference and thus reconstruct the anomaly-
free images for anomaly samples [4]. However, deep mod-
els could generalize well to anomaly patterns and fail to de-
tect anomalies. To overcome this issue, normal representa-
tion searching [31] in the encoded continuous feature space,
iterative reconstruction approaches [7] and memory-guided
autoencoders [11,24] are proposed to limit the model’s gen-
eralization ability.

Anomaly synthesis-based methods [18, 25, 37] focus on
addressing the issue of the lack of anomaly samples so
as to train the models in a supervised manner. However,
the detection ability is heavily affected by the synthesiz-
ing strategies, and their performance shows a strong bias
to the synthesized kind of anomalies [14, 38]. To generate
more realistic anomalies, DSR [38] tries to generate near-
in-distribution low-level anomalies from a vector-quantized
feature space. However, it is still challenging for high
semantic-level anomaly generation.

There is also a lot of attention paid to employing pre-
trained models to extract representative features. The kNN-
based approaches [6,28] construct a feature gallery for nor-
mal representations and derive anomaly scores by comput-
ing the distances between input and its nearest neighbors in
the feature space. They suffer from computational complex-
ity [8, 35] and can not utilize high-semantic level features
well as they as more source-domain biased [28].

The knowledge distillation-based approaches try to
transfer knowledge of normal samples to student networks.
US [3] distills knowledge from a pre-trained teacher net-
work to an ensemble of students for each patch scale. MKD
[30] directly distills multi-level features into one compact
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Figure 2. Overview of the dual-student knowledge distillation framework. (a) Our model employs a pre-trained teacher encoder as the
feature extractor T , a local student for accurate low-level feature learning, and a global student to capture global contextual information.
During training, the students can only learn to mimic the teacher’s behavior for normal samples. (b) Anomaly scoring. Firstly, the multi-
scale score maps from each student are accumulated into one single scale-normalized map separately. Then the two normalized score maps
are added together to get our final detection results.

student model. STFPM [34] uses a vector-wise cosine sim-
ilarity loss for both student training and anomaly scoring.
The reverse distillation [8] proposed the encoder-decoder
architecture to distill the knowledge from a bottleneck fea-
ture space. These methods are capable of learning local fea-
tures or patches but are likely to ignore global contextual
constraints. GCAD [1] designed a two-branch framework
based on US [3] for both structural and logical AD but it is
still a two-step distillation framework where the teacher is
trained with a deep pre-trained model and a large number of
cropped image patches from ImageNet [9]. To ensure train-
ing stability, multi-step training and skip connections with
linearly decreased weights are added to the student.

There are also some knowledge distillation methods ap-
plied to dense prediction tasks such as semantic segmen-
tation [23, 39] and object detection [20] trying to transfer
the knowledge to a compact student network via fully ex-
ploring the rich information within the intermediate features
from the teacher. MIMIC [19] samples features from fea-
ture regions for object detection. Pair-wise knowledge dis-
tillation [22] was proposed to distill the structured knowl-
edge from the feature. Channel-wise knowledge distillation
[32] converts the features of each channel into probability
distributions leveraging the prior that the activations from
each channel tend to encode specific scene categories. It is
pointed out that strictly applying the per-pixel loss which
means each pixel or correlation is treated equally may en-
force overly strict constraints on the student model and lead
to sub-optimal solutions [32]. However, the most impor-

tant guidance for training the student model comes from the
ground truth labels that are not available for unsupervised
AD. Also, in conventional knowledge distillation applica-
tions where only the student model is deployed after train-
ing, the structured knowledge is computed or evaluated sep-
arately for each student and teacher feature map, while both
the teacher and student are used for knowledge distillation-
based AD methods. We distinguish our proposed contextual
affinity loss from prior arts that the contextual affinity for
student features is computed using both student and teacher
features for better guidance and to make training stable.

3. Proposed Method

3.1. Problem Formulation

Given a set of anomaly-free training images St =
{It1, ..., Itnt

} and a validation set Sv = {Iv1 , ..., Ivnv
} that

consists of also anomaly-free images, we aim to detect if a
test image from the test set Sq = {Iq1 , ..., Iqnq

} is anomalous
or not, and also localize the defected area if it is anomalous.

3.2. Overview of the Dual-student Framework

As shown in Fig 2, our DSKD consists of five parts: a
deep neural network pre-trained on ImageNet as the fixed
teacher T to extract multi-level representative features, a
one-class bottleneck embedding module OCBEloc for the
local student, a local student decoder Sloc, a OCBEglo for
the global student that contains a global context condens-
ing block GCCB, and a global student decoder Sglo. The

151



OCBEloc is designed for fusing multi-level features into a
compact feature space followed by a local student decoder
Sloc to reconstruct the feature representations, especially
low-level features accurately. The first three modules com-
pose the reverse distillation [8] which is effective for struc-
tural AD. To better capture global contextual correlations
which we expect to have the benefit of logical AD, we addi-
tionally design the Sglo with a OCBEglo that can keep the
most condensed contextual information, and the output is
then decoded by the global student decoder Sglo. Since the
teacher T is pre-trained on a large natural image dataset, it is
expected to extract representative features for both normal
and anomaly inputs. However, the two students are trained
solely on anomaly-free samples, and they fail to mimic the
teacher’s behavior for either low-level structural anomalies
or global logical anomalies during inference. The pixel-
level anomaly scores are computed by comparing the de-
coded features from both students and the teacher features.
The local student is primarily responsible for structural AD
and the global student pays more attention to the global con-
textual constraints.

3.3. Local Knowledge Distillation

Different from the conventional discriminative paradigm
where the student is also a feature extractor, reverse distil-
lation [8] is in a generative manner to reconstruct the fea-
tures extracted by the teacher. The student decoder receives
dense encoded features and decodes the features from high-
semantic levels to low-semantic levels. The dense feature
space is likely to abandon unseen anomalous feature rep-
resentations at inference to encourage feature discrepancies
for anomalies. We use the reverse distillation [8] method
for accurate feature reconstruction. Given an image I , the
output of the first three residual stages of a pre-trained
WideResNet50 [36] T extracts multi-layer intermediate fea-
tures F l

T ∈ Rhl×wl×cl , where l ∈ {1, 2, 3}. The OCBEloc

encodes the features into the embedding ϕloc. The local
student Sloc then generates the corresponding feature maps
F l
Sloc

from ϕloc. The student decoder has a symmetrical ar-
chitecture with the teacher T while the input is high abstract
feature representations and the down-sampling operations
used in original ResNets [13] are replaced by up-samplings.
The vector-wise cosine distance is used as the loss function
for training the local student. A 2 −D anomaly score map
could be obtained at each layer scale

M l
loc = 1−

F l
T · F l

Sloc

∥F l
T ∥∥F l

Sloc
∥

(1)

The final loss for training the local student is

Lloc =

3∑
l=1

{
1

hl · wl

hl·wl∑
i=1

M l
loc

}
(2)

Figure 3. The one-class bottleneck embedding module for global
student and the global context condensing block. We use the 4-th
residual stage of ResNet as trainable OCEglo.

3.4. Global Contextual Affinity Distillation

Although the encoder-decoder architecture naturally can
keep the most important information and the multi-scale
feature distillation paradigm could take both low-level in-
formation and high-level information into account, the stu-
dent still cannot learn globally. Furthermore, the OCBEloc

fuses low-level features into the final embedding space,
which is beneficial for accurate low-level feature recon-
struction but decreases the global contextual learning abil-
ity. We design the global context condensing block to keep
the most important global information as shown in Fig. 3. It
is realized by compressing the high-semantic level feature
F 3
T into a one-dimensional feature space with g channels

and then restoring it to the original feature size. The output
ϕglo of GCCB is then decoded by a student Sglo that has
the identical architecture as Sloc.

To further encourage the global student to better learn the
global contextual information, different from the per-pixel
cosine similarity loss used for the local student, we propose
the contextual affinity loss for the global student. To learn
the local feature embedding f l

Sloc,i
, the local student Sloc

can only learn from f l
fT ,i, which is a benefit for accurately

reconstructing local features. However, it fails to learn the
contextual information from the whole image. For example,
if a normal feature appears in the wrong position, the local
student can’t detect it as anomalous since the feature itself
is a representation of a normal structure. We are inspired
to propose the contextual affinity loss aiming to enable the
student to learn a local feature f l

Sglo,i
from the whole feature

map. For a feature vector f l
T,i from a feature map extracted

by the teacher F l
T , we first compute the cosine similarity

between f l
T,i and all feature vectors to get a similarity list
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Al
T,i = [at,li,1, ..., a

t,l
i,hl·wl

], where

at,li,j =
f l
T,i · f l

T,j

∥f l
T,i∥∥f l

T,j∥
(3)

We define the contextual affinity for a feature vector in the
whole feature map as the probability distribution P l

T,i =

[p1,lT,i, ..., p
hl·wl,l
T,i ] where

pi,lT,i =
exp(

at,l
i,j

T )∑hl·wl

j=1 exp(
at,l
i,j

T )
(4)

where T is the temperature. By converting the similarity
list into a probability distribution, the scales of the contex-
tual affinity for each feature vector are normalized, and the
large spatial similarity relations that we believe are the most
important elements are paid more attention to, while the less
similar relations are ignored. By using a small T , the proba-
bility distribution becomes harder, which means we only fo-
cus on a small portion of spatial relations in the feature map.
Similarly, for the student feature embedding, it is intuitive
to compute the corresponding contextual affinity probability
distribution P l

Sglo,i
for f l

Sglo,i
within the student feature map

F l
Sglo

and minimize the difference between P l
T,i and P l

Sglo,i
.

However, in this case, the optimization of one feature vector
f l
Sglo,i

is coupled with all the feature vectors in F l
Sglo

, mak-
ing the optimization difficult [16]. For unsupervised knowl-
edge distillation where we only have the knowledge distil-
lation training target, we experimentally found the model
can’t converge. Considering that we also use the teacher
model for inference, we compute the contextual similarity
list Al

Sglo,i
and affinity probability distribution P l

Sglo,i
using

the corresponding student feature embedding f l
Sglo,i

and the
whole teacher feature map F l

T , where

a
sglo,l
i,j =

f l
Sglo,i

· f l
T,j

∥f l
Sglo,i

∥∥f l
T,j∥

(5)

We then use KL divergence to evaluate the discrepancy be-
tween the contextual affinity distributions from the teacher
and global student

KL(P l
T,i, P

l
Sglo,i

) = T 2
hl·wl∑
j=1

pj,lT,i · log

[
pj,lT,i

pj,lSglo,i

]
(6)

The pj,lT,i in Equation (6) could be interpreted as a weighting
factor. Large pj,lT,i values that indicate the spatial relations
with high similarities are paid more attention to, while the
KL divergence tends to neglect less similar relations. Note
that since each feature vector always has the largest sim-
ilarity with itself, it is not a contradiction with accurately

reconstructing the feature vector. The high-similarity rela-
tions are the guiding signposts for training the student fea-
ture vector from the global context. During inference, the
global student fails to capture the global contextual infor-
mation for logical anomalies. Similarly, the final loss for
training the global student is

Lglo =

3∑
l=1

{
1

hl · wl

hl·wl∑
i=1

KL(P l
T,i, P

l
Sglo,i

)

}
(7)

3.5. Pixel and Image Anomaly Scoring

Following Equation (1) and Equation (6), we could get
anomaly score maps M l

loc and M l
glo for the l-th layer from

the local and global student. Each element in the score map
indicates the feature or contextual affinity discrepancy. To
get precise multi-scale AD and localization, we first up-
sample each score map to the image resolution and conduct
element-wise addition for each student. The final score map
for an input image I is the combination of the two students’
normalized detection results

M(I) =
Mloc − µloc

σloc
+

Mglo − µglo

σglo
,

Mloc =

3∑
l=1

Ψ(M l
loc),Mglo =

3∑
l=1

Ψ(M l
glo)

(8)

Where Ψ is the bilinear up-sampling operation, µ and σ are
the mean and standard deviation values, respectively. They
are computed on the validation set Sv or the training set
St if Sv is not available. The image-level anomaly score
is derived by choosing the maximum score from the final
score map. We apply a Gaussian filter before image-level
anomaly scoring to remove local noises.

4. Experimental Results
4.1. Experimental Settings

Datasets. We use two public datasets for unsupervised
anomaly detection and localization: MVTec LOCO AD [1]
and the modified MVTec AD [2]. The recently introduced
MVTec LOCO AD covers both structural anomalies and
logical anomalies. The dataset consists of five object cat-
egories, providing 1,772 anomaly-free images for training,
304 for validation, and 1,568 for testing. Each test image
is either anomaly-free or has at least one structural or logi-
cal anomaly, with pixel-level annotations. The MVTec AD
dataset features 15 distinct object or texture categories. Al-
though the majority of these samples are either anomaly-
free or exhibit structural anomalies, 37 test images are
specifically identified as logical anomaly samples and are
split out as a test subset for logical anomalies [1].
Model training. All images are resized to 256 × 256 res-
olution. We follow the one-model-per-category setting of
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Table 1. Anomaly Localization results on MVTec LOCO AD dataset [1]. The area under the sPRO curve is computed up to an average
false positive rate of 0.05. We report the mean scores for structural and logical anomalies. The best scores are in bold.

Method Breakfast Box Screw Bag Pushpins Splicing Connectors Juice Bottle Mean
AE 0.189 0.289 0.327 0.479 0.605 0.378
VAE 0.165 0.302 0.311 0.496 0.636 0.382
MNAD [24] 0.080 0.344 0.357 0.442 0.472 0.339
VM 0.168 0.253 0.254 0.125 0.325 0.225
f-AnoGAN [31] 0.223 0.348 0.336 0.195 0.569 0.334
SPADE [6] 0.372 0.331 0.234 0.516 0.804 0.451
US [3] 0.496 0.602 0.523 0.698 0.811 0.626
RD [8] 0.326 0.568 0.597 0.702 0.840 0.607
PatchCore-25 [28] 0.510 0.577 0.504 0.731 0.794 0.623
GCAD [1] 0.502 0.558 0.739 0.798 0.910 0.701
DSKD (Ours) 0.568 0.627 0.825 0.767 0.865 0.730

Figure 4. Qualitative examples for each category. Structural anomalies from top to bottom: ”contamination” on cereals, ”broken” screw
head, ”contamination” in one compartment, ”additional” short cable, and ”contamination” on the juice. Logical anomalies from top to
bottom: ”missing” one nectarine and one tangerine, one short screw ”replaced” by a long screw, ”missing” pushpins for all compartments,
”wrong connector pair”, and ”misplaced” bottom label. We show the detection results from the local student which is identical to RD [8],
the global student, and the final detection results.

previous studies. The two students are trained simultane-
ously. For each student, we use the same training configura-
tion as [8]. We use Adam optimizer using β = (0.5, 0.999)
with a fixed learning rate 0.005. Each student is trained for
200 epochs with the same batch size of 16. The channel
dimension g of GCCB is set to 1024 by default and the
temperature T is set to 1.
Evaluation metrics. We use the area under the receiver op-
erating characteristic (AUROC) score, a threshold-free met-
ric, for image-level AD evaluation. The AUROC is also
appropriate for evaluating structural AD. However, logical
anomalies, such as a missing object, present challenges in

pixel-wise annotation and segmentation. Therefore, as rec-
ommended in [1], we adopt the saturated per-region overlap
(sPRO) metric—a generalized version of the PRO metric
from [2]—to assess anomaly localization performance.

4.2. Results on LOCO

We compare our proposed method against autoencoders
including a vanilla autoencoder (AE), a variational au-
toencoder (VAE), a memory-guided autoencoder (MNAD)
[24], f-AnoGAN [31], Variation Model (VM) [33], Unin-
formed Students (US) [3], SPADE [6], Reverse Distillation
(RD) [8] and Global Context Anomaly Detection (GCAD)
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Table 2. The image-level anomaly detection AUROC scores on
MVTec LOCO AD dataset. The best scores are in bold.

Method Structural AD Logical AD Mean
AE 0.565 0.581 0.573
VAE 0.548 0.538 0.543
MNAD 0.702 0.600 0.651
VM 0.589 0.565 0.577
f-AnoGAN 0.627 0.658 0.642
SPADE 0.668 0.709 0.689
US 0.883 0.664 0.773
RD 0.867 0.669 0.768
PatchCore-25 0.855 0.759 0.807
GCAD 0.806 0.860 0.833
DSKD (Ours) 0.869 0.812 0.840

[1]. The same data augmentations are used as GCAD [1]
throughout our experiments.

We begin by presenting the anomaly localization results
in Table 1. Our proposed method achieves an average score
of 0.73 over five categories. Notably, on items like the
breakfast box, screw bag, and pushpins—where most com-
peting methods achieve only modest scores due to complex
contextual logical constraints—our method surpasses their
performance significantly.

Table 2 shows the results for image-level AD. While
many existing methods have demonstrated strong per-
formance in structural AD—particularly the knowledge
distillation-based US [3] and RD [8] with their patch-based
and per-pixel training targets—their performance signifi-
cantly declines in logical AD. Notably, GCAD [1], which
builds upon US [3] to enhance logical AD, does achieve the
highest score in this domain. However, its performance in
structural AD is compromised. Our proposed method sig-
nificantly boosts logical AD capabilities without compro-
mising the structural AD strengths of RD [8], setting a new
benchmark with a score of 0.84.

In Fig. 4, we provide qualitative visualization results
for each category. Each category showcases a structural
anomaly image on the left and a logical anomaly image
on the right. The local student excels in detecting low-
semantic level structural anomalies but struggles with cap-
turing long-range dependencies. In contrast, the global stu-
dent effectively learns global contextual constraints but un-
derperforms in fine-grained local structural AD. By em-
ploying the DSKD, our method is equipped to detect both
types of anomalies.

4.3. Results on the Modified MVTec AD

We report the anomaly detection and localization results
on the modified MVTec AD dataset in Table 3. The re-
sults show that some of the existing methods perform well

Table 3. Experimental results on the modified MVTec AD [2]. We
report the image-level AUROC scores / the normalized AU sPRO
scores with an integration limit of 0.05. The best results are in
bold and the second-best results are with underlines.

Method Structural Logical Mean
AE 0.761/0.337 0.718/0.224 0.740/0.281
VAE 0.766/0.336 0.737/0.215 0.751/0.276
MNAD 0.709/0.294 0.427/0.032 0.568/0.163
VM 0.690/0.240 0.679/0.069 0.684/0.155
f-AnoGAN 0.751/0.290 0.751 0.231 0.751/0.261
SPADE 0.898/0.632 0.906/0.647 0.902/0.640
US 0.936/0.762 0.747/0.417 0.842/0.590
RD 0.986/0.793 0.914/0.477 0.950/0.635
PatchCore-25 0.985/0.790 0.998/0.619 0.992/0.705
GCAD 0.871/0.716 0.991/0.863 0.931/0.789
DSKD (Ours) 0.955/0.755 0.906/0.649 0.931/0.702

on structural AD, while still showing the ability for logical
AD. This is because of the concise nature of the modified
MVTec AD dataset and the limited number and type of log-
ical anomaly samples. The SPADE [6] achieves a 0.906
image-level AUROC score which is even higher than struc-
tural AD. An underlying assumption is that SPADE uses
the high-semantic level feature, e.g., the output of the 4-
th residual block of a pre-trained ResNet for image-level
anomaly scoring. RD [8] also achieves a high score of 0.914
because it benefits from the compact one-class bottleneck
embedding space that also contains high-semantic level in-
formation. PatchCore achieves SOTA image-level AD re-
sults with the help of using locally aware patch features.
Similar to the results on LOCO, GCAD [1] is capable of
logical AD, at the cost of an obvious performance drop for
structural AD. The proposed DSKD showed better logical
and average anomaly localization performance than RD [8].

We visualize two logical anomaly samples from the tran-
sistor and cable category in Fig 5, where one example is
better detected by the local student while the remaining one
is better detected by the global student.
Limitations. Although our proposed method achieves the
second-best overall performance, we observed similar lim-
itations with results on the LOCO dataset. Our global stu-
dent could capture global logical constraints but is not sen-
sitive to small-sized defects and ambiguous anomalies vio-
lating both low-level and long-range dependencies. In Fig.
5, a blue cable replaced by a green one may also be de-
fined as a kind of color contamination. However, the global
student could identify a missing object or an object in the
wrong place while identifying the right position.

4.4. Ablation Studies

We investigate the effectiveness of the dual-student ar-
chitecture and the contextual affinity loss and assess the
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Figure 5. Qualitative results of logical anomaly detection on the
modified MVTec AD dataset.

Table 4. Anomaly detection results using different student archi-
tecture and loss. Pi means per-pixel cosine similarity loss and CA
means our proposed contextual affinity loss.

Model Loss Type Structural Logical Mean
Local Pi 0.739 0.474 0.607
Local CA 0.752 0.507 0.630
Global Pi 0.547 0.693 0.620
Global CA 0.336 0.640 0.488

Table 5. Anomaly detection results with different loss combina-
tions for the DSKD.

Lloc Lglo Structural Logical Mean
Pi Pi 0.748 0.675 0.711
CA CA 0.752 0.678 0.708
Pi CA 0.754 0.707 0.730

sensitivity of hyperparameters. The performance of a sin-
gle student trained with different losses is reported in Ta-
ble 4. Benefiting from the RD [8] architecture which has
a low-level feature bias, and our contextual affinity learn-
ing scheme, the local student is capable of logical AD and
yields the best overall performance. The global student
trained with per-pixel cosine similarity is enhanced for bet-
ter low-level feature reconstruction which in turn improves
both structural and logical AD performance.

Table 5 gives qualitative comparisons of our DSKD
trained with different loss pairs. Although the global stu-
dent trained with per-pixel loss outperforms the one trained
with contextual affinity loss, however, the DSKD design
releases the constraint of accurate low-level feature recon-
struction for the global student and encourages the global
student to focus on global contextual information.

Table 6. Mean detection results with different g dimension values.
”w/o” means GCCB is not used and for g = 2048 channels, we
do not use conv1 × 1 layers to downsample and upsample the
channel dimensions.

g w/o 512 768 1024 1280 2048
AU sPro 0.607 0.714 0.721 0.730 0.720 0.729
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Figure 6. Impact of temperature T .

We also investigate the impact of GCCB along with its
channel dimensions g. The results are shown in Table 6.
The use of GCCB improved the performance by a large
margin and performed well with various g values.

The results with different T are shown in Fig. 6. A large
T makes the distribution softer and covers wider relations.
Although it may confront the low-level feature reconstruc-
tion ability, our method is stable for a wide range of T .

5. Conclusion

We proposed the dual-student knowledge distillation
framework and contextual affinity loss for structural and
logical anomaly detection. The local student aims for ac-
curate low-level feature reconstruction and the global stu-
dent learns global context. The proposed contextual affin-
ity loss further enhances capturing long-range correlations.
The use of both teacher and student networks for unsuper-
vised anomaly detection at inference enables us to compute
the contextual affinity loss for the student using both teacher
and student features, decoupling the training of each stu-
dent feature vector. Experiments showed that the proposed
method outperformed previous studies and achieved SOTA
performance on public benchmarks.
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