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Abstract

Generative models have demonstrated revolutionary

success in various visual creation tasks, but in the mean-

time, they have been exposed to the threat of leaking private

information of their training data. Several membership in-

ference attacks (MIAs) have been proposed to exhibit the

privacy vulnerability of generative models by classifying a

query image as a training dataset member or nonmember.

However, these attacks suffer from major limitations, such

as requiring shadow models and white-box access, and ei-

ther ignoring or only focusing on the unique property of

diffusion models, which block their generalization to mul-

tiple generative models. In contrast, we propose the first

generalized membership inference attack against a variety

of generative models such as generative adversarial net-

works, [variational] autoencoders, implicit functions, and

the emerging diffusion models. We leverage only gener-

ated distributions from target generators and auxiliary non-

member datasets, therefore regarding target generators as

black boxes and agnostic to their architectures or applica-

tion scenarios. Experiments validate that all the generative

models are vulnerable to our attack. For instance, our work

achieves attack AUC > 0.99 against DDPM, DDIM, and

FastDPM trained on CIFAR-10 and CelebA. And the attack

against VQGAN, LDM (for the text-conditional generation),

and LIIF achieves AUC > 0.90. As a result, we appeal to

our community to be aware of such privacy leakage risks

when designing and publishing generative models.
1

1. Introduction
The recent arms race in visual generation has reached a

new peak. Dall-E-2 [43], Imagen [46], Parti [57], and Sta-
ble Diffusion [44], driven by big data and empowered by
deep generative models, have emerged one after another in
a short period of time to showcase their improved power. In
the backend, generative adversarial networks (GANs) [21],

1Code at https://github.com/minxingzhang/MIAGM

[variational] autoencoders ([V]AEs) [7, 28], implicit func-
tions (IFs) [38], and the emerging denoising diffusion prob-
abilistic models (DDPMs) [26] are four representative mile-
stones. While we enjoy the benefits of these technologies,
the threats of privacy leaks [6, 13, 27, 64] simultaneously
come with them and can be easily overlooked. And privacy
leakages will get severe especially when data are misused,
e.g. the DeepMind project.2

To this end, we aim to expose the potential privacy risks
from generative models through the lens of membership in-
ference attacks (MIAs), which is by far one of the most
popular and powerful techniques [47, 49]. MIAs target to
infer whether a query sample is in the training set of the
target model or not. Most existing MIAs aim at discrim-
inative models [11, 16, 33, 60], which cannot directly ex-
tend to generative models due to the distinct architectures.
A few existing MIAs explore privacy risks in generative
models [6, 13, 19, 22]. This kind of attack is worth the
attention due to multifold reasons: Malicious adversaries
can leverage MIAs to cause severe consequences. For in-
stance, GANs are applicable to medical images [55] where
the training data (i.e., the medical history of patients) is
sensitive, and the privacy leakage may threaten the target
individual’s life. Meanwhile, MIAs can also be used for
benign purposes such as auditing, i.e. quantitatively assess-
ing whether licensed data samples are illegally pirated for
generator training or whether private information is mis-
used without permission. For instance, everyone can au-
dit whether their private photo is involved in any dataset on
which generative models can be trained.3 Moreover, MIAs
are commonly used as the building block for more sophisti-
cated attacks, which makes it an important topic and has at-
tracted lots of attention in recent years. For instance, MIAs
can be an important module for the holistic risk assessment
of generative models [36].

However, the applicable scope of existing MIAs against
generative models is limited in two aspects. First, these

2https://news.sky.com/story/google-received-1-6-million-nhs-patients-
data-on-an-inappropriate-legal-basis-10879142

3https://twitter.com/LapineDeLaTerre/status/1570889343845404672
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Figure 1. The framework of our membership inference attack against a target generative model.

works are designed under certain attack assumptions, e.g.
requiring white-box access and shadow models [6, 31].
Second, they fail to fit a variety of generative applica-
tions [13, 19]. Concretely, most of these works ignore the
diversity property of DDPMs, which hinders their applica-
tion in state-of-the-art generative models; on the contrary,
a few recent works only take advantage of the unique fea-
tures of DDPMS, but do not take other generative models
into consideration, i.e., GANs, [V]AEs, and IFs. These lim-
itations motivate researchers to propose more practical and
generalized MIAs.

In this paper, utilizing the generated distribution learned
from the target generator’s outputs, we propose a general-
ized membership inference attack against various genera-
tive models in a variety of applications. Compared to ex-
isting attacks, our method has three main advantages: (i)
Relaxed assumptions. Our work assumes that the attacker
only has black-box access to target models. That is, the
attacker only needs to query target models in an API man-
ner. (ii) Computationally efficient. Contrary to existing
attacks, our method does not require training shadow mod-
els, which makes the method computationally efficient. (iii)
Generalizability. Our attack can be applied to a variety of
generative models including but not limited to the state-of-
the-art DDPMs, whereas previous MIA designs are speci-
fied to certain model variants, for example, Azadmanesh et
al. only evaluate privacy risks of GANs [6] and Duan et
al. only focus on DDPMs [19]. Besides, generalizability
also benefits from our relaxed assumptions. The black-box
access represents a common scenario in practice, based on
which our attack is independent of generator architectures,
indicating that our attack is applicable to various generative
models.

As Fig. 1 shows, we use generated samples as training
positives and auxiliary samples as training negatives. In par-
ticular, when attacking conditional generators, the inputs to
the target generators are also sampled from the auxiliary
dataset but disjoint with training negatives. In this case,
still, the generated samples leak the information of mem-
bers that were used to train the target generator. This relies
on the target generator memorizing the training distribution
due to overfitting. Then the distribution of generated images
is to some extent an approximation of the training distribu-
tion. Thus, the attack model can indirectly learn the target
training distribution from the generated images, and further
predict the membership of the target generator.

Regarding auxiliary datasets, they are involved due to a
currently prevalent setting. That is, to train large-scale gen-
erative models, model owners usually collect data as much
as possible, and use the whole dataset in the training pro-
cess. In this case, the adversary’s accessible data are all tar-
get training data, i.e., members, and no left and unused data
from the same dataset can be used as negative training sam-
ples for the attack model. To this end, the adversary collects
auxiliary datasets of similar domains as member samples.

We extensively evaluate our MIA method against four
widely utilized generative model frameworks (GANs,
[V]AEs, IFs, DDPMs) covering ten generation applications
(unconditional [26, 29, 51], class-conditional [20], text-
conditional [45] and semantic-conditional [35] generation,
image colorization [61], super resolution [15], image in-
painting [32, 45], stylization [40], denoising [58], and ar-
tifact reduction [58]). For the pioneering attacks against
unconditional DDPM, we cover the original DDPM [26],
DDIM [51], and FastDPM [29]. Experimental results show
the efficacy of our attacks on all the scenarios. For in-
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stance, our work achieves attack AUC > 0.99 against
DDPM, DDIM, and FastDPM trained on CIFAR-10 and
CelebA. And the attack against VQGAN, LDM (in the ap-
plication of text-conditional generation), and LIIF achieves
AUC > 0.90. Further studies demonstrate that the gener-
ative models are still vulnerable to our attack even with a
limited query budget, and the transferability makes our at-
tack a real threat in real-world scenarios.

To better understand our work, we further discuss the
membership boundary, the overlap between auxiliary and
member samples, and the feasibility of generating training
negatives.
Our contributions:
- We propose the first generalized MIA against various gen-
erative models (including GANs, [V]AEs, IFs, and state-of-
the-art DDPMs) in various visual generation applications.
- Our work is the first to exploit generated distributions
learned from the target generator’s outputs for membership
inference. Generated distributions are the common prop-
erty of generators and are independent of generator archi-
tectures. Meanwhile, our work requires fewer assumptions
and is more computationally efficient than previous attacks.
These advantages earn our attack a practical and general ap-
plication scope.
- We empirically demonstrate the efficacy of our attack in
all the scenarios, which in turn validate the generalizability
and practical usage of our attacks. Besides, further studies
showcase more advantageous properties, such as effective-
ness with a limited query budget and transferability, which
enhance the practical significance of the attack.
- Our work fills the blank of understanding the common pri-
vacy risks of various generative models, which motivates
researchers to take privacy threats into concern when de-
signing and publishing generative models.

2. Related Works
Generative models and applications: In this work, we
consider the widely used generative models, i.e., genera-
tive adversarial networks (GANs) [5, 8, 41, 54, 59] which
utilize the arms race between generators and discrimina-
tors to improve the quality of generated images; [varia-
tional] autoencoders ([V]AEs) [14, 24, 28, 50, 52, 53] which
restore the input images from latent representations sam-
pled from estimated normal distributions; implicit func-
tions (IFs) [9, 15, 38, 39] which circumvent the need for
an explicit likelihood; and diffusion probabilistic models
(DDPMs) [26,29,43,45,46,51] which denoise noise images
step by step until being clean images. These above mod-
els cast significant success towards a variety of visual gen-
eration applications, including unconditional [26, 29, 51],
class-conditional [20], text-conditional [45] and semantic-
conditional [35] generation, image colorization [61], super
resolution [15], image inpainting [32, 45], stylization [40],

denoising [58], and artifact reduction [58]. And these appli-
cations require different kinds of inputs, i.e., noises, texts,
and images. We, therefore, nest our experiments in these
applications to investigate the efficacy and generalizability
of our attacks against various generative models.
Membership inference attacks against generative mod-
els: Many existing MIAs against generative models focus
on GAN- and [V]AE-based generative models, which limits
the applicable scope of membership inference. For instance,
Hayes et al. aim at several GANs and a single [V]AE [22];
Hilprecht et al. propose two types of MIAs, one appli-
cable to GANs and [V]AEs while the other specific for
[V]AEs [25]; Chen et al. present the first taxonomy of mem-
bership inference, which mainly focuses on GANs [13]; and
Azadmanesh et al. conduct a white-box membership infer-
ence against GANs [6]. Unfortunately, these works can-
not generalize well to all aforementioned generative mod-
els and applications. For instance, due to the diverse prop-
erty of DDPMs, the attacks proposed by Chen et al. cannot
achieve performances as strong as against GANs. Recently,
a few works explore the privacy issues of DDPMs. For in-
stance, Duan et al. utilize step-wise errors to infer member-
ship [19]. However, this work relies on the unique feature of
DDPMs, which is not available to other generative models,
i.e., GANs, [V]AEs, and IFs; Carlini et al. present the train-
ing data extraction of DDPMs [12], which is another pop-
ular topic regarding privacy leakage but aims at a different
goal of our attack. To propose a generalized membership in-
ference attack, we take advantage of generated distributions
that are architecture-agnostic. Thus our work is applicable
to various generative models and applications.

3. Our Attack
3.1. Problem Statement

In this paper, we study the problem of membership infer-
ence attacks against generative models. The goal is to infer
whether a query image xquery belongs to the training set (i.e.,
members) of the target generative model Gtarget. The attack
A can be formulated as follow:

A(xquery|Gtarget,K) ! {member, non-member} (1)

where K denotes extra information known to the attacker,
and members and non-members are the data samples used
and not used to train the target generator, respectively. In
our work, we assume the attacker has access to an auxil-
iary dataset Daux of similar domains as the training dataset
Dtrain (i.e., members), which will be explained in Sec. 3.3.
Hereby K .

= Daux. The auxiliary dataset Daux is separated
into two disjoint parts, i.e., Din

aux for querying the condi-
tional target generator and Dout

aux as training negatives for the
attack model, which will be detailed in the following.
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3.2. Methodology
Fig. 1 depicts the general framework of our attack. The

attack process consists of two steps: image generation and
membership inference, with the former one being the core
step of our attack.
Image generation: To infer the membership of the target
generator, the attacker needs to collect training positives
and negatives for the establishment of their attack model.
As mentioned in Sec. 3.1, the training negatives are derived
from Dout

aux, formally:

8x 2 Dout
aux, we have (x, non-member) (2)

Thus, the current challenge is how to obtain quantities of
training positives, since the member samples are inacces-
sible to the adversary. Due to overfitting, the target gen-
erator memorizes its training distribution. In that case, the
generated images can reflect the pattern of real members
to a large extent. Consequently, the samples generated by
the target generator are used as the training positives: (i)
For unconditional generation tasks, we query the generative
model with Gaussian noise, i.e., z ⇠ N (0, 1). Then we
obtain a positive training pair, i.e., (Gtarget(z),member), for
the attack model; (ii) For conditional generation tasks, the
target generator receives information to guide the genera-
tion process. As an example, we illustrate the case where
the input is image. As mentioned in Sec. 3.1, we query the
target generator using the data sampled from Din

aux. Then the
training positives are formulated as:

8x 2 Din
aux, we have (Gtarget(x),member) (3)

Note that our attack is architecture- and task-agnostic, thus
the input to the generative model could be other types of
information, like text sentences, images with artifacts, and
grayscale images.
Membership inference: The adversary establishes a binary
classifier as the attack model A in a supervised way using
the training positives and negatives constructed in the pre-
vious step. Then, the adversary can infer the membership
status of a query sample xquery. Note that, in the inference
procedure, the adversary does not need to interact with the
target generative model. Specifically, the adversary directly
queries the trained attack model A with the query sample
xquery. And the membership status is inferred according to
the output of the attack model. This process can be formu-
lated as:

A(xquery) ! yquery (4)

where yquery 2 {0, 1} indicates the membership status of
the query sample xquery.

Different from previous works that rely on strong as-
sumptions (i.e., white-box access to the target generator),
we only require black-box access, which means that inter-
actions with the generator by the attacker can only happen

through an API manner. And thanks to the black-box ac-
cess, our attack is architecture-agnostic and can be general-
ized to a variety of generative models. To better understand
our work, we empirically validate this relaxed and practical
assumption by extensive experiments in Sec. 4, and clarify
the superiority of our attack as follows:
The effectiveness: Our attack utilizes generated distribu-
tions learned from the target generator’s outputs to conduct
membership inference. This is because overfitting helps
the target generator remember the distribution of its train-
ing data. Thus the distribution of generated images can be
regarded as an approximate of the training distribution. In
that case, the attack model can indirectly learn the training
distribution from the generated images, and further predict
the membership of the target generator. Note that, image
generation is a basic function of generative models, so gen-
erated images are of course available via black-box access
in all generative applications.
The advantages: (i) Relaxed assumptions. Our work only
assumes black-box access to the target generator, which is
a prevalent setting in practice and thus largely enhances the
attacker’s ability compared to white-box access. (ii) Com-

putationally efficient. Different from many existing works,
no requirement of training shadow models makes our ap-
proach more computationally efficient. (iii) Generalizabil-

ity. Not like previous MIAs that ignore or only focus on
DDPMs, our method is applicable to all the widely used
generative models, i.e., GANs, [V]AEs, IFs, and DDPMs.

3.3. Auxiliary Datasets
As aforementioned, our approach involves an auxiliary

dataset of similar domains as the training dataset of the tar-
get generator. We will specify this in this section.
Why use auxiliary datasets? A currently prevalent setting
is that the owners of large-scale generative models usually
collect data as much as possible, and use the whole dataset
for training. In that case, the adversary’s accessible data are
all target training data, i.e., members. That is, no left and
unused data from the same dataset can be used as training
negatives for the attack model. To this end, the adversary
samples training negatives from auxiliary datasets of similar
domains as member samples.
Why similar domains? The decision of similar domains is
because the adversary is hard to obtain an auxiliary dataset
of the exact domains of the target generator, and the discus-
sion of obviously different domains is trivial. Specifically,
from the generated images, the adversary can easily esti-
mate the target domains, e.g., generated ImageNet [1] im-
ages depict dogs, cats, etc. However, the adversary’s abil-
ity might be limited by query times/cost, thus the estimated
domains would only be similar but not exactly the same.
And even if possible, it is hard to guarantee the existence of
available datasets of the exact domains, e.g. LAION. Thus,

4842



Table 1. The settings of generative applications, target generative models, and member and auxiliary datasets.

Application Target generative model Attack binary classifier
Training images Testing images

Technique Framework Training/Member dataset Positive Negative Positive Negative

Unconditional DDPM [26] DDIM [51] FastDPM [29] DDPM

CIFAR-10

G(noise)

STL-10
CelebA UTKFace

LSUN-Bedroom Wild Bedroom The
LSUN-Church Wild Church The same

Class-conditional VQGAN [20] GAN ImageNet G(class) Open Images same as
Text-conditional LDM [45] DDPM LAION G(COCO text) COCO as attacker
Semantic-conditional CC-FPSE [35] GAN COCO G(ADE20K semantics) ADE20K target training
Image colorization Colorization [61] [V]AE ImageNet G(Open Images gray) Open Images generator negative
Super resolution LIIF [15] IF CelebA-HQ G(UTKFace low res) UTKFace training but

Image inpainting MAT [32] GAN+[V]AE CelebA-HQ G(UTKFace incomplete) UTKFace dataset disjoint
LDM [45] DDPM LAION G(COCO text) COCO split

Stylization SwappingAutoencoder [40] GAN+[V]AE LSUN-Church G(Wild Church) Wild Church
Denoising MPRNet [58] [V]AE SIDD G(ImageNet noisy) ImageNet
Artifact reduction MPRNet [58] [V]AE SIDD G(ImageNet artifact) ImageNet

aiming at similar domains instead of the exact ones brings
a broader application scope. On the other hand, accord-
ing to the definition, members are the training samples of
the target generator, which means all samples that are not
used for training are non-members. In that case, the images
of obviously different domains will be easily classified as
non-members, so the challenge is about similar domains.
How to construct? Based on the estimated domain, there
are two ways to construct an auxiliary dataset: (i) Differ-
ent datasets have domain overlaps, e.g., CIFAR-10 [2] and
STL-10 [3] both contain the airplane category. Thus, the
adversary can utilize an existing dataset of similar domains.
Note that, the larger the domains of the auxiliary dataset, the
more the possibility of covering the target domains, and of
course the better. For instance, even though CIFAR-10 and
Open Images [30] both describe real-world objects, we use
Open Images as the auxiliary dataset for ImageNet since it
contains more categories; (ii) The alternative is to manually
collect auxiliary samples when no existing dataset of simi-
lar domains is available. For instance, the bedroom images
collected from the internet are used as the auxiliary dataset
for LSUN-Bedroom [56].

Ideally, there is no overlap between the auxiliary dataset
and the generator’s training data (i.e., members), otherwise,
the (part of) training negatives sampled from the auxiliary
dataset should be labeled as “members”, which is contrary
to the previous setting. However, since the member samples
are inaccessible, the adversary cannot check and guarantee
non-overlap. To this end, we conduct more explorations in
Sec. 5 to understand the influence of overlap.

4. Evaluation
4.1. Evaluation Settings

Generative applications and models: To comprehensively
understand our work, we conduct the evaluation on ten gen-
erative applications, i.e., unconditional, class-conditional,

(a) (CelebA, UTKFace) (b) (CelebA, UTKFace)

Figure 2. The image examples of different (member, auxiliary)
dataset pairs, where the images are sampled from the boldface
dataset. The complete version is in Fig. 7 (Appendix A).

text-conditional and semantic-conditional generation, im-
age colorization, super resolution, image inpainting, styl-
ization, denoising, and artifact reduction, as listed in the
first column of Tab. 1. Extensive generative techniques of
these applications are involved to measure the attack perfor-
mance in various scenarios, as shown in the second column
of the table. Specifically, DDPM [26], DDIM [51] and Fast-
DPM [29] for unconditional generation; VQGAN [20] for
class-conditional generation; LDM [45] for text-conditional
generation; CC-FPSE [35] for semantic-conditional gener-
ation; Colorization [61] for image colorization; LIIF [15]
for super resolution; MAT [32] and LDM for image in-
painting; SwappingAutoencoder [40] for stylization; MPR-
Net [58] for both denoising and artifact reduction. Re-
garding the backbone frameworks of these techniques, four
widely used generative models are covered, which corre-
sponds to the third column of the table, i.e., GANs (in-
cluding VQQGAN, CC-FPSE, MAT, and SwappingAu-
toencoder), [V]AEs (including Colorization, MAT, Swap-
pingAutoencoder, and MPRNet), IFs (including LIIF), and
DDPMs (including DDPM, DDIM, FastDPM, and LDM).
Member and auxiliary datasets: As mentioned in Sec. 3,
the adversary accesses an auxiliary dataset for each train-
ing/member dataset of target generators. Thus, we in-
troduce the dataset pairs of (member, auxiliary) used for
different applications in the other columns of Tab. 1,
and show some examples in Fig. 2 (the complete ver-
sion is shown in Fig. 7 of Appendix A): (CIFAR-10 [2],
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STL-10 [17]) ! unconditional generation; (CelebA(-
HQ) [37], UTKFace [62]) ! unconditional genera-
tion, super resolution and image inpainting; (LSUN-
Bedroom [56], Wild Bedroom) ! unconditional genera-
tion; (LSUN-Church, Wild Church) ! unconditional gen-
eration and stylization; (ImageNet [18], Open Images [30])
! class-conditional generation and image colorization;
(LAION [48], COCO [34]) ! text-conditional generation
and image inpainting; (COCO, ADE20K [63])! semantic-
conditional generation; and (SIDD [4], ImageNet) ! de-
noising and artifact reduction. These datasets are further in-
troduced in Appendix B. Even in some cases, the domains
of auxiliary datasets are not exactly the same as the mem-
bers’ as explained in Sec. 3.3, e.g., frog images in CIFAR-
10 but not in STL-10, surprisingly, our attack still works
well in all applications as shown in Sec. 4.2.
Attack model: The attack model is established based on
a pre-trained ResNet18 [23], of which the last linear layers
are fitted for binary classification, i.e., inferring the query
sample belonging to members or non-members. More train-
ing details are shown in Appendix C.
Evaluation metric: We utilize AUC as the metric to evalu-
ate attacks [13,33,47,60], of which the value is in the range
of [0.0, 1.0], and the higher the more effective. Specifically,
during the testing, only the images used to train the target
generator are regarded as positive samples while the others
are all regarded as negative samples.

4.2. Results
In this part, we evaluate the effectiveness of our attack

on ten generative applications and depict the experimental
results in Fig. 3. To better show the superiority, we com-
pare our attack with the black- and white-box attacks of
Chen et al. [13] which are one of the most popular MIAs
against generative models. Moreover, we compare our at-
tack against DDPM and DDIM with SecMI [19] which is a
recently proposed MIA work specific to diffusion models.

Fig. 3 shows that all generative scenarios are vulnera-
ble to our attack. For instance, our attack depicts consistent
efficacy with AUC > 0.99 on DDPM, DDIM, and Fast-
DPM trained on CIFAR-10 or CelebA as shown in Fig. 3a.
And the attack achieves AUC > 0.9 on VQGAN, LDM-T,
and LIIF trained on ImageNet, LAION, and CelebA-HQ,
respectively, as shown in Fig. 3b. Meanwhile, the black-
box baseline [13] only achieves AUC < 0.6. The obvious
advantages over the baselines well demonstrate the effec-
tiveness of our work in various applications, which further
indicates that our attack can effectively expose the private
information of various generative models.

An interesting finding appears in conditional generation
tasks. Specifically, our generated images (i.e., training pos-
itives for the attack model) are derived by querying the tar-
get generator using a split of an auxiliary dataset, which

indicates the generated images are associated with auxiliary
data. Even in such a non-trivial setting, surprisingly, the
boundary learned by the attack model from the generated
and auxiliary samples can also serve as an effective bound-
ary during the testing to separate member samples and an-
other split of auxiliary samples. For instance, our attack on
LIIF (for the super resolution) achieves an AUC of 0.902.
This shows the advantage of utilizing generated distribu-
tions to learn the information of member samples as men-
tioned in Sec. 3.2. In other words, the generated images,
even if not only associated with member samples, can still
expose the membership status of member samples, which
introduces a large applicable scope of our attack.

4.3. Transferability of Our Attack
In this section, we consider the transferability of our at-

tack, i.e., the attack performance when testing negatives of
the attack model are of different datasets from training neg-
atives, and evaluate it on conditional generative tasks. Con-
cretely, the attack model is established following the set-
tings in Sec. 4.1, i.e., to construct an auxiliary dataset ac-
cording to the member one, and then to generate/sample
training positives/negatives. However, during the testing
time, we do not sample negative images from the auxiliary
dataset, but from another non-member dataset, i.e., LSUN-
Bedroom in this case. As shown in Fig. 3b in red bars,
the transferability performance is comparable to the at-
tack performance in Sec. 4.2, and obviously superior to the
black-box baseline [13]. Even requiring fewer assumptions
than the white-box baseline, in most cases, our attack can
achieve stronger transferability performance. For instance,
the transferability performance of VQGAN is an AUC of
0.956 while the black- and white-box baselines only achieve
an AUC of 0.554 and 0.583, respectively. These significant
advantages further indicate the effectiveness of our attack.

4.4. Influence of the Query Budget
We further evaluate the influence of the query budget on

the attack performance. Sometimes users will be required
to pay for the query, limiting the adversary’s ability to gen-
erate unlimited images (which also influences the domains
of auxiliary datasets as mentioned in Sec. 3.3). And the
generation cost is especially expensive for DDPMs com-
pared to other generative models. Thus in this section, we
mainly focus on how the query budget influences the at-
tack performance on unconditional generation tasks imple-
mented by DDPMs. Specifically, we change the number
of generated images (i.e., training positives), from 100 to
1,000 with a step size of 100 and from 1,000 to 5,000 with
a step size of 1,000, and see the impact on the attack per-
formance. Note that, to balance the training positives and
negatives, we also control for an equal number of images
sampled from the auxiliary dataset. As Fig. 4 shows, the at-
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Figure 3. The attack performances in various generative applications. In Fig. 3a, we use CI/Ce/Be/Ch P/I/F notation in the x-axis to denote
the generator DDPM/DDIM/FastDPM trained on the dataset CIFAR-10/CelebA/Bedroom/Church. In the x-axis of Fig. 3b, “Color” and
“Swapping” are short for “Colorization” and “SwappingAutoencoder”, “LDM-T” and “LDM-I” represent LDM used for text-conditional
generation and image inpainting, and “MPRNet-D” and “MPRNet-A” are MPRNet used for denoising and artifact reduction.
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Figure 4. The attack performances of (CelebA, UTKFace) with
different query budgets in unconditional generation tasks.

tack performance advances when the number of generated
images increases, where the complete version is shown in
Fig. 8 (Appendix A). Then the attack performance saturates
when the number of training positives/negatives arrives at
700. Interestingly, even though the generation quantity is
only 100, our attack is still effective in most cases. For in-
stance, when targeting DDPM trained on CelebA, our attack
achieves an AUC of 0.703 while the black-box baseline only
achieves 0.527. This observation indicates our attack is ap-
plicable even when the query budget is insufficient.

5. Discussion
Membership Boundary: As mentioned in Sec. 3.3, all
samples that are not used to train the target generator are
non-members. That means the boundary between members
and non-members actually separates members and all other
samples. However, in Sec. 4, we only consider a single
auxiliary dataset as non-members (i.e., training and test-
ing negatives). Thus, to better understand our work, we
evaluate cases where more auxiliary datasets are involved
as non-members. As shown in Fig. 5, with more auxiliary
datasets, our attack performance of unconditional genera-
tion tasks drops but is still strong and significantly better

CI P
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Ch P CI I
Ce I

Ch I
CI F

Ce F
Ch F
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0.4

0.6

0.8

1.0

A
U
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Our Attack

Two Auxiliary Datasets

Four Auxiliary Datasets

Blackbox

Figure 5. The attack performances of unconditional generation
tasks with different numbers of auxiliary datasets, where “Two
Auxiliary Datasets” represents the original auxiliary dataset de-
scribed in Tab. 1 and Wild-Bedroom. Besides, “Four Auxil-
iary Datasets” represents STL-10, UTKFace, Wild-Bedroom, and
Wild-Church. Regarding the x-axis, the setting is the same as
Fig. 3.

than the black-box baseline [13] in most cases, while that of
conditional generation tasks shows similar results as shown
in Fig. 9 (Appendix A). This decrease is because more aux-
iliary datasets (i.e., non-members) will make the boundary
more complicated and then harder to learn by the attack
model. This finding leaves an interesting future work on
dealing with complicated boundaries.
Overlap Between Auxiliary and Member Samples: As
mentioned in Sec. 3.3, ideally, there is no overlap between
auxiliary and corresponding member samples. However,
since members are inaccessible, non-overlap is hard to guar-
antee in practice. Thus, we here explore the influence of
overlaps on our attack by mixing member samples into aux-
iliary datasets by different ratios. We can see from Fig. 6
that as expected, the smaller the overlap, the better the at-
tack performance. Surprisingly, even when a 0.1 ratio of
members is mixed into auxiliary datasets, our attack can
still achieve an AUC > 0.7 in most cases, which further
indicates the practicability and effectiveness of our work.
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Figure 6. The attack performances with different ratios of overlap
between members and auxiliary datasets.

Table 2. The attack performances with different sources of training
negatives, i.e., sampled from the auxiliary dataset or generated by
a shadow model.

Application Technique Dataset Negatives
Target Shadow Member Auxiliary Sampled Generated

Text-conditional LDM CC-FPSE LAION COCO 0.929 0.938
Image inpainting 0.894 0.741

Unconditional DDPM FastDPM CelebA UTKFace 0.997 0.995
DDIM 0.997 0.996

Table 3. The attack performances regarding of members and non-
members being from the same distribution, and measuring by the
metric proposed by [10].

Technique Dataset
Same Distribution Evaluation Metric

Ours SecMI Ours Blackbox Whitebox
TPR FPR TPR FPR TPR FPR

DDPM CelebA 0.545 0.516 0.998 0.002 0.517 0.472 0.606 0.397
DDIM 0.543 0.519 0.997 0.002 0.515 0.480 0.604 0.402

Generation of Training Negatives: As described in
Sec. 3.2, training negatives are sampled from auxiliary
datasets while training positives are generated by generative
models. Thus, we wonder about the feasibility of generat-
ing the training negatives for our attack model by a different
generative model (i.e., a shadow model) from the target gen-
erator, which also provides a guarantee of non-overlapping,
e.g., training negatives of COCO (UTKFace) are gener-
ated by CC-FPSE (FastDPM). From Tab. 2 we can see that
generating training negatives achieves a comparable perfor-
mance to our attack, yet an extra cost of generation will be
required. This indicates the practicability of simply sam-
pling training negatives from auxiliary datasets, unless aim-
ing at the non-overlapping guarantee. On the other hand, the
attack performance is shown sensitive to the choice of aux-
iliary datasets (see the first part in Sec. 5), however, finding
suitable auxiliary samples in practice might be challenging
even though we only require a similar distribution instead
of the same one. To this end, involving shadow models to
generate training negatives would help this problem.
Membership Status: To further empirically support our
method, we now evaluate a stricter assumption where mem-

bers and non-members are disjointly from the same dataset.
Specifically, we use the training and testing samples of
CelebA as members and non-members on DDPM and
DDIM respectively as shown in the “Same Distribution”
column of Tab. 3. Compared to a recent MIA against diffu-
sion models, i.e., SecMI [19], our method shows obviously
better attack performance. This result suggests a more com-
prehensive application scenario of our method.
Evaluation Metric: Carlini et al. propose that the correct-
ness of inferring members is more practically meaningful
than non-members [10]. Thus, we evaluate our attack by
true positive rate (TPR) and false positive rate (FPR), where
a higher TPR and a lower FPR derive a better membership
inference. In the “Evaluation Metric” column of Tab. 3, we
can see that our method could gain an obviously higher TPR
and lower FPR even though the accuracy gap between ours
and Whitebox is not as significant (Fig. 3a), indicating the
multi-faceted effectiveness of our method.

6. Conclusion
Generative models increasingly show their promising

talents in generating realistic and creative images. However,
the privacy risks of training data leakage introduced by them
are largely unexplored. Previous membership inference at-
tacks have proved that generative models are vulnerable to
privacy leakage by inferring whether a query sample is in
the training dataset. However, the existing works require
shadow models and/or white-box access, and ignore or only
focus on the state-of-the-art DDPMs, which limits their ap-
plication scope. In this paper, we propose the first gener-
alized membership inference attack against various gener-
ative models including GANs, [V]AEs, IFs, and DDPMs.
We only assume the adversary can obtain generated distri-
butions from target generators. Under the black-box setting,
our attack is agnostic to the architectures and applications of
generative models. Extensive experimental results show the
effectiveness of our attack against various generative mod-
els and applications. Further studies show that our attack
still works with a limited query budget, and the transfer-
ability makes our attack a real threat in real-world scenar-
ios. Consequently, we aim to call for community awareness
of the privacy protection of generative models.
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