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Abstract

Domain generalization (DG) approaches intend to ex-
tract domain invariant features that can lead to a more ro-
bust deep learning model. In this regard, style augmenta-
tion is a strong DG method taking advantage of instance-
specific feature statistics containing informative style char-
acteristics to synthetic novel domains. While it is one of
the state-of-the-art methods, prior works on style augmen-
tation have either disregarded the interdependence amongst
distinct feature channels or have solely constrained style
augmentation to linear interpolation. To address these
research gaps, in this work, we introduce a novel aug-
mentation approach, named Correlated Style Uncertainty
(CSU), surpassing the limitations of linear interpolation
in style statistic space and simultaneously preserving vi-
tal correlation information. Our method’s efficacy is estab-
lished through extensive experimentation on diverse cross-
domain computer vision and medical imaging classification
tasks: PACS, Office-Home, and Camelyon17 datasets, and
the Duke-Market1501 instance retrieval task. The results
showcase a remarkable improvement margin over existing
state-of-the-art techniques. The source code is available
https://github.com/freshman97/CSU.

1. Introduction
Recent years have witnessed the remarkable success of

Deep learning (DL) in computer vision domain operating
under the premise that the training (source) and testing (tar-
get) datasets adhere to a principle of independent and iden-
tically distributed (iid) data [48]. However, this oversimpli-
fied assumption often fails in practice when there is a dis-
tribution drift between training and testing datasets. The
violation of this assumption induces the phenomenon that
well-trained model in the source domain degrades dramati-
cally in the target domain. If domain generalization is suc-
cessfully implemented within a DL model, it would inher-
ently solve issues related to domain shift. This would not
only signify a significant advancement in the field, but also
streamline the practical deployment of DL models across
various domains. For example, a car detector should per-
form accurately both on sunny and cloudy days. DL based
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Figure 1. Visualization of synthetic feature statistics samples using
(a) MixStyle [50], (b) DSU [18], and (c) Our proposed Correlated
Style Uncertainty (CSU) method. CSU preserves the correlation
among feature channels.

medical image segmentation algorithm, for another exam-
ple, should generate stable segmentation regardless of the
acquisition and scanner differences, and so on.

Domain adaptation and domain generalization are
two distinct approaches for addressing the challenge of do-
main shift in machine learning. A widely adopted approach
to counteract domain shift problems entails acquiring unla-
beled data from the target domain. By leveraging this data,
we can adapt a model, initially trained on the source do-
main, to align better with the characteristics of the target
domain. This strategy is called Domain Adaptation (DA),
which has been the subject of much systematic investiga-
tion in the last few years and achieved promising results in
many fields [48]. To ensure robust model adaptation, regu-
larization algorithms such as entropy regularization [24,26]
are also applied to target domain during training. Do-
main adaptation assumes that the target domain is known
and that some data from the target domain is available for
training. However, accessing the target domain data can
be quite challenging. Specifically in high-risk applications
(e.g., medical data), target domain data might not be avail-
able at all. This is a primary research concern of Domain
Generalization (DG) as a strong alternative path to DA.

In DG, the objective is to develop models that can per-
form well across a wide range of domains without ex-
plicit training on each individual domain. Unlike DA,
DG assumes that the target domain is unknown and that
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no data from the target domain is available for train-
ing [34, 48]. Since target data is unavailable for investi-
gating domain shift, DG relies solely on extracting robust,
domain-invariant feature representations from diverse train-
ing distributions. As a result, when domain information is
feasible, feature alignments among different domains could
significantly leverage the model’s out-of-distribution gener-
alization ability, as shown in previous research [16, 19].

What do we propose? In this paper, we propose a novel
DG method, called Correlated Style Uncertainty (CSU).
The method is specifically designed to retain the relation-
ship among distinct feature space channels while address-
ing the distribution drift between target and source do-
mains. The effectiveness of our approach, as depicted in
Figure 1(c), is clearly evident when compared with widely-
used techniques like MixStyle and DSU. Like MixStyle and
DSU, our newly introduced algorithm, CSU, belongs to the
family of style augmentation methods employed for DG, but
it presents distinctive advantages.

How is CSU different from previous style augmenta-
tion? In the context of style augmentation, MixStyle [50]
operates by randomly choosing two samples and perform-
ing linear interpolation between their corresponding style
attributes, to put it succinctly. While MixStyle is useful, it’s
confined to generating in-distribution samples, potentially
limiting network’s generalization capabilities. pAdaIN [22]
rearranges the instance-specific feature statistics within a
batch, thus sharing the same problem with MixStyle. DSU
[18], contrarily, addresses this limitation by creating out-
of-distribution samples via uncertainty modeling of feature
statistics. However, DSU’s effectiveness is hinged upon the
assumption that each channel operates independently, im-
plying that inter-channel correlations bear no impact on the
task at hand. This assumption might not always hold in
practical scenarios. Style Neophile [11] select style proto-
types that represent the distribution of source styles stored
in the source style queue using MMD distance from style
storage during training. [42,46] apply the adversarial attack
on the feature statistics for domain generalization while in-
troducing expensive computational burden.

Our proposed method, CSU, is fundamentally differ-
ent from these methods because i) it produces out-of-
distribution samples, ii) correlation among different chan-
nels are retained and iii) the sampling process requires a
negligible computational burden. Our proposed method,
CSU, allows us to generate more meaningful style pertur-
bations in discriminatory tasks, thus enhancing the model’s
generalization capacity. Similar to hypotheses in prior re-
search in the literature, we posit that the feature statistics
follow a multivariate Gaussian distribution; however, we ac-
knowledge and account for correlations among the variates,
unlike many traditional methods. This perspective allows
us to consider a more realistic distribution that could poten-

tially improve model performance in real-world scenarios.
In our specific approach, we first compute the covariance

matrix at the mini-batch level and then estimate the distri-
bution from the covariance matrix. This allows us to sample
correlated feature statistics from the established distribu-
tion. This sampling allows us to generate the style statistics
outside the linear interpolation while maintaining an iden-
tical correlation. In this way, more diverse but meaningful
style augmentation can be applied during the training and
increase the model’s generalization ability. We highlight
our main contributions in this study as follows:

• Our proposed strategy (CSU) is a well-calibrated
method that goes beyond the interpolation strategies
by preserving correlation between different feature
spaces. This allows us to generate more diverse and
meaningful style augmentation during training which
helps in building a more generalizable model. To the
best of our knowledge, such a simple yet effective style
augmentation strategy has never been explored.

• To evaluate the effectiveness of the proposed CSU
model, we conducted extensive experiments on multi-
domain classification benchmarking datasets, includ-
ing PACS [14], Office-Home [31], Camelyon17 [1]
and the Duke-Market1501 dataset for instance retrieval
tasks [25, 45]. The quantitative results show that the
CSU can significantly improve the model’s generaliz-
ability over other state-of-the-art (SOTA) methods.

• We have performed several ablation studies to investi-
gate the optimal parameters for the CSU model. These
investigations have covered factors such as the ideal
position for model integration, the most efficient sam-
pling hyperparameters, and the batch size that yields
the greatest level of generalization.

2. Background and Related Works
Several DG strategies have been proposed in the liter-

ature; we briefly cover the mostly used ones under sub-
categories as follows.

Data Augmentation: is highly valued for its role in ex-
posing the model to an expanded set of instances, an essen-
tial element for successful Deep Learning. Many methods
have been proposed to achieve strong data augmentation,
including traditional image augmentation like BigAug [40],
deep neural network-based image generation like in Rand-
Conv [36], and adversarial data augmentations [33]. These
methods are suitable specifically when the domain tags of
samples are agnostic. While data augmentation is a pow-
erful technique that can improve the generalization perfor-
mance of machine learning models, it also has some poten-
tial drawbacks in the context of domain generalization. For
instance, one drawback is that data augmentation may not
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be effective when the variations between the source and tar-
get domains are too significant. Feature Alignment: is a
popular method in representation learning category of DG
approaches. Given domain tags, the model will add reg-
ularization terms into loss functions to force the extracted
features from all source domains to align to the same dis-
tribution. For instance, Li [15] introduced the Maximum
Mean Discrepancy as a regularization term to achieve fea-
ture alignment across multiple domains. Zhao [44] pro-
posed an entropy regularization term that measures the de-
pendency between the learned features and corresponding
labels. This regularization method can ensure the condi-
tional invariance of learned features. One major drawback
of feature alignment is that it can be difficult to determine
the best way to align the features across domains. Meta-
learning: has also attracted attention from DG communi-
ties [4, 29]. Meta-learning aims to learn the learning algo-
rithm itself by learning from previous experience or tasks.
By splitting the source domain samples into pseudo-train
and pseudo-test, meta-learning mimics the potential do-
main shift of the actual target domain. Despite its promise,
meta-learning can be computationally expensive and time-
consuming. Since meta-learning involves training a model
on a large number of tasks or domains, there is a risk that
the model may overfit to the training data and not generalize
well to new domains.

Style Augmentation: The final category of DG is very
recent: style augmentation. This method comes from the
simple observation that instance-specific feature statistics
such as mean and standard deviation, contain informa-
tive style characteristics and can be applied to the style-
transferring model [9]. This phenomenon allows us to gen-
erate different style images while maintaining the same se-
mantic concept. For example, Seo et al. [27] proposed one
domain-specific normalization method by calculating the
feature statistics of each domain. Pan et al. [17] add per-
turbation on the feature embedding with simple Gaussian
noise during training. Zhou et al. [50] presented mixing
styles (MixStyle) of training instances, and increased the
source domain diversity. As a result, authors leveraged the
trained model’s generalizability. Nuriel et al. [22] alter-
natively proposed a Permuted Adaptive Instance Normal-
ization (pAdaIN) method to rearrange the instance-specific
feature statistics within a batch, thus improving the model’s
generalizability. In a slightly different angle, Li et al. [18]
quantified feature statistics’ uncertainty (DSU) and sampled
new style feature statistics from the uncertainty distribu-
tion, resulting in novel out-of-distribution domains being
synthesized implicitly. Kang et al. [11] select style proto-
types from style storage during training using the MMD
distance and these prototypes represent the distribution of
source styles stored in the source style queue. [42,46] apply
the adversarial attack on the feature statistics for domain

generalization while introducing expensive computational
burden. Our work is directly related to MixStyle and DSU
as we are using the same hypothesis but addressing the ma-
jor limitations of them, and sharing some similarities with
pAdaIN, from the same efforts for synthesizing novel do-
mains. Unlike them, our proposed CSU generates out-of-
distribution feature statistics while maintaining the correla-
tion between features.

3. Methods
3.1. Correlation within the style statistics

Given batch level feature maps x ∈ RB×C×H×W of the
network f(in, ϕ) where in denotes the batch-wise inputs
and ϕ denotes the network parameters. We can formulate
the instance-specific feature statistics mean µ ∈ RB×C and
standard deviation σ ∈ RB×C as follows

µ(x) =
1

HW

H∑
h=1

W∑
w=1

xb,c,h,w, (1)

σ2(x) =
1

HW

H∑
h=1

W∑
w=1

(xb,c,h,w − µ(x))2. (2)

Thus, we can formulate the channel-wise covariance matrix
Σµ ∈ RC×C , Σσ ∈ RC×C of µ, σ:

Σµ =
1

B
(µ− E(µ))T (µ− E(µ)), (3)

Σσ =
1

B
(σ − E(σ))T (σ − E(σ)), (4)

where E(µ), E(σ) represents the mean value of µ, σ over
batch dimension. It is worth noting that the rank of Σµ,Σσ

is strictly limited by min(B,C) ⩽ C. Previous research
indicated that the feature maps are unlikely to be linearly
independent over the channel dimension [8, 41]. Without
any form of regularization, it becomes difficult to assume
a diagonal covariance matrix and a zero correlation across
each channel, as suggested in the top row of Figure 2.

We observed that the correlation matrix of style statis-
tics (regardless of the mean or the standard deviation val-
ues) is not diagonal. Indeed, there exists a strong correla-
tion among the channels. We applied eigenvalue decom-
position over the calculated correlation matrix and find that
very few eigenvectors dominate most variance, as shown in
the bottom row of the Figure 2. This inspired us to rethink
the augmentation of style statistics. The correlation matrix
indicates that the combinations of feature statistics are not
arbitrary but limited by task objectives and training proce-
dures. Most variances happen within the specific principal
directions. Arbitrary augmentation over the style statistics
might damage the training itself. Previous research about
why InstanceNorm can not outperform the BatchNorm in
the discriminative tasks also proves this finding [20].
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Figure 2. Visualization of feature statistics correlation. We calcu-
late the style statistics (mean and standard deviation, respectively)
on the PACS dataset. We extract the feature using the second resid-
ual block output from the ImageNet pretrained on ResNet18 [6]
with a channel size of 128. For 4 domains of the PACS dataset,
including Art, Cartoon, Photo, and Sketch, we select 64 cases
from every category (7 categories in total) under each domain.
Therefore, the data samples to calculate the correlation matrix is
7× 4× 64 = 1792 >> 128.

In reevaluating feature statistics augmentation, we ob-
serve that both MixStyle [50] and pAdaIN [22] limit their
augmentations within the original feature space, preserving
either channel information or channel combinations respec-
tively. DSU [18] attempts to exceed this limitation via un-
certainty quantification, but hinges on strict orthogonality
between channel feature statistics. Our proposed model,
CSU, breaks these boundaries by generating feature statis-
tics beyond the training domain while preserving channel
correlations, offering a more robust feature augmentation.
CSU builds upon the strengths of these strategies and ad-
dresses their limitations, significantly advancing the field
of feature statistics augmentation. There are some other
style augmentation methods like AdverStyle [42] or Style
Neophile [11]. However, direct mathematical correlation
relationship analysis for these methods is not feasible due
to complex adversarial training or distribution selection.

3.2. Modeling correlated style uncertainty
Given that the correlation matrix is real, symmetric, and

positive semi-definite, then we can apply eigenvalue decom-
position on Σµ,Σσ to analyze its subspaces as:

Σµ = Qµdiag(Λµ)Q
T
µ , (5)

Σσ = Qσdiag(Λσ)Q
T
σ , (6)

QµQ
T
µ = QσQ

T
σ = I, (7)

Λµ,Λσ ∈ RC , Qµ, Qσ ∈ RC×C , (8)

where Λµ,i ⩾ Λµ,j ⩾ 0 , Λσ,i ⩾ Λσ,j ⩾ 0 (i > j)
represent the sorted eigenvalues, and Qµ, Qσ are the cor-
responding eigenvectors. The eigenvector corresponding to
the largest eigenvalue represents the direction that we could
apply dense augmentation. Eigenvectors corresponding to
the eigenvalues of 0 or close to 0 are not considered in the
data augmentation process due to low variance across such
directions within the dataset.

Assuming that the µ, σ still follows the multi-variable
Gaussian distribution, and kµ, kσ represent the independent
variable number (or the rank of the corresponding covari-
ance matrix), then we can represent the probability distribu-
tion function as:

fµ =
1

(2π)kµ det∗(Σµ)
exp−(µ−E(µ))TΣ+

µ (µ−E(µ)), (9)

fσ =
1

(2π)kσ det∗(Σσ)
exp−(σ−E(σ))TΣ+

σ (σ−E(σ)), (10)

where the det∗ is the pseudo-determinant and Σ+ is the gen-
eralized inverse. Based on this distribution function, we fur-
ther derive the correlated uncertainty augmentation after we
sample ϵµ, ϵσ ∈ RN×C from the standard Gaussian distri-
bution Y ∼ N (0, I) as follow:

Pµ = Qµdiag(Λµ)
1
2QT

µ , (11)

Pσ = Qσdiag(Λσ)
1
2QT

σ , (12)
ϵ̂µ = ϵµPµ, ϵ̂µ = ϵσPσ. (13)

Essentially, we determine the transform matrix P such that
the covariance matrix Σ = PPT as shown in Eq.11-12, and
these transformation matrices allow us to maintain the cor-
relation. We sample the correlated perturbations ϵ̂ ∈ RN×C

from independent Gaussian noise ϵ ∈ RN×C as shown in
Eq.13. Note the covariance matrix:

Σ = PPT = Qdiag(Λµ)
1
2QT (Qdiag(Λµ)

1
2QT )T

= Qdiag(Λµ)
1
2 (Qdiag(Λµ)

1
2 )T .

These two transformations Qdiag(Λµ)
1
2QT , Qdiag(Λµ)

1
2

both work in principle. However, in practice, if we use
the standard format of eigen-decomposition, stochastic axis
swapping in the eigenvector will not influence this decom-
position, but it can lead to unstable training. Thus, we apply
the decomposition trick in the format of Qdiag(Λµ)

1
2QT

rather than using only one set of eigenvectors Qdiag(Λµ)
1
2

to avoid the random flip issue in traditional eigenvalue de-
composition [8]. While we derive ϵµ, ϵσ from C inde-
pendent normal variables, the resulting ϵ̂µ, ϵ̂µ contain only
kµ, kσ independent components, corresponding to the non-
zero components of eigenvalues. It is also worth noticing
that the computation of eigenvalue decomposition is con-
ducted by the torch operator with a complexity of ∼ O(N3)
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Figure 3. Visualization of feature statistics augmentation using correlated style uncertainty (CSU). Given the intermediate features extracted
from the network, we first estimate the covariance matrix of feature statistics and decompose the covariance matrix as described in Sec 3.2.
Based on this decomposition, we could generate correlated augmentation from the standard Gaussian distribution that shares identical
distribution as the original domain. Then, we update raw data feature statistics by adding this correlated augmentation. Finally, we restore
the feature statistics back to the normalized features and achieve the augmented features.

in practice [30]. Given the computation is conducted in
polynomial time complexity and N < 512 for most cases,
the the extra time required is negligible.

3.3. Style augmentation with CSU
Based on the previous two sections, we now present the

style augmentation with correlated style uncertainty as fol-
lows:

β(x) = µ(x) + λ ∗ ϵ̂µ, (14)
γ(x) = σ(x) + λ ∗ ϵ̂σ, (15)

where λ ∼ Beta(α, α) represents the augmentation inten-
sity generated from the Beta distribution. Hyperparameter
α controls the shape of the distribution. In the ablation ex-
periments, we further show the influence of hyperparameter
selections on the final performance. We can understand the
equation in one more intuitive way, the first part is to pro-
vide in-domain samples to cover the whole training domain,
and the second is to provide the extrapolation while main-
taining the same data distribution.

β(x) = µ(x)︸︷︷︸
In Domain Sample

+ λ ∗ ϵ̂µ︸ ︷︷ ︸
Out Domain extrapolation

.

The final augmented instance feature can be defined as:

CSU(x) = γ(x)(
x− µ(x)

σ(x)
) + β(x). (16)

This plug-and-play module can be easily inserted into any
current framework. We provide pseudo-code (PyTroch) in
the supplementary materials.

4. Experiments
4.1. Multi-domain Classification Tasks

We validate our model’s performance on various mul-
tidomain classification tasks, including PACS, Office-
Home, and Camelyon17. Figure 4 shows some examples
with observable domain shifts within the same class. In all
experiments, the domain tags are agnostic. Following the
MixStyle, we adopt the ResNet-18 [7] with ImageNet [5]
pre-training as the backbone for classification. We follow
the Leave-One-Domain-Out strategy, which leaves one do-
main out for evaluation and the rest of the domains par-
ticipating in the training. Adhering to a fair evaluation
framework, we implement the multi-domain classification
DASSL setup widely embraced in the works of Zhou et
al. [48] for comparison. The batch size is set as 64. We con-
duct all the experiments on 2 NVIDIA A6000 GPU based
on PyTorch [23] framework.

4.1.1 PACS classification
PACS [14] is a widely used benchmark dataset for DG,

which contains four domains: Photo (1,670 images), Art
Painting (2,048 images), Cartoons (2,344 images), and
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(a) PACS Dataset (b) Office-Home Dataset (c) Camelyon17 Dataset

Figure 4. Some examples from multi-domain classification includ-
ing (a) PACS, (b) Office-Home, and (c) Camelyon17 dataset.

Method Reference Art Cartoon Photo Sketch Average(%)
Baseline - 74.3 76.7 96.4 68.7 79.0

Mixup [39] ICLR 2018 76.8 74.9 95.8 66.6 78.5
Manifold Mixup [32] ICML 2019 75.6 70.1 93.5 65.4 76.2

CutMix [38] ICCV 2019 74.6 71.8 95.6 65.3 76.8
JiGen [2] CVPR 2019 79.4 75.3 96.0 71.6 80.5
RSC [10] ECCV 2020 78.9 76.9 94.1 76.8 81.7

L2A-OT [49] ECCV 2020 83.3 78.2 96.2 76.3 82.8
SagNet [21] CVPR 2021 83.6 77.7 95.5 76.3 83.3
pAdaIN [22] CVPR 2021 81.7 76.6 96.3 75.1 82.5
SFA-A [17] ICCV2021 81.2 77.8 93.9 73.7 81.7

MixStyle [50] ICLR 2021 82.3 79.0 96.3 73.8 82.8
DSU [18] ICLR 2022 83.6 79.6 95.8 77.6 84.1

CSU (Ours) - 85.0 81.0 96.3 78.4 85.2

Table 1. Experimental results on the PACS multi-domain classifi-
cation task. CSU achieves around highly signifiant improvements
over the baseline in Art, Cartoon, and Sketch domains, respec-
tively, as: 14.3%, 5.6%, and 12.2%. Besides, CSU also shows
superiority over other methods, which demonstrates its effective-
ness. α is set as 0.1.

Sketches (3,929 images). Each domain consists of seven
categories for classification tasks. These domain shifts are
highly suitable for validating the effectiveness of the DG al-
gorithms. Here, we compare our model’s performance with
other SOTA methods, and all the evaluation metrics indicate
the reported value by default.

As detailed in Table 1, our experimental outcomes re-
veal a significant improvement over other methodologies,
underscoring the robustness of the CSU. We observe an in-
crease of 14.3%, 5.6%, and 12.2% over the baseline in Art,
Cartoon, and Sketch domains, respectively. Overall, CSU
has a nearly 7.8% improvement in average accuracy across
four domains. It should be also noted that we adopted the
pre-trained model on ImageNet; therefore, it would be hard
to generate significant improvement over the baseline in the
Photo domain (As discussed in [36]), as this is expected.
Nevertheless, we can still preserve the most dominant fea-
tures by taking advantage of correlation modeling. Con-
sequently, we achieve a performance drop of only around
0.1% compared with other methods. To guarantee the reli-
ability of the reported value, we conduct training stability
analysis in the supplementary materials.

We also notice that there are some domain generalization
works are developed based on the DomainBed framework.
While direct results comparison is not feasible, we still pro-
vide some results discussion here. Among these works,

like [35], the author introduced amplitude mix which lin-
early interpolates between the amplitude spectrum of two
images to achieve data augmentation. The author achieved
one classification accuracy of 84.51% with ResNet18 which
is lower than our performance, while the baseline method
achieved one accuracy of 79.9% which is higher than our
performance. [11] achieve one classification accuracy of
84.5% with ResNet18 by adaptively synthesizing diverse
style information with a greedy algorithm while noting that
the baseline model performance is also 79.9% [43] pro-
poses to perform exact feature distribution matching in the
image feature space and achieve one classification perfor-
mance of 83.9 with ResNet18 while the baseline method
achieves one performance of 79.5% [3] shows that the ef-
fect of the pre-trained model with mutual-information regu-
larization can improve the out-of-distribution improvement,
which is orthogonal to all previous methods. [37] propose a
novel proxy-based contrastive learning method by replacing
the sample-to-sample relations with proxy-to-sample rela-
tions. This method achieves one classification accuracy of
88.7% with ResNet50, with ERM showing one performance
of 85.5%.

4.1.2 Office-Home classification

Office-Home [31] is another benchmark dataset for DG,
containing four domains: Art, Clipart, Product, and Real-
World, and each domain consists of 65 categories. The
dataset contains 15,500 images with an average of around
70 photos per class. Similarly, we compare our model’s
performance with other SOTA methods.

Method Art Clipart Product Real Average(%)
Baseline 58.8 48.3 74.2 76.2 64.4

Mixup [39] 58.2 49.3 74.7 76.1 64.6
CrossGrad [28] 58.4 49.4 73.9 75.8 64.4

Manifold Mixup [32] 56.2 46.3 73.6 75.2 62.8
CutMix [38] 57.9 48.3 74.5 75.6 64.1

RSC [10] 58.4 47.9 71.6 74.5 63.1
L2A-OT [49] 60.6 50.1 74.8 77.0 65.6

MixStyle [50] 58.7 53.4 74.2 75.9 65.5
DSU [18] 60.2 54.8 74.1 75.1 66.1

CSU (Ours) 61.3 54.9 74.9 76.1 66.8

Table 2. Experimental results on Office-Home multi-domain clas-
sification task. We achieve around 4.3%, 13.6%, 0.9% improve-
ment over the baseline in the Art, Clipart, and Product domain,
respectively. CSU consistently outperforms the other strong base-
line models with considerable margins (α = 0.4)

As shown in Table 2, CSU achieves around
4.3%, 13.6%, 0.9% improvement over the baseline in
Art, Clipart, and Product domain, respectively. On average,
CSU shows 3.7% improvement over the baseline across
four domains. On the other hand, improving the Real-world
images in the PACS dataset is hard due to the same reason
given before. Despite this difficulty, CSU remains with a
strong performance with only 0.1% drop.
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Method H1 H2 H3 H4 H5 Average(%)
Baseline 95.3 91.4 89.5 96.2 94.6 93.4

MixStyle [50] 96.1 91.2 93.0 95.0 92.7 93.6
pAdaIN [22] 96.6 93.0 94.7 95.2 94.0 94.7

DSU [18] 96.8 93.3 91.7 96.4 94.4 94.5
CSU (Ours) 96.7 93.8 94.2 95.5 95.5 95.1

Table 3. Experimental results on Camelyon17 multi-domain clas-
sification task. H1-H5 represents five different hospitals. We can
find that CSU outperforms other methods (α = 0.3).

Model Market To Duke Duke To Market
ResNet-50 mAP R1 R5 R10 mAP R1 R5 R10
Baseline 19.3 35.4 50.4 56.4 20.4 45.2 63.6 70.9

RandomErase [47] 14.3 27.8 42.6 49.1 16.1 38.5 56.8 64.5
DropBlock [50] 18.2 33.2 49.1 56.3 19.7 45.3 62.1 69.1
MixStyle [50] 23.8 42.2 58.8 64.8 24.1 51.5 69.4 76.2
pAdaIN [22] 22.0 41.4 56.4 62 24.1 52.1 68.8 75.5

DSU [18] 21.2 40.5 56 62.5 24.0 51.7 70.6 77.3
CSU (Ours) 24.5 44.1 60.3 65.9 24.4 52.4 71.4 78.2

OSNet mAP R1 R5 R10 mAP R1 R5 R10
Baseline 25.9 44.7 59.6 65.4 24.0 52.2 67.5 74.7

RandomErase [47] 20.5 36.2 52.3 59.3 22.4 49.1 66.1 73.0
DropBlock [50] 23.1 41.5 56.5 62.5 21.7 48.2 65.4 71.3
MixStyle [50] 27.2 48.2 62.7 68.4 27.8 58.1 74.0 81.0
pAdaIN [22] 28.3 48.8 62.7 68.1 27.6 57.5 74.2 80.3

DSU [18] 29.0 51.0 65.0 70.4 26.1 57.2 74.6 80.7
CSU (Ours) 31.1 53.1 67.9 76.3 29.8 60.1 77.3 83.4

Table 4. Experimental results on the Duke-Market1501 Instance
Retrieval Datasets. CSU achieves around 26.9%, 19.6% advance-
ment over the baseline in mAP value using the ResNet-50 model in
the Market1501 to Duke and the Duke to Market1501 experiment,
correspondingly. Likewise, CSU achieves around 20.1%, 24.2%
improvement for the OSNet model experiment. We could also
observe similar advancements in ranking accuracy, and CSU
achieves impressive improvement over other methods.

4.1.3 Camelyon17 classification

Medical image analysis often suffers the most from do-
main shifting, given that multiple parameters, like the im-
age acquisition device, and protocol can induce signifi-
cant domain shift. We validate the model’s performance
on the challenging Camelyon17 dataset [1], containing im-
ages from five medical centers. This dataset consists of the
histopathological images as input and the labels indicating
whether the central region includes any tumor tissue. Due to
lacking reported performance from the current literature, we
conduct this experiment from scratch based on the WILDS
framework proposed by Koh [13]. Besides the baseline, we
compare our model with three state-of-art strategies, includ-
ing the MixStyle [50], pAdaIN [22], DSU [18]. For a fair
comparison, we directly use the official implementation of
each method without any modifications.

Table 3 proves the effectiveness of our model. CSU
achieves impressive improvement compared with the base-
line or other style augmentation methods. This indicates
that by taking advantage of correlation modeling, CSU can
help induce a more generalized model even with extremely
challenging medical data.

4.2. Instance Retrieval Experiments
The undertaking of person re-identification, which in-

volves the cross-camera recognition of individuals, poses
a substantial domain generalization challenge. Consid-
ering each distinct camera output as its own unique do-
main amplifies the intricacy inherent to the person re-
identification task. Following previous research, we con-
ducted this experiment on the commonly used Duke [25]
and Market1501 [45] datasets. To evaluate the model’s gen-
eralizability, we take one dataset as training and test the
performance on the other domain. The camera data from
the test domain does not participate in any training process.
We adopt the exact framework implementation of MixStyle
and test the CSU influence on the ResNet50 [7] and OS-
Net [49]. Similarly, ranking accuracy and mean average
precision (mAP) are performance measures. For a fair com-
parison, we repeat the pAdaIN and DSU experiments on the
same framework with the MixStyle and use the best config-
uration reported in the original paper.

Table 4 shows the experiment results using two mod-
els in the two domains. We could observe that CSU
outperforms other methods by a large margin. CSU
achieves around 26.9%, 19.6% advancement in mAP using
the ResNet-50 model in the Market1501 to Duke and the
Duke to Market1501 experiment, correspondingly. Simi-
larly, CSU achieves around 20.1%, 24.2% improvement for
the OSNet model experiment. We could also observe sim-
ilar advancements in ranking accuracy, and CSU achieves
impressive improvement over other methods. Nevertheless,
to show the effectiveness of CSU rather than position fine-
tuning, we insert the permutation in all positions as de-
scribed in Sec 4.3. The supplementary materials show that
changing the inserting position can achieve even more sig-
nificant performance advancement.

4.3. Ablation Experiments
Insert Position Selection: To answer the question of

where we should insert the CSU, we conduct comprehen-
sive experiments on the PACS and Office-Home datasets us-
ing the ResNet18 structure. We investigate all possible posi-
tions of ResNet18, including the first Convolution, first Max
Pooling, and 1, 2, 3, and 4 Res-block, which are named 0-5,
respectively. We divide the experiment into several groups
according to the inserted CSU number. Within each group,
we shift the start position one by one from 0 to end. For
example, for the group containing 2 CSU blocks, we will
have 01, 12, 23, 34, and 45 potential combinations and five
comparison experiments in total. To avoid the influence of
hyperparameters, we set α = 0.3 for all experiments. Thus,
we can reasonably and adequately compare the inserting po-
sition’s influence on final performance.

Figure 5 shows the ablation experiment results. Inserting
6 blocks of CSU in all potential positions achieves the best
results for the PACS dataset while inserting 4 blocks of CSU
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Figure 5. Influence of inserting position. Inserting 6 blocks of CSU in all potential positions achieves the best results for the PACS dataset
while for the Office-Home dataset, inserting 4 blocks of CSU in the last 4 positions achieves the best results. The performance after
inserting the CSU model always shows superiority over the baseline by a large margin regardless of the inserting number or position.

in the last 4 positions achieves the best results for the Office-
Home dataset. Within each group of a fixed number of CSU
blocks, the performance tends to increase when we start the
inserting position at the medium blocks. This trend is dif-
ferent with the MixStyle which the model prefers the first
several blocks [50]. We explain this phenomenon as CSU
can provide more reasonable feature (statistics) augmenta-
tion due to correlation preservation. This preservation will
avoid information loss in the medium or last blocks. We can
also notice that compared with inserting 4, 5, and 6 blocks
of CSU, inserting 2, or 3 blocks of CSU can not achieve
comparable performance. This indicates that a more signif-
icant number of CSU blocks can be helpful to increase the
model’s generalization ability due to accumulated correla-
tions over the blocks. It is also worth noting that no matter
how we choose the inserting position, the performance of
the CSU model always shows superiority over the baseline
by a large margin. This firmly proves the effectiveness of
the proposed model.

Hyper-parameter Selection: As described in the pre-
vious section, the hyper-parameter alpha determines the in-
tensity of augmentation during training by manipulating the
shape of the Beta distribution. Here, we show the influence
of alpha on the PACS, Office-Home using the ResNet18
structure. Similarly, to avoid the influence of different in-
serting positions, we insert CSU block in all positions for
every experiment. We select α from 0.1, 0.2, 0.3, 0.4, 0.5,
0.7, and 0.9 for one comprehensive experiment. As shown
in Figure 6, we can find that a smaller number of α < 0.5
always performs better than the relatively larger number
(> 0.5). Based on these experiment results, we recommend
selecting the alpha from 0.1, 0.2, 0.3, and 0.4, and the best
configuration may vary according to the tasks.

Effect of Batch Size: The batch size could have a no-
table impact on the accuracy of correlation data, making it
critical to scrutinize its effect on the final model’s gener-
alizability. Accordingly, we’ve introduced the CSU at ev-
ery stage, as per the earlier section, and set a fixed value of
α = 0.3 in all the experiments. We compare the model’s
performance with a batch size of 16, 32, 64, 128, 256, and
512. Figure 7 shows the experimental result. We found that
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Figure 6. Influence of hyper-parameters selection. A smaller num-
ber of α < 0.5 performs better. Red indicates the best result.
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Figure 7. Effect of batch size on the two classification tasks. Too
small or large batch sizes can be toxic for DG. Red indicates the
best result.

it might be hard to estimate an accurate correlation when
the batch size is too small. Similarly, when the batch size is
too large, the network tends to converge to sharp minimiz-
ers of the training and testing functions, leading to poorer
generalizations, as shown in previous research [12].

5. Conclusion
In this paper, we introduce the Correlated Style Uncer-

tainty (CSU), a novel domain generalization approach that
transcends linear interpolation while upholding the corre-
lation among feature channels. With detailed and exhaus-
tive ablation studies, we’ve determined the optimal position
for integrating the CSU model, assessed the impact of sam-
pling hyperparameters, and evaluated the ideal batch size
for yielding a more universally applicable model. Com-
prehensive experiments across numerous datasets corrobo-
rate that CSU model notably enhances the model’s ability
to generalize. This research is expected to catalyze further
in-depth studies on feature statistics augmentation in future.

This work is supported by NIH R01-CA246704,
R01-CA240639, R15-EB030356, R03-EB032943, U01-
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