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Abstract

The performance of optical character recognition (OCR)
heavily relies on document image quality, which is crucial for
automatic document processing and document intelligence.
However, most existing document enhancement methods re-
quire supervised data pairs, which raises concerns about
data separation and privacy protection, and makes it chal-
lenging to adapt these methods to new domain pairs. To
address these issues, we propose DECDM, an end-to-end
document-level image translation method inspired by recent
advances in diffusion models. Our method overcomes the
limitations of paired training by independently training the
source (noisy input) and target (clean output) models, mak-
ing it possible to apply domain-specific diffusion models
to other pairs. DECDM trains on one dataset at a time,
eliminating the need to scan both datasets concurrently, and
effectively preserving data privacy from the source or target
domain. We also introduce simple data augmentation strate-
gies to improve character-glyph conservation during transla-
tion. We compare DECDM with state-of-the-art methods on
multiple synthetic data and benchmark datasets, such as doc-
ument denoising and shadow removal, and demonstrate the
superiority of performance quantitatively and qualitatively.

1. Introduction
In our daily lives, we encounter a large number of doc-

uments, such as receipts, invoices, and tax forms, that are
often degraded in various ways, including noise, blurring,
fading, watermarks, shadows, and more, as shown in Fig-
ure 1. These degradations can make the documents difficult
to read and can significantly impair the performance of OCR
systems. Automatic document processing is the first step in
document intelligence and aims to enhance document quality
using advanced image processing techniques such as denois-
ing, restoration, and deblurring. However, applying these
techniques directly to document enhancement may not be ef-
fective due to the unique challenges posed by text documents.
Unlike typical image restoration tasks, where the degrada-
tion function is known and the recovery of the image task can
be translated into solving an inverse problem such as inpaint-

ing, deblurring/super-resolution, and colorization, real-world
document enhancement is a blind denoising process with an
unknown degradation function, making it even more chal-
lenging. Many state-of-the-art methods have been proposed
that rely on assumptions and prior information [15, 34], but
there is still a need for more effective techniques that can
handle unknown degradation functions.

Denoise Shadow Removal Binarization

Watermark Removal Deblur Defade

Figure 1. A performance overview of our DECDM methods on doc-
ument enhancement tasks, including denoising, shadow removal,
binarization, watermark removal, deblur and defade.

Deep learning has led to the development of discrimina-
tive models based on convolutional neural networks (CNNs)
[45] and auto-encoder (AE) architectures [42], which are
important for solving image restorations. However, these
methods require noisy/clean paired image data, which is diffi-
cult to obtain in real-world applications. Existing benchmark
datasets [1] collect clean documents and add synthetic noise,
but these do not always accurately represent real-world noise
or degradation. To address this, recent works have proposed
unpaired ideas based on generative models, such as gen-
erative adversarial networks (GANs) [12], which transfer
images from one domain to another while preserving content
representation [48]. Document denoising can be achieved
by transferring from a noisy style to a clean style while pre-
serving the text content. However, these models typically
require minimizing an adversarial loss between a specific
pair of source and target datasets [29], which has limitations
in training instability and potential data privacy leakage [38].

While restoration methods have shown their capability of
producing high-quality restorations, they have a severe limi-
tation in their adaptability to different domains [11]. These
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Figure 2. Cycle-Consistent Diffusion Models leverages two deterministic diffusions through ODEs for unpaired document-level image-to-
image translation. Given source data x(s), the source diffusion model v(s)θ runs in the forward direction to convert it to the latent space x(z),
while the target diffusion model v(t)θ reverse ODE to construct the target document-level images x(t). t0 and t1 are the starting point and
ending point, typically setting to t0 = 0 and t1 = 1.

models are trained on specific noise-clean pairs, making it
difficult to use them for restoration tasks in different domains.
For instance, a model designed for watermark removal may
not perform well for denoising tasks. This domain-specific
training leads to a significant increase in the number of mod-
els required for different domain pairs, making it computa-
tionally prohibitive. Additionally, these models are trained
using joint data from both source and target domains, thereby
raising concerns over data privacy protection. This issue
may be critical in certain privacy-sensitive applications, such
as financial documents and medical imaging, where data
providers may be reluctant to share their data.

Beyond both disadvantages of existing methods, the task
of document enhancement presents several unique chal-
lenges compared to typical image translation problems.
These include (1) High-resolution, which poses scalability
challenges, leading to performance degradation and signifi-
cant increases in training costs. (2) Lack of large benchmark
datasets, which makes it infeasible to use large pre-trained
models. While the success of large generative models such
as Stable diffusion [24], Dall·E [23], and Imagen [26] is
largely attributed to large datasets, such as LAION-5B [28],
there is currently no large pre-trained model available for
document-level tasks. (3) Character feature damage. Unlike
image translation at the pixel level, document-level image
translation requires preserving original content such as char-
acters and words while accounting for style differences in the
background, i.e., noise to clean. Current methods only focus
on pixel-level information and do not consider critical char-
acter features such as glyphs, resulting in character-glyph
damage during the translation process [30].

In this work, we present DECDM, an unsupervised end-
to-end document-level image translation method that ad-
dresses the challenges faced by existing document enhance-
ment methods. Inspired by recent advances in diffusion
models [32, 34, 38, 41], our approach independently trains
the source (noisy) and target (clean) models, decoupling
paired training and enabling the domain-specific diffusion
models to remain applicable to other pairs. Specifically, we
build DECDM based on denoising diffusion implicit models

(DDIMs) [32], which create a deterministic and reversible
mapping between images and their latent representations,
solved using ordinary differential equation (ODE) that forms
the cornerstone. Translation with DECDM on a source-target
pair requires two different ODEs: the source ODE encodes
input images to the latent space, while the target ODE de-
codes images in the target domain, as shown in Figure 2.

Since training diffusion models are specific to individual
domains and rely on no domain pair information, DECDM
makes it possible to save a trained model of a certain domain
for future use, when it arises as the source or target in a
new pair. Pairwise translation with DECDM requires only
a linear number of diffusion models, which can be further
reduced with conditional models [9]. Additionally, the train-
ing process focuses on one dataset at a time and does not
require scanning both datasets concurrently, preserving the
data privacy of the source or target domain.

To overcome the challenges in document-level translation,
we propose a simple data augmentation scheme to downscale
the resolution of training data, while significantly increasing
the dataset size. This approach reduces the diffusion train-
ing cost and improves the performance in learning character
distribution benefiting from large datasets. Experimentally,
we demonstrate the effectiveness of DECDM on a variety of
document enhancement tasks, such as document denoising
and document shadow removal, with qualitative and quanti-
tative results that establish DECDM as a scalable, efficient,
and reliable solution to the family of document enhancement
approaches. DECEM is also well-suited for few-shot sce-
narios by leveraging unpaired training and sample efficiency
in cycle-consistent diffusion models and data augmentation
strategies. Beyond the denoising and removal tasks shown
here, our proposed DECDM method can apply to broader
few-shot document enhancement tasks in Figure 1.

2. DECDM Method
Our goal is to develop a cycle-consistent diffusion model

for document enhancement by solving the following three
core problems: (1) unpaired supervision, (2) enforcing cycle
consistency, and (3) data privacy protection. Then we intro-
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Methods Unpaired
or paired

Backbone Models Document Enhancement Tasks

GANs CNNs Transformers Denoise
Shadow
Removal Binarization

Watermark
Removal Deblur Defade

SCGAN [43] (ICCV 17’) Paired ✓ - - - - - - ✓ -
SCDCA [46] (ICPR 18’) Paired - ✓ - ✓ - - - ✓ -

BEDSR-Net [20] (CVPR 20’) Paired ✓ - - - ✓ - - - -
DE-GAN [37] (TPAMI 20’) Paired ✓ - - - - - ✓ ✓ -

RED-Net [4] (PR 19’) Paired - ✓ - - - ✓ - - -
SauvolaNet [18] (ICDAR 21’) Paired - ✓ - - - ✓ - - -

CharFormer [30] (ACM MM 22’) Paired - - ✓ ✓ - - - - -
DocEnTr [36] (ICPR ’22) Paired - - ✓ - - ✓ - ✓ ✓

CycleGAN [29] (ACCV 18’) Unpaired ✓ - - - - - ✓ ✓ ✓
CycleGAN-MOE [11] (ICCV 21’) Unpaired ✓ - - ✓ - - ✓ ✓ ✓

Table 1. A summary of document enhancement methods, including unpaired/paired supervision, backbone models (CNNs, GANs,
Transformers), and enhancement tasks (denoise, shadow removal, binarization, watermark removal, deblur, defade).

duce the data augmentation strategies for dealing with the
challenges of document datasets while improving character
and word feature preservation.

2.1. Problem Formulation

We first define the unpaired document enhancement task
from a mathematical perspective as follows:

Problem 1 (Unpaired Document Enhancement). Given two
unpaired sets of documents, one set consisting of degraded
documents X (source domain), and the other a collection of
clean documents Y (target domain), our goal is to learn a
mapping F : X → Y such that the output ŷ = F(x),x ∈ X ,
is indistinguishable from documents y ∈ Y to classify ŷ
apart from y.

The degraded documents include multiple types, e.g., noise,
blurring, watermark, etc, as shown in Fig. 1. The mapping F
should satisfy two conditions: content preservation and style
transfer. The content refers to the character, text, numbers,
tables, and figures in documents and the style transfer means
the translation from degraded documents (source domain
X ) to clean documents (target domain Y). Our objective
is therefore to convert the degraded documents in X while
preserving their core contents in Y . From the computer
vision perspective, enhancement tasks can be essentially
interpreted as document-level image-to-image translation.

Problem 2 (Cycle Consistency). Assuming we have a map-
ping F : X → Y and another mapping H : Y → X , then F
and H should be inverse of each other, and both mappings
should be bijective, i.e., satisfying

F(H(x)) ≈ x, H(F(y)) ≈ y (1)

A desirable feature of image translation algorithms is the
cycle consistency property [48], which transforms a sample
in the source domain to the target domain, and then back
to the source, will recover the original sample in the source

domain. This property is critical to the adaptability guaran-
tee, which empowers the domain-specific diffusion models
to stay applicable in other pairs. A rigorous formulation is
defined in Eq. (1).

Problem 3 (Data Privacy). In the training and translation
process, source model v(s)θ and target model v(t)θ are decou-
pled and trained independently, while both source datasets
x ∈ X and target datasets y ∈ Y are private to each other.

Most image-to-image translation approaches strongly rely on
joint training over data from both source domains and target
domains. This leads to a significant challenge in preserving
the privacy of domain data in a federated setting. An ideal
method is to train the models independently on separate
domain datasets such that data privacy is protected.

2.2. Cycle-Consistent Diffusion Models

Diffusion Models [13, 31, 33] aim at modeling a distri-
bution pθ(x0) to approximate the data distribution q(x0)
through diffusion and reversed generative processes. Song et
al. [35] proposed a unified framework by leveraging Stochas-
tic Differential Equations (SDEs) representation, which uses
a forward and backward SDE to mathematically describe
general diffusion processes:

dx = f(x, t) dt+ g(t) dw (2)

and reversed generative processes:

dx = [f − g2∇x log pt(x)] dt+ g(t) dw (3)

where f(x, t) is the vector-valued coefficient, w is the stan-
dard Wiener process, g(t) is the diffusion coefficient, and
∇x log pt(x) is the score function of the noise perturbed data
distribution. Any diffusion process can be represented by
a deterministic ODE [35], named the probability flow (PF)
ODE [35], which enables uniquely identifiable encodings of
data, and has the following form:

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt (4)
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which is equivalent to the forward SDE in Eq. (2). For con-
ciseness, we use θ-parameterized score networks st,θ ≈
∇x log pt(x) to approximate the score function and use
vθ = dx/dt to denote the θ-parameterized model and use
the symbol SODE to denote the mapping from x(t0) to x(t1)

and implement ODE solver in DDIMs [32].

x(t1) = SODE(x(t0); vθ, t0, t1)

= x(t0) +

∫ t1

t0

vθ(t,x(t)) dt
(5)

In this work, we implement an ODE solver in DDIMs
[32] where the generative sampling process is defined in a
deterministic non-Markovian manner, which can be used for
the reverse direction, deterministically noising an image to
obtain the initial noise vector. This property is central to
DECDM as we solve these ODEs for forward and reverse
conversion between data and their latents.

Cycle-Consistent Diffusion Models. DECDM leverages
the cycle-consistent diffusion models to perform unpaired
document-level image translation, with two diffusion models
trained independently on two separate domains. DECDM
consists of two core steps, training and translation, described
in Algorithms 1 and 2. For training, DECDM first collects
noisy data from the source domain x(s) ∼ ps(x), and clean
data from the target domain x(t) ∼ pt(x), then train two dif-
fusion models separately on the two domains and save them
as v

(s)
θ and v

(t)
θ . For translation, DECDM first runs SODE

in the source domain to obtain the latent encoding x(z) of
the image x(s) at the end time t1 via SODE(x

(s); v
(s)
θ , t0, t1).

Then DECDM feds the source latent encoding x(z) to SODE

with the target model v(t)θ to reconstruct the target image x(t)

via SODE(x
(z); v

(t)
θ , t1, t0), as illustrated in Figure 2.

One of the important advantages of DECDM is the exact
cycle consistency: transforms a sample in the domain S to
the domain T , and then back to S, will recover the original
sample in S. As probability flow ODEs are used, the cy-
cle consistency property is guaranteed [35]. The following
proposition validates the cycle consistency of DECDM.

Proposition 4 (Exact Cycle Consistency). Given a specific
sample x(s) from source domain X , with a trained source
model v(s)θ and a target model v(s)θ , we define the forward
cycle consistency

x(z) = SODE(x
(s); v

(s)
θ , t0, t1);

x(t) = SODE(x
(z); v

(t)
θ , t1, t0);

(6)

and backward cycle consistency

x̃(z) = SODE(x
(t); v

(t)
θ , t0, t1);

x̃(s) = SODE(x̃
(z); v

(s)
θ , t1, t0);

(7)

Assume zero discretization error, then we have x(s) = x̃(s).

In practice, we implement the ODE solver SODE with DDIMs
[32] which has reasonably small discretization errors. Thus
DECDM incurs almost negligible cycle inconsistency.

2.3. Data Privacy Protection

The DECDM training process does not depend on knowl-
edge of the domain pair a priori, while only source and target
data are required. Both source and target diffusion models
are trained independently. The DECDM translation process
can be performed in a privacy-sensitive manner. For exam-
ple, user A is the owner of the source domain and user B is
the owner of the target domain. User A intends to translate
the source images to the target domain in a private manner
without releasing the source dataset. User B also wishes to
make the target dataset private. In such a case, user Acan
can simply train a diffusion model with the source data, en-
code the data to the latent space, and only transmit the latent
codes to user B. Then user B can use the pretrained diffu-
sion models (using the target data) to convert the received
latent code to a target image and send back to user A. The
process only requires shared latent code from user A and
a pretrained model from user B, which can be finished in
a private platform, and both source and target datasets are
private to the two parties. This is a significant advantage of
DECDM over alternate methods, as we enable strong privacy
protection of the datasets. More discussions can be found in
the supplementary material.

2.4. Data Augmentation

Many document benchmark datasets are not large enough
for diffusion model training such that data augmentation is
often necessary. However, typical image data augmentation
techniques, e.g., crop, rotate, flip, etc, may negatively af-
fect the recognition (difficult to read) of character and word
contents. In this work, we implement two simple strategies
for document-level data augmentation, while mitigating the
high-resolution challenges such as computational scalability
issues in training diffusion models, as shown in Fig.4.

The sub-window strategy divides the high-resolution im-
ages into several smaller domains, e.g., 1024x1024 images
will be divided into 16 sub-images (256×256) or 64 sub-
images (128×128). Using this way, we reduce the image
resolution but upscale the dataset size fed to the diffusion
models for better performance at a lower training cost. If
the data is very sparse, we can consider the slide-window
strategy, which is inspired by convolution operation in CNN,
moving the sub-window with a specific stride. This strategy
will significantly increase the amount of data which allows
diffusion models to accurately capture the distribution of
characters and words. For translation, we perform the same
strategy for the source (noisy) data and obtain the corre-
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Figure 3. Cycle consistency illustration. Translation from the source domain (CR) to the target domain (PR) and then back to the source
domain (CR) via the cycle-consistent diffusion models with reverse and direct sampling.

(a) Sub-window strategy

High resolution 3.5X

5X

High resolution >> 3.5X

>>5X

(b) Slide-window strategy

Figure 4. Data argumentation for document-level high-resolution
images: (a) sub-window strategy and (b) slide-window strategy.

sponding target sub-images, and finally we ensemble all of
them to obtain the whole cleaned images.

Algorithm 1 Diffusion model training in DECDM

1: Requirement: noise data from source domain, x(s) ∼ ps(x),
clean data from target domain, x(t) ∼ pt(x).

2: Perform data augmentation for x(s) and x(t)

3: Train source diffusion model v(s)θ (x(s)) ≈ ps(x) and target
diffusion model v(t)θ (x(t)) ≈ pt(x) separately

4: Return trained source model v(s)θ and target model v(t)θ

Algorithm 2 Unpaired image translation in DECDM

1: Requirement: data sample from source domain x(s) ∼ ps(x),
source model v(s)θ , target model, v(t)θ , t0, t1

2: Encoding: obtain latent embedding from source domain data
via x(z) = SODE(x

(s); v
(s)
θ , t0, t1);

3: Decoding: obtain target domain data reconstructed from latent
code via x(t) = SODE(x

(z); v
(t)
θ , t1, t0)

4: Return: x(t)

3. Experiments

A set of experiments are provided to demonstrate the
effectiveness of our DECDM. We first use a 2D synthetic ex-
ample to show the cycle-consistent property and then demon-
strate DECDM on various document enhancement tasks,
including dirty document denoising and shadow removal.

3.1. 2D Synthesis Examples

We perform domain distribution translation on two-
dimensional synthetic datasets with complex shapes and
configurations, as shown in Fig. 5. In this example, we use
six 2D datasets (normalized to zero mean and identify covari-
ance): Two Moons (TM); Checkerboards (CB); Concentric
Rings (CR); Concentric Squares (CS); Parallel Rings (PR);
and Parallel Squares (PS). The colors in Fig. 5 are signed
based on the point identities that can help check if a point in
the source domain is blue, then its corresponding point in the
target domain is also colored blue. To this end, we observed
a smooth translation between the source and target domain
with point identity preservation. For instance, on the second
row in Fig. 5, the red points in the CR dataset are mapped to
similar coordinates (relative location) in the target domain
of the CS dataset. The latent space provides a disentangled
representation of this domain translation.

Source Latent Target Source Latent Target

Figure 5. Distribution translation of synthetic datasets: from source
datasets to latent representation via encoding, then from latent
representation to target datasets via decoding. (Left three) heatmap
results and (Right three) scatter results with color configurations.

Cycle Consistency Validation. We demonstrate the cycle
consistency using an example of domain translation from CR
to PR, as shown in Fig. 3. We first train the cycle-consistent
diffusion models for each domain (CR and PR) indepen-
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dently. Then starting from the CR dataset x(s), we obtain the
latent points x(z) using reverse sampling and construct the
target PR points x(t) via direct sampling. The next step is
the reverse direction, i.e., transforming the target PR points
back to the latent and the source CR domain. Similarly, we
transfer x(t) to the latent points x̃(z) using reverse sampling
and then reconstruct the source CR domain x̃(s) via direct
sampling. After this multi-step trip, the source points are
approximately mapped back to their original positions. From
Fig. 3, we observed a similar color topology both in the latent
and source domain. The reconstructed source points x̃(s)

are highly consistent with the original source points x(s). To
further compare the difference, Table 2 shows quantitative
evaluation results on cycle consistency among various cases.
We use averaged L2 distance to measure the difference be-
tween the original points and the reconstructed points after
cycle translation, e.g., "TM-CB" means TM → CB → TM.
The results in Table 2 are negligibly small in terms of both
the latent and source domains such that the cycle consistency
is valid even without adding cycle-consistent loss [48].

Distance TM-CB CR-TB CR-CS CR-PR PR-PS PS-CS

Latent 0.0128 0.0087 0.0101 0.0120 0.0092 0.0100
Source 0.0122 0.0106 0.0082 0.0108 0.0143 0.0065

Table 2. Cycle consistency validation. Averaged L2 distance is
used to measure the difference between original points and after
cycle translation on both latent and source domains.

Dirty Documents Ground Truth

Figure 6. Visualization of DatasetA: (Left) raw document-level
image and (Right) ground truth, which is the clean image.

Noisy Documents Ground Truth

Figure 7. Visualization of DatasetB: (Left) noisy document-level
image and (Right) ground truth.

3.2. Dirty Document Denoising

Datasets. In this case, we apply our DECDM for denois-
ing dirty documents by leveraging the benchmark datasets
denoising-dirty-document1, which consists of printed En-
glish words in 18 different fonts. The original datasets in-
clude noisy raw document-level images with uneven back-
grounds, e.g., watermarks, messy artifacts, etc. We name the

1https://www.kaggle.com/competitions/denoising-dirty-documents

original datasets as DatasetA: Dirty Document. There are
144 data for training and 72 data for testing in the original
setting. We use this setting for evaluating all the methods.
To increase the complexity, we also create DatasetB: Noisy
Document by adding speckle noise and Gaussian noise on
the ground truth. The noise means µ is 0 and variance σ is
5, which follows the setting in [30]. Fig. 6 shows one of
the raw document-level images and the corresponding clean
image in DatasetA. Fig. 7 shows the noisy document-level
image in DatasetB.

Baselines. We compare our DECDM with multiple compet-
itive baseline methods, including GAN/CNN-based meth-
ods, CIDG [44], InvDN [21], CycleGAN [29], and some
Transformer-based methods, i.e., UFormer [40], IPT [5],
TransUNet [6] and CharFormer [30]. Note that most of
these state-of-the-art methods are proposed for general im-
age denoising or restoration, not specifically designed for
document denoising. Thus, we use the same training environ-
ment and datasets for all the methods and report the results
if they have already been provided in their work [30]. We
perform a slide-window strategy for data augmentation in
this case and all the experiments and comparisons are done
on one NIVIDA Tesla V100 GPU.

Method DatasetA DatasetB

PSNR↑ SSIM↑ AC↑ PSNR↑ SSIM↑ AC↑

Raw Data 16.33 0.7978 0.6931 13.03 0.2852 -
CIDG [44] 21.88 0.8871 0.7559 20.65 0.8623 0.2471
InvDN [21] 22.40 0.8807 0.8374 20.49 0.8077 0.5917

CycleGAN [29] 23.66 0.8857 0.8319 20.97 0.8470 0.6409
UFormer [40] 23.86 0.8970 0.8326 21.01 0.8221 0.6693

IPT [5] 23.72 0.9027 0.856 21.94 0.8293 0.6854
TransUNet [6] 23.92 0.8998 0.8621 20.83 0.8592 0.5579

CharFormer [30] 24.08 0.8985 0.8553 21.07 0.8637 0.7259

DECDM 24.30 0.9058 0.8714 21.12 0.8631 0.7438

Table 3. Quantitative evaluation results on average PSNR, SSIM
and OCR accuracy (AC). The best two results are highlighted in
bold black.

Metrics. We introduce two commonly used metrics to eval-
uate the document-level denoising performance, i.e., peak
signal-to-noise ratio (PSNR) and the structural similarity in-
dex measure (SSIM). Note that “↑” represents the higher the
metric the higher image quality. Additionally, we introduce
a metric for evaluating the character-level quality, i.e., opti-
cal character recognition (OCR) accuracy (AC). This metric
allows us to validate if the denoising algorithms improve the
OCR2 performance compared to dirty documents.

Qualitative Evaluation. We first visualize the denoising
results by using DECDM and compare it with other baseline
methods. Fig. 8 and Fig. 9 show the qualitative performance
on DatasetA and DatasetB respectively. DECDM can ef-
fectively remove messy dirties and even backgrounds and

2The public OCR tools can be accessed via https://www.ocr2edit.com
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CIDG InvDN

UFormer IPT TransUNet CharFormer

DECDM CycleGAN

Figure 8. Qualitative evaluations and comparisons on DatasetA which is dirty document denoising.

CIDG InvDN CycleGAN

TransUNetUFormer IPT CharFormer

DECDM

Figure 9. Qualitative evaluations and comparisons on DatasetB which is dirty document denoising.

Shadow Ground Truth DECDM BEDSR-Net DEVD Shadow Map ST-CGAN
Figure 10. Qualitative evaluation and visual comparison of competing baseline methods on document shadow removal task.

Method SDSRD [20] RDSRD [20] SM Datasets [2] DVED Datasets [16] WF Datasets [14]

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Raw Shadow Images 22.80 0.8992 21.73 0.8093 28.45 0.9742 19.31 0.8429 20.35 0.8850
Shadow Map [2] 31.55 0.9658 28.24 0.8664 35.22 0.9823 29.66 0.9051 23.70 0.9015

DVED [16] 22.03 0.8435 22.53 0.7056 26.50 0.8381 26.45 0.8481 24.45 0.8332
Water Filling [14] 17.06 0.8226 14.45 0.7054 13.88 0.8059 19.21 0.8724 28.49 0.9108

ST-CGAN [39] 39.38 0.9834 30.31 0.9016 29.12 0.9600 25.92 0.9062 23.71 0.9046
BEDSR-Net [20] 43.59 0.9935 33.48 0.9084 35.07 0.9809 32.90 0.9354 27.23 0.9115

DECDM 45.73 0.9932 37.21 0.9143 34.95 0.9642 35.01 0.9521 29.87 0.9112

Table 4. Quantitative evaluation results on PSNR and SSIM. We compare our DECDM with BEDSR-Net [20], ST-CGAN [39], Water
Filling [14], DVED [16], and Shadow Map [2] methods. The best two results are highlighted in black bold.

perform high-quality document-level image denoising. Un-
like some methods, e.g., CycleGAN, InvDN, and TransUNet
with character-level damages, DECDM well recognizes the
character style and topology, which can be clearly seen in
the zoom-in sub-figures in Fig. 8. As an unpaired method,

DECDM shows competitive performance compared to the
transformer-based methods, e.g., CharFormer and UFormer,
which strongly rely on paired supervision. More ablation
studies are provided in the supplementary material.
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Quantitative Evaluation. Table 3 shows the quantitative
comparisons between DECDM and state-of-the-art baseline
methods on both datasets. Clearly, DECDM shows outper-
formed results, specifically the AC metric, in both datasets.
Compared with GAN/INN models, transformer-based mod-
els perform competitively, e.g., CharFormer in DatasetB but
it will fail in the unsupervised setting.

3.3. Document Shadow Removal

Datasets. Although there exist a few datasets for document
image shadow removal, they are only used for evaluation on
a small scale. In this example, we consider the following
five datasets ranging from small-scale to large-scale such
that we can provide a comprehensive validation.

• SDSRD datasets [8,20]: 8309 paired images from 970 doc-
uments, including synthetic, diverse contexts and lighting.
7533 for training and 776 for testing.

• RDSRD datasets [20]: 540 paired images of 25 documents,
including newspaper, slides, and paper, under different
lighting conditions.

• Shadow Map (SM) datasets [2]: 81 paired images with
light shadows/text only.

• DEVD datasets [16]: 300 paired document-level images,
including dark shadows and colorful symbols.

• Water-Filling datasets [14]: 87 high-quality paired images
including multi-cast shadows.

Baselines. We compared our DECDM with five state-of-the-
art methods, including BEDSR-Net [20], ST-CGAN [39],
Water Filling [14], DVED [16], and Shadow Map [2] meth-
ods. For a fair comparison, we used the publicly available
source codes or reported results provided by the authors. We
evaluate the compared methods from visual quality using the
PSNR and SSIM metrics, as suggested by [20].

Qualitative and Quantitative Evaluation. For visual com-
parison, Fig. 10 shows several shadow removal results of the
compared methods. DEVD [16] and ST-CGAN [39] exhibit
remaining shadow edges and Shadow Map [2] performs bet-
ter than those two but still shows the shadow. DECDM close
to BEDSR-Net [20] shows ideal performance without seeing
shadow edges. Quantitatively, DECDM outperforms other
baselines on most datasets as shown in Table 4. For SM
datasets, Shadow Map performs best but its result is worse
than the other baselines in the other four datasets. BEDSR-
Net is a competitive method that achieves promising results
but it strongly relies on the pair datasets. On the contrary,
DECDM is more flexible and robust without the assump-
tion of pair knowledge such that we can easily deploy it
in more real-world scenarios. We also provide a detailed
analysis of the effect of data augmentation strategies in the
supplementary material.

4. Related Work
Document Enhancement. Deep learning has enabled
many approaches for enhancing the quality of document-
level images [1]. Recent state-of-the-art methods in docu-
ment enhancement are summarized in Table 1, categorized
by their supervision mechanism (paired or unpaired), back-
bone models (CNNs [4,19,46], GANs [11,20,29,37,43], and
Transformers [30, 36]), and enhancement tasks (denoising,
shadow removal, binarization, watermark removal, deblur,
and defade). Although most methods perform well in one or
multiple tasks, no single model can handle all types. Addi-
tionally, paired supervision is required, which is rarely met
in real settings. While Cycle-GAN [11, 29] methods can
mitigate this limitation, they still need to optimize for cycle
consistency over two domains, leading to instability issues
and potential data privacy leakage. Our proposed DECDM
addresses these challenges by enabling unpaired translation,
cycle consistency, and data privacy protection.
Diffusion Models. Diffusion models are a family of gen-
erative models that have gained much attention recently due
to their superior performance in text-guided image synthe-
sis [3, 10, 25], e.g., Stable Diffusion [24], DALL·E 2 [23],
and Imagen [26]. These works are built upon the foundation
of diffusion models, including score-based methods [33, 35]
that match with Langevin dynamics, denoising diffusion
probabilistic models (DDPMs) [13,31] that parameterize the
ELBO objective with Gaussian, and denoising diffusion im-
plicit models (DDIMs) [32] that accelerate DDPM inference
via non-Markovian processes. Recent works have leveraged
diffusion models for image editing [7, 17, 27, 41], composi-
tion [22, 47], and restoration tasks [15, 26] with promising
performance. However, these methods mostly relied on joint
training by leveraging both datasets directly. Our DECDM
performs a decoupled mechanism by applying separate, pre-
trained diffusion models and leveraging the geometry of the
shared space for document image translation. To the best
of our knowledge, DECDM is the first work to apply diffu-
sion models for document enhancement via unpaired image
translation, inspired by these studies.

5. Conclusions
DECDM provides an unsupervised end-to-end solution

for document image enhancement that offers several ad-
vantages over existing state-of-the-art methods, including
adaptability to new domain pairs and data privacy protection.
These unique capabilities make DECDM a more robust, safe,
and scalable solution for improving OCR performance in a
wide range of document enhancement tasks. Future works
aim to address the current limitations caused by data sparsity,
augmentation, and character/word context recognition. We
will also integrate OCR into the training pipeline to pursue
better character and word recognition.
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