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Abstract

Despite its extensive range of potential applications in
virtual reality and augmented reality, 3D interacting hand
pose estimation from RGB image remains a very challeng-
ing problem, due to appearance confusions between key-
points of the two hands, and severe hand-hand occlusion.
Due to their ability to capture long range relationships be-
tween keypoints, transformer-based methods have gained
popularity in the research community. However, the exist-
ing methods usually deploy tokens at keypoint level, which
inevitably results in high computational and memory com-
plexity. In this paper, we propose a simple yet novel mecha-
nism, i.e., hand-level tokenization, in our transformer based
model, where we deploy only one token for each hand. With
this novel design, we also propose a pose query enhancer
module, which can refine the pose prediction iteratively, by
focusing on features guided by previous coarse pose predic-
tions. As a result, our proposed model, Handformer2T, can
achieve high performance while maintaining lightweight.
Extensive experiments on public benchmarks demonstrate
that our model can achieve state-of-the-art performance on
interacting-hand pose estimation with higher throughput,
less memory and faster speed.

1. Introduction

3D hand pose estimation has significant applications in
various fields, including human-computer interaction, vir-
tual reality, and robotics [8, 9, 19, 27, 38–40]. It facili-
tates more natural interactions between humans and tech-
nology [10,34]. However, accurately estimating hand poses
from monocular RGB images remains challenging due to
appearance confusion between the two hands and their key-
points, along with frequent occurrences of hand-hand oc-
clusion and self-occlusion.

Heatmap-based methods have been one of the main
streams of solving the 3D hand pose estimation problem.

Figure 1. Performance comparison between our method and exist-
ing methods. The x-axis represents the model size while the y-axis
depicts mean per joint position error in millimeter. Heatmap-based
methods are draw in purple circles and regression-based methods
are in blue circles. The radius of the circle indicates the inference
speed, the smaller the faster. Two variants of our model is shown
in yellow, with different backbones.

These methods predict likelihood heatmaps for each key-
points and then obtain the final 3D keypoints positions via
argmax or soft argmax operations. However, due to the
high 3D dimension, the heatmap-based methods suffer from
computational complexity.

Other researchers have proposed to predict 3D key-
points coordinates directly, instead of relying on interme-
diate heatmaps. Previously, while having higher efficiency,
regression-based methods often underperform the heatmap-
based methods. With the emergence of Transformers in
the computer vision [1, 23, 48], regression-based methods
have prospered and started to achieve state-of-the-art per-
formance [9, 25]. Existing transformer-based methods usu-
ally assign one dedicated token for each keypoint. Since the
attention mechanism has a quadratic complexity in terms of
the number of tokens, existing methods would face substan-
tial computational challenges, especially in the scenario of
interacting hands, where the number of the keypoints dou-
bles compared to single hand scenario.
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To solve this issue, for the first time, we propose the
use of hand-level tokens instead of keypoint-level tokens.
Specifically, we deploy only one token for each hand, in-
stead of one token for each keypoint. With this novel de-
sign, we propose our lightweight transformer-based model,
Handformer2T, for interacting hand pose estimation from
a single RGB image. Since our model only utilizes two
tokens, the computational complexity can significantly re-
duced. As shown in Fig. 1, compared with state-of-the-art
methods, our model can achieve best performance in terms
of mean per joint position, while maintaining smallest size.

In detail, our network is composed of a feature extractor,
a coarse predictor and a refiner, as illustrated in Fig. 2. The
feature extractor can extract both global and local features
from the input image. With these rich features, the coarse
predictor generates an initial prediction by employ several
layers of multi-head self-attention. Then, the refiner takes
as input the image features and the initial prediction, and
improves the prediction iteratively. In particular, we pro-
pose a novel pose query enhancement mechanism for the
refiner. The input query in the refiner is obtained from a
keypoint guided feature fusion module, where the features
from the backbone are sampled with the guidance of the
previously predicted keypoint positions. In this way, the re-
finer can focus on features near the keypoints, thus improv-
ing the keypoint predictions progressively. In summary, our
main contributions are listed as following

• To the best of our knowledge, our work is the first to
propose the concept of hand-level tokenization. With
this novel design, we have proposed a lightweight
transformer based model for 3D interacting hand pose
estimation using a single RGB image.

• To capture the local information around the keypoints
of the two hands, we have proposed a novel pose query
enhancement mechanism, which can iteratively im-
prove the keypoint predictions.

• State-of-the-art performance of interacting hand pose
estimation has been achieved on two large public hand
datasets, with smaller model size and faster inference
speed.

2. Related Works
Heatmap-based vs Regression-based Pose estimation.

There exist numerous heatmap-based methods in the field of
human/hand pose estimation [16–18, 24, 28, 40, 43], where
likelihood heatmaps are employed to represent joint loca-
tions. Previous studies [12, 22, 27] employ differentiable
soft-argmax [37] operations to retrieve joint locations from
heatmaps in a differentiable manner, enabling end-to-end
training. Furthermore, [4, 26] utilize hand or finger seg-
mentations as additional supervision for joint likelihood

heatmaps. While achieving excellent performance, these
models are required to generate high-resolution features and
heatmaps, significantly increasing computational costs and
reducing throughput.

In contrast to heatmap-based methods that calculate like-
lihood heatmaps, regression-based methods compute prob-
ability distributions for joint coordinates. In the con-
text of human or hand pose estimation, few approaches
are regression-based. In human pose estimation, RLE
[15, 20, 34, 42] introduces a regression-based approach us-
ing maximum likelihood estimation, which a significant ad-
vancement in regression techniques. Building upon this,
Poseur [25] presents a two-stage regression model designed
to refine RLE results. Additionally, anchor-based meth-
ods [31, 32] classify poses into a set of K anchor poses for
human pose estimation, followed by a regression module
that refines the anchor to obtain the final prediction. For
hand pose estimation, there are fewer regression-based ap-
proaches. Two-stage methods like [4, 12] elevate 2D poses
to 3D space through regression, relying on heatmap-based
models for predicting 2D poses. A2J [9, 45] extend anchor-
based techniques to the interacting hand domain.

Lightweight Pose Estimation Models. Lightweight
models for hand pose estimation play a crucial role in appli-
cations involving human-computer interaction and gesture
recognition, but this domain remains relatively unexplored.
In this context, Santavas et al. [33] emphasize vision-based
human pose estimation for Human-Computer Interaction
(HCI) [29], while Wu et al. [44] concentrate on enhancing
real-time hand pose estimation. However, these models do
not delve into the intricacies of the interacting hand pose
challenge.

Transformer in Hand Pose Estimation. The self-
attention mechanism and the transformer model [41], have
been applied in various fields, including pose estimation.
Researchers have made significant strides [6,9,21,26] in in-
corporating transformers into this problem. However, the
self-attention mechanism involves pairwise computations
between tokens, resulting in an O(n2) complexity in terms
of time and memory [11], where n is the number of tokens.
Therefore, existing architectures face performance limita-
tions due to token number constraints.

In this context, our Handformer2T falls into the
lightweight regression-based category, utilizing the Trans-
former module. Different from prior works, we only em-
ploy two tokens as input to the transformer, significantly
reducing computational costs. Moreover, we don’t rely on
the assumptions of two hands prior, unlike previous work
[21, 47] which attempt to regress two hands, even if the
input image contains just a single hand. When the input
image contains only a single hand, the ground truth of the
other hand becomes pure noise. In such cases, if we in-
put “both hands” into QEM, our model simplifies to Poseur
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[25], which enhances coarse regression by manually gener-
ating noise and feeding it to the Transformer. The main dif-
ferences are: 1) we use Keypoint-guided features and lower
dimensions for tokens, and 2) the attention modules utilizes
two tokens instead of 2 × J tokens (J is the number of
keypoints for each hand), making our model more memory-
efficient.

3. Our Method
In this section, we present our model, Handformer2T, for

interacting hand pose estimation from a single RGB image.
The proposed Handformer2T model is a transformer-based
model, which directly outputs keypoint locations instead of
heatmaps. Importantly, for the first time, we propose to
use hand-level tokens instead of keypoint-level tokens in
the transformer-based architecture, resulting in only two to-
kens needed in our model. With this novel hand-level token
design, our model mainly consists of three parts, namely,
a feature extractor, a coarse predictor that provides an ini-
tial prediction, and an iterative refiner which benefits from
a novel pose query enhancing mechanism to improve the
coarse prediction.

Concisely, our whole model can be formulated as the fol-
lowing function

ϕ : I 7→ {p(i), u(i)}i=1,··· ,N , (1)

where I ∈ Rw×h×3 is the input RGB image, N represents
the number of multiple coarse-to-fine stages in our model,
p(i) ∈ R2J×3 and u(i) ∈ R2J×1 stand for 3D positions of
the keypoints and their corresponding uncertainties at the
i-th stage. Note that J denotes the number of keypoints of
each hand. In the following subsections, we will discuss
each component of our model in details.

3.1. Feature Extractor

The feature extractor aims to extract features that can
both represent the global and local information from the in-
put image. In our model, the feature extractor is composed
by a convolutional neural network backbone and a few sub-
sequent operators.

Given an input image I ∈ Rh×w×3, the backbone out-
puts multi-scale features {Fi ∈ Rhi×wi×ci}i=1,··· ,n, where
hi × wi is the resolution and ci is the number of the chan-
nels of the feature map extracted from the i-th layer of the
backbone. Inspired by [6], we apply several additional op-
erations on the feature maps {Fi}i=1,··· ,n to get the final
features. For each feature map Fi, we first apply an average
pooling on it, obtaining

fi,1 = Average Pool(Fi) ∈ Rci , (2)

which encodes global information of the input image. To
capture rich local information, we construct another fea-
ture vector by sampling and flattening the channels of Fi.

Specifically, we randomly sample c̃i channels from the en-
tire ci channels, which would result in a sampled feature
map F̃i ∈ Rhi×wi×c̃i . Then we flatten the sampled feature
as

fi,2 = Flatten(F̃i) ∈ Rhi·wi·c̃i , (3)

which contains rich local information. In order to obtain a
final feature vector of length c∗i , we randomly sample the
remaining elements from the flattened feature map as

fi,3 = Sample(Flatten(Fi)) ∈ Rc
∗
i −ci−hi·wi·c̃i . (4)

Finally, the feature obtained from the i-th layer of the back-
bone is given by

fi = Concat([fi,1, fi,2, fi,3]) ∈ Rc
∗
i . (5)

The extracted features {fi}i=1,··· ,n would be sent into the
subsequent coarse-to-fine stages of our model.

3.2. Hand-level Tokenization

Existing transformer-based methods for pose estimation
usually deploy one token for each keypoint, which would
result in 2 · J = 42 tokens in the scenario of interacting
hands, with the assumption that each hand contains J =
21 keypoints. However, since the attention operation has a
quadratic complexity of time and memory proportional to
the number of input tokens, a large amount of tokens would
render the transformer computationally demanding, leading
to a decline in its efficiency.

To solve the above issue, for the first time, we propose
the concept of hand-level tokenization. Instead of using one
token for each keypoint, we only assign one token to each
hand, reducing the number of tokens from 2 × J to two.
The proposed concept is simple yet very effective as val-
idated by extensive experiments in Section. 4. As shown
in Fig. 2, given the extracted image features {fi}i=1,··· ,n,
embeddings of the two hand tokens are obtained by

Eleft
i = MLPleft

i (fi) ∈ Rce ,

Eright
i = MLPright

i (fi) ∈ Rce , (6)

where MLP(·) stands for a shallow multi-layer perceptron
and ce is the dimension of the embedding.

3.3. Coarse Predictor

Utilizing the proposed hand-level tokens, the coarse pre-
dictor of our model is mainly composed of multiple self-
attention layers, as illustrated in Fig. 2. The goal of this
module is to give a coarse prediction based on the feature
f1, as summarized in the following function

ψ(1) : f1 7→ {p(1), u(1)}, (7)
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Figure 2. Overview of our proposed Handformer2T model, which mainly consists of three parts, namely, a feature extractor, a coarse
predictor and a refiner. Our model utilizes a transformer-based architecture, but with a key difference from existing methods. We propose
to use novel hand-level tokens instead of keypoint-level tokens. With rich features extracted by the feature extractor, the coarse predictor
gives an initial pose prediction, which is then improved iteratively by the refiner. In both the coarse predictor and the refiner, learnable
positional encodings are utilized, however they are omitted in the diagram for clearer visualization.

where p(1) is the coarse 3D keypoint predictions and u(1) is
their associated uncertainties. Note that only f1 is used in
this module.

In detail, we first obtain embeddings of left-hand and
right-hand tokens {Eleft

1 , Eright
1 } from the image feature f1

via two shallow MLPs following Eq. (8). Then we add
learnable positional encoding to the embedding as

Eleft
1,0 = Eleft

1 + P left
1 ,

Eright
1,0 = Eright

1 + P right
1 . (8)

Afterwards, the embeddings would go through L layers
Multi-Head Self-Attention (MHSA) layers,

E1,l = MHSA(E1,l−1)

for l = 1, · · · , L, (9)

where embeddingE1,l is the stacked array of {Eleft
1,l , E

right
1,l },

and the MHSA is defined on an input embedding E as

MHSA(E) = MultiHead(E,E,E), (10)

where MHSA is defined as

MultiHead(Q,K, V ) = Concat(head1, · · · , headH) ·WO,

headh = Attention(Q ·WQ
h ,K ·WK

h , V ·WV
h )

(11)

in which WQ
h ,W

K
h ,W

V
h are learnable weighting matrices

for calculating query, key and value at the h-th head, respec-
tively.

Finally, we apply two separate MLPs to the last MHSA
output E1,Len = {Eleft

1,Len
, Eright

1,Len
} to get the coarse predic-

tions as

{p(1)left , u
(1)
left} = MLPout(E

left
1,Len

),

{p(1)right, u
(1)
right} = MLPout(E

right
1,Len

),

p(1) = Concat(p(1)left , p
(1)
right),

u(1) = Concat(u(1)left , u
(1)
right). (12)

The coarse prediction p(1) and u(1) will be further refined
by the refiner that would be discussed in the following sub-
section.

3.4. Refiner with Pose Query Enhancement

With the initial 3D keypoint positions from the coarse
predictor and the image features from the feature extractor,
the refiner module ψ(i) : Fi−1, p

(i−1) 7→ {p(i), u(i)}, i ∈
{2, ..., N} aims to iteratively improve the final pose estima-
tion. The refiner mainly contains two key parts, the key-
point guided feature fusion module and a query enhance-
ment module designed with a transformer-based architec-
ture. We want to emphasize that in this transformer-based
architecture, hand-level tokens are again utilized instead of
traditional keypoint-level tokens.
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Figure 3. Illustration of keypoint-guided feature fusion. By reprojecting the 3D keypoint positions to 2D space, for each keypoint, we crop
a small 3x3 patch from the feature map around the projected 2D location. After performing channel sampling for each selected patch, we
flatten them and then concatenate them with the feature directly obtained by average pooling.

Keypoint guided feature fusion. To better capture the
image features around the keypoints, inspired by [13, 30],
we propose to use the keypoint guided feature fusion mech-
anism, where we sample features around the keypoints to
obtain rich local information. Specifically, given an initial
keypoints prediction p(i−1) ∈ R2J×3 and a feature map
Fi ∈ Rhi×wi×ci , i ∈ {2, · · · , N}, we first reproject the
3D keypoints p(i−1) to the 2D image space,

p
(i−1)
image = Π(p(i−1)) ∈ R2J×2, (13)

where p
(i−1)
image is the image coordinates of the hand key-

points. Meanwhile, we randomly sample c̃i channels from
the feature map, obtaining a sub-sampled feature map F̂i ∈
Rhi×wi×c̃i . Then we crop 2J patches centered at p(i−1)

image

from the sampled feature map F̂i. Through our experi-
ments, the patch size is fixed as 3 × 3. As illustrated in
Fig. 3, for each hand, we flatten the corresponding J patches
and contatenate them together with the average pooled fea-
ture obtained in Eq. (2), resulting to the keypoint guided
features f left

kpt,i ∈ R9·J·c̃i+ci and f right
kpt,i ∈ R9·J·c̃i+ci .

Pose Query Enhancer. As shown in Fig. 2, the pose
query enhancer is primarily composed with a self-attention
and a cross-attention module. The input to the self-attention
module is constructed by

E′
i = Ei + MLP(p(i−1)) + Pi, (14)

where Ei = {Eleft
i , Eright

i } is the left hand and right hand
token embeddings obtained from the extracted feature fi
via Eq. (8), p(i−1) is keypoint predictions from the previous
stage and Pi is a learnable positional encoding. By feeding
E′
i to the MHSA, we obtain

E′′
i = MHSA(E′

i). (15)

For the cross-attention module, the queries are obtained
from the keypoint guided features, f left

kpt,i and f right
kpt,i, via two

separate MLPs as following

qleft
i = MLP(f left

kpt,i),

qright
i = MLP(f right

kpt,i). (16)

We denote the two queries compactly in one matrix Qi =
{qleft
i , qright

i }. Then, the output of the cross-attention module
is given by

Eout
i = MultiHead(Qi, E′′

i , E
′′
i ). (17)

Finally, similarly to that in the coarse predictor (Eq. (12)),
two MLPs are applied to the output Eout

i to get the refined
predictions for left and right hands, resulting in p(i) and u(i)

for i = 2, · · · , N .

3.5. Loss Functions

Residual Log-likelihood Estimation (RLE) Loss. To
calculate RLE Loss, following [20], we calculate a prob-
ability distribution Pψ,φ(x|I) that reflects the probability
of the ground truth appearing in the location x condition-
ing on the input image I, where ψ is the parameters of re-
gression model and φ is the parameters of the flow model.
The flow model φ calculates the deviation of the output
from the ground truth pg: Firstly, φ maps a initial distri-
bution z̄ ∼ N(0, I) to a zero-mean complex distribution
x̄ = φ(z̄) ∼ Gφ(x̄). Then, by adding a zero-mean Laplace
distribution L(x̄) to Gφ(x̄), Pφ(x̄) is obtained to represent
the normalized density function for the underlying probabil-
ity distribution Pψ,φ(x|I). Finally, Pψ,φ(x|I) is built upon
Pφ(x̄) by shifting and rescaling x̄ into x: x = u · x̄ + p,
where p, u are predicted by regression model ψ conditioned
on the input image I. Then, the RLE loss can be calculated
as

lrle = − logPψ,φ(x|I)|x=pg = − logL− logGφ + log u,
(18)

which optimizes the model parameters to make the observed
ground truth pg most probable. For more details, please
refer to [20].

As our regression model consists of N parts ψ(i), i ∈
{1, ..., N} and each part outputs a “p(i), u(i)” pair, we
choose to supervise them with the same ground truth pg, ug
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and different flow models φ(i). The RLE loss is given by

LossRLE = −
N∑
i=1

logPψ(i),φ(i)(p(i)|I)|p(i)=pg . (19)

Maximum Mean Discrepancy (MMD) Loss. Inspired
by [3], the MMD term [5] is used to measure the distance
between the distribution of predicted p(1) ∼ P (p(1)) and
ground truth pg ∼ P (pg) across all images, thus accelerates
the convergence of coarse predictor ψ(1). The MDD loss
term is given by

LossMMD =MMD2(k,P(p(1)),P(pg))

= E
p
(1)
i ,p

(1)

i′ ∼P(p(1))

[k(p
(1)
i , p

(1)
i′ )] + E

pgj ,p
g

j′∼P(pg)
[k(pgj , p

g
j′)]

− 2 · E
p
(1)
i ∼P(p(1)),pgj∼P(pg)

[k(p
(1)
i , pgj )],

(20)

where k is the kernel function [3]. We choose Gaussian
Kernel [36] by default.

Total Loss. Finally, the total loss is given by:

Losstotal = LossRLE + λ1LossMMD, (21)

where hyper-parameter λ1 ≥ 0 balances the loss terms. In
all our experiments, we set λ1 = 10.

4. Experiment
We evaluate the performance of our model in terms of

accuracy, inference speed, and memory consumption.

4.1. Experimental Settings

Datasets. Our evaluation is conducted on two public
hand datasets.

InterHand2.6M [27] is a challenging RGB image dataset
specifically designed for capturing two-hand interactions,
even in cases of high occlusion. The dataset consists of
1.36 million training images and 849,000 test images. The
ground-truth data provides semi-automatically annotated
3D coordinates for 42 hand keypoints (21 keypoints per
hand).

RHP [49] is a synthetically generated dataset simulat-
ing various hand actions in everyday scenarios. It includes
41,000 training samples and 2,700 testing samples. No-
tably, RHP images incorporate background elements de-
picting outdoor scenes, allowing us to evaluate our model’s
performance in real-world environments. The dataset also
offers corresponding depth images, though we exclude
them from our experiments.

For the data preprocessing step, we apply the same meth-
ods as [9,27,47], including direct RGB image cropping and

resizing to 256× 256 pixels, along with the data augmenta-
tions proposed by InterNet [27].

Evaluation metrics. We employ well-established evalu-
ation metrics. For the InterHand2.6M dataset, we utilize the
Mean Per Joint Position Error (MJPJE). This metric mea-
sures the Euclidean distance (mm) between predicted and
ground-truth 3D joint locations after aligning them with the
root (wrist). We calculate the MJPJE on single-hand im-
ages and interacting-hand images, denoted as MJPJE-S and
MJPJE-I respectively. For the RHP dataset, we utilize the
End Point Error (EPE). This metric calculates the mean Eu-
clidean distance (mm) between predicted and ground-truth
3D hand poses, considering root joint alignment for each
left and right hand individually.

Furthermore, we assess the inference speed in terms of
Frames Per Second (FPS) and quantify model parameters
using the thop package1. The FPS is assessed by pro-
cessing data with a batch size of 1. Throughput is de-
noted as the maximum number of images that can be pro-
cessed per second. It can be calculated by: Throughput =

maximum batchsize
average time per batch(s) . All model evaluations are con-
ducted on a single NVIDIA RTX 3090ti GPU with 24GB
memory.

Implementation details. Handformer2T is compati-
ble with various convolutional backbones. We tested two
lightweight backbones: ResNet34 [7] and ResNet50 [7].
The detailed model sizes and performances of the differ-
ent backbones are shown in Table 5. Handformer2T is im-
plemented by PyTorch on CUDA 11.1. Training is con-
ducted using the Adam optimizer [14] with a learning rate
of 0.001 and step decay (step=80, decrease factor=4). A to-
tal of 270 epochs are executed for both InterHand2.6M and
RHP datasets. During the inference phase, the refined mean
µ̂f serves as the regressed output. Consequently, there is
no need to execute the flow model during inference. This
characteristic enhances computational efficiency and ease
of deployment.

As shown in Figure 2, our model architecture does not
include an excessive number of networks. Furthermore, due
to the absence of a high-dimensional requirement for mul-
tiple MLPs, our model has significantly fewer parameters
compared to other methods [4,6,9,12,22]. A detailed anal-
ysis will be presented in Section 4.2. Additionally, the di-
mension of Transformer tokens (query/key/value) plays a
pivotal role in both model size and performance, a topic we
will discuss in Section 4.3.

4.2. Quantitative Results

InterHand2.6M dataset: We compare Handformer2T
against state-of-the-art methods on InterHand2.6M, as
shown in Table 1. Handformer2T outperforms previous
methods, the results of which were presented in previous

1https://github.com/Lyken17/pytorch-OpCounter
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Table 1. Comparison with state-of-the-art model-based and
model-free methods on InterHand2.6M.

Method MJPJE-S MJPJE-I FPS ↑ Model
(mm) (mm) ↓ Size(M) ↓

Moon et al. [27] 12.16 16.02 107.08 47
Fan et al. [47] 11.32 15.57 - -

Hampali et al. [6] 10.99 14.34 19.66 48
Zhang et al. [47] - 13.48 17.02 143
Meng et al. [26] 8.51 13.12 15.47 55

Li et al. [21] - 12.40 18.05 39
Jiang et al. [9] 8.10 10.96 25.65 42

Ours 8.28 10.72 66.34 36

Table 2. Throughput comparison with Moon et al. [27]. Although
Moon et al. [27] achieves a high FPS, our model outperforms it in
terms of throughput, number of images processed per second.

Methods FPS↑ Max Batchsize↑ Throughput ↑
Moon et al. [27] 107.08 48 137
Ours-Resnet50 66.34 128 298

publications [4,6,9,21,26,27,47]. Analysis of Table 1 yields
the following insights:

1) Notably, Handformer2T exhibits an improvement of
5.50 mm in interacting hand pose estimation and 3.92 mm
in single hand pose estimation compared to the baseline
[27]. In comparison with the state-of-the-art regression-
based method [9], our method achieves an improvement of
0.24 mm in scenarios of interacting hands.

2) Handformer2T showcases substantial advancements
in interacting hand pose estimation over the baseline [27],
with a minor trade-off in frames per second (FPS). In con-
trast to the other methods, Handformer2T attains supe-
rior performance while maintaining much higher inference
speeds.

3) Despite Handformer2T’s lower FPS compared to In-
terNet [27], our larger batch size compensates, ultimately
elevating Handformer2T’s throughput (Table 2). This holds
true especially when compared to other methods, as 128
substantially surpasses their reported batch sizes given the
fixed GPU memory. Therefore, due to its higher FPS, Hand-
former2T attains the greatest throughput, proving values for
data processing and deployment needs.

4) Handformer2T stands out as the most lightweight
model across all alternatives, rendering it more suitable for
mobile device deployment. This is attributed to two factors:
1) Our adoption of a regression-based approach that obvi-
ates the need for heatmap computations, and 2) a significant
reduction in token count from 2J to 2, resulting in decreased
computational complexity of the transformer.

RHP dataset: We present the comparison with the state-
of-the-art methods on RHP in Table 3. Handformer2T out-
performs previous methods [4, 6, 9, 21, 26, 27, 47] without
relying on ground-truth information during inference time.
This experiment shows the generalization ability of Hand-

Table 3. Comparison with state-of-the-art methods on RHP, in
terms of end point error. GT-S and GT-H denote ground truth scale
and handness, respectively.

Methods GT-S GT-H End point error (mm) ↓
Zimm. et al. [49] ✓ ✓ 30.42

Chen et al. [2] ✓ ✓ 24.20
Moon et al. [27] ✗ ✗ 20.89
Yang et al. [46] ✓ ✓ 19.95
Spurr et al. [35] ✓ ✓ 19.73

A2J-Transformer [9] ✗ ✗ 17.75
Ours ✗ ✗ 17.20

former2T by demonstrating its effectiveness on in-the-wild
two hand images.

4.3. Ablation study

4.3.1 Component Effectiveness Analysis

We explore the effectiveness of 1) MMD Loss, 2) Pose
Query Enhancement and 3) Keypoint-guided feature fusion
by conductiog experiments on Interhand2.6M. The specific
implementation details are respectively set as: 1) remove
MMD Loss; 2) remove the whole Pose Query Enhance-
ment module and take coarse prediction p(1) as final pre-
diction; 3) use original feature extractor as stated in sec-
tion 3.1. As Keypoint-guided feature fusion can only be
implemented inside the Pose Query Enhancement, we need
to remove the Keypoint-guided feature fusion if we remove
the whole Pose Query Enhancement module for the second
setting. The other parameters can be fixed based on these
configs to try the best performance under these conditions.
We show the results in Table 4.

We can see that all components are effective to Hand-
former2T. Removing any one of them will result in perfor-
mance decrease. Firstly, the RLE loss is effective in im-
proving interacting hand pose estimation. Secondly, add
MMD Loss will increase the performance. Thirdly, if we
remove the Keypoint-guided feature fusion, the Pose Query
Enhancement won’t work and might affect the function of
original coarse joint regressor.

4.3.2 Model Size and performance Tradeoff

We continue to explore the influence of dimension on our
model size and performance, and try to find a balance
between the memory usage and performance. As Hand-
former2T mainly consists of MLPs and Transformer mod-
ules, we focus on the dimension of Transformer tokens in
Table 5. As shown from the table, higher dimension gener-
ally increase the performance. For the backbone Resnet50,
the performance saturates at dimension 256.

We also investigate the effectiveness of the proposed
hand-level token compared with traditional keypoint level
token. As shown in Table 6, utilizing hand-level token can
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Figure 4. The qualitative results of Handformer2T. Left: results on InterHand2.6M; right: results on RHP. PQE: Pose Query Enhancement.
We display three images from InterHand2.6M and three images from RHP, representing different hand pose and interaction paradigm. The
first column displays the ground truth pg , while the second column presents results obtained using InterNet [27]. The third and fourth
columns showcase the outcomes produced by our module, depicting results prior to PQE (coarse prediction p(1)) and after PQE (refined
prediction p(N)), respectively.

.
significantly reduce the model size by 3x, and interestingly
achieve better performance.

Table 4. Component effectiveness analysis of Handformer2T.
MMD Loss: Maximum Mean Discrepancy Loss. PQE: Pose
Query Enhancement. KGFF: Keypoint-guided feature fusion as
described in section 3.4.

MMD Loss PQE KGFF MJPJE (mm) ↓
✗ ✗ ✗ 12.49
✓ ✗ ✗ 12.32
✓ ✓ ✗ 16.23
✗ ✓ ✓ 11.20
✓ ✓ ✓ 10.72

Table 5. Ablation study on backbone and dimension of the trans-
former.

Backbone Transformer Model Size MJPJE
Dimension (M) ↓ (mm) ↓

Resnet34 128 24.9 11.47
Resnet34 256 31.7 11.10
Resnet34 512 46.9 11.02
Resnet50 128 29.1 11.14
Resnet50 256 35.9 10.72
Resnet50 512 51.1 10.76

Table 6. Ablation study on the proposed hand-level tokenization.
With a fixed embedding dimension of 256, we conduct experi-
ments where hand-level or keypoint-level tokens are utilized on a
small subset of InterHand2.6M dataset.

Token Backbone Model Size MJPJE
Level (M) ↓ (mm) ↓

Hand Level Resnet34 31.7 15.19
Hand Level Resnet50 35.9 14.28
Joint Level Resnet34 95.1 16.77
Joint Level Resnet50 99.4 16.05

4.4. Qualititative Results

We show the qualitative results in Fig 4. We can see that
Handformer2T can obtain accurate pose estimation than In-
terNet [27] for certain images, largely due to the refinement
of PQE. However, certain limitations persist, notably our
reliance on the ground-truth bounding box, which impedes
the direct applicability of our model to real-world data.

4.5. Limitations

Since the model only works on single image, if ex-
tremely severe occlusion occurs, the model might fail. A
possible solution is to extend the current method to a multi-
view setting. Additionally, prior knowledge of camera ma-
trix is required when performing the 3D to 2D projection in
the keypoint guided feature fusion module. A future work
might investigate the possibility to learn a projection matrix.

5. Conclusions

In this paper, we have proposed a novel lightweight
transformer-based model, Handformer2T, for the task of in-
teracting hand pose estimation from RGB images. By utiliz-
ing a novel hand-level tokenization mechanism, our model
can achieve the state-of-the-art performance, while keeping
the model size small and reaching fast inference speed. Ex-
tensive experiments have been conducted on two large pub-
lic dataset to validate the efficacy of our proposed model.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

6255



end object detection with transformers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 213–229.
Springer, 2020. 1

[2] Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Hui Tang, Yu-
fan Xue, Xiaohui Xie, Yen-Yu Lin, and Wei Fan. Generating
realistic training images based on tonality-alignment gener-
ative adversarial networks for hand pose estimation. arXiv
preprint arXiv:1811.09916, 2018. 7

[3] Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, and
Alexander J Smola. Trade: Transformers for density esti-
mation. arXiv preprint arXiv:2004.02441, 2020. 6

[4] Zicong Fan, Adrian Spurr, Muhammed Kocabas, Siyu Tang,
Michael J Black, and Otmar Hilliges. Learning to disam-
biguate strongly interacting hands via probabilistic per-pixel
part segmentation. In 2021 International Conference on 3D
Vision (3DV), pages 1–10. IEEE, 2021. 2, 6, 7

[5] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–
773, 2012. 6

[6] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vin-
cent Lepetit. Keypoint transformer: Solving joint identifica-
tion in challenging hands and object interactions for accurate
3d pose estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11090–11100, 2022. 2, 3, 6, 7

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[8] Adnan Hussain, Sareer Ul Amin, Muhammad Fayaz, and
Sanghyun Seo. An efficient and robust hand gesture recogni-
tion system of sign language employing finetuned inception-
v3 and efficientnet-b0 network. Computer Systems Science
& Engineering, 46(3), 2023. 1

[9] Changlong Jiang, Yang Xiao, Cunlin Wu, Mingyang Zhang,
Jinghong Zheng, Zhiguo Cao, and Joey Tianyi Zhou. A2j-
transformer: Anchor-to-joint transformer network for 3d in-
teracting hand pose estimation from a single rgb image. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8846–8855, 2023. 1, 2,
6, 7

[10] Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar
Hilliges, and Siyu Tang. A skeleton-driven neural occupancy
representation for articulated hands. In 2021 International
Conference on 3D Vision (3DV), pages 11–21. IEEE, 2021.
1

[11] Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and
Chinmay Hegde. On the computational complexity of self-
attention. In International Conference on Algorithmic Learn-
ing Theory, pages 597–619. PMLR, 2023. 2

[12] Dong Uk Kim, Kwang In Kim, and Seungryul Baek. End-to-
end detection and pose estimation of two interacting hands.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 11189–11198, 2021. 2, 6

[13] Jeonghwan Kim, Mi-Gyeong Gwon, Hyunwoo Park, Hyuk-
min Kwon, Gi-Mun Um, and Wonjun Kim. Sampling is

matter: Point-guided 3d human mesh reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12880–12889, 2023. 5

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[15] Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman,
and Kostas Daniilidis. Probabilistic modeling for human
mesh recovery. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 11605–11614,
2021. 2

[16] Deying Kong, Yifei Chen, Haoyu Ma, Xiangyi Yan, and Xi-
aohui Xie. Adaptive graphical model network for 2d hand-
pose estimation. In Proceedings of the British Machine Vi-
sion Conference (BMVC), 2019. 2

[17] Deying Kong, Haoyu Ma, Yifei Chen, and Xiaohui Xie.
Rotation-invariant mixed graphical model network for 2d
hand pose estimation. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pages
1546–1555, 2020. 2

[18] Deying Kong, Haoyu Ma, and Xiaohui Xie. Sia-gcn: A spa-
tial information aware graph neural network with 2d con-
volutions for hand pose estimation. In Proceedings of the
British Machine Vision Conference (BMVC), 2020. 2

[19] Deying Kong, Linguang Zhang, Liangjian Chen, Haoyu Ma,
Xiangyi Yan, Shanlin Sun, Xingwei Liu, Kun Han, and Xi-
aohui Xie. Identity-aware hand mesh estimation and per-
sonalization from rgb images. In European Conference on
Computer Vision, pages 536–553. Springer, 2022. 1

[20] Jiefeng Li, Siyuan Bian, Ailing Zeng, Can Wang, Bo Pang,
Wentao Liu, and Cewu Lu. Human pose regression with
residual log-likelihood estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 11025–11034, 2021. 2, 5

[21] Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng Wu,
Feng Chen, Tao Yu, and Yebin Liu. Interacting attention
graph for single image two-hand reconstruction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2761–2770, 2022. 2, 7

[22] Fanqing Lin, Connor Wilhelm, and Tony Martinez. Two-
hand global 3d pose estimation using monocular rgb. In Pro-
ceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 2373–2381, 2021. 2, 6

[23] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1954–1963, 2021. 1

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 2

[25] Weian Mao, Yongtao Ge, Chunhua Shen, Zhi Tian, Xinlong
Wang, Zhibin Wang, and Anton van den Hengel. Poseur: Di-
rect human pose regression with transformers. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part VI, pages 72–
88. Springer, 2022. 1, 2, 3

6256



[26] Hao Meng, Sheng Jin, Wentao Liu, Chen Qian, Mengxiang
Lin, Wanli Ouyang, and Ping Luo. 3d interacting hand pose
estimation by hand de-occlusion and removal. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part VI, pages 380–
397. Springer, 2022. 2, 7

[27] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. Interhand2. 6m: A dataset and base-
line for 3d interacting hand pose estimation from a single
rgb image. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XX 16, pages 548–564. Springer, 2020. 1, 2,
6, 7, 8

[28] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In Computer
Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part VIII 14, pages 483–499. Springer, 2016. 2

[29] Wenrao Pang, Qing Gao, Yinan Zhao, Zhaojie Ju, and Junjie
Hu. Basicnet: Lightweight 3d hand pose estimation network
based on biomechanical structure information for dexterous
manipulator teleoperation. IEEE Transactions on Cognitive
and Developmental Systems, 2022. 2

[30] Pengfei Ren, Chao Wen, Xiaozheng Zheng, Zhou Xue,
Haifeng Sun, Qi Qi, Jingyu Wang, and Jianxin Liao. De-
coupled iterative refinement framework for interacting hands
reconstruction from a single rgb image. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 8014–8025, 2023. 5

[31] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid.
Lcr-net: Localization-classification-regression for human
pose. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3433–3441, 2017. 2

[32] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid.
Lcr-net++: Multi-person 2d and 3d pose detection in natural
images. IEEE transactions on pattern analysis and machine
intelligence, 42(5):1146–1161, 2019. 2

[33] Nicholas Santavas, Ioannis Kansizoglou, Loukas Bampis,
Evangelos Karakasis, and Antonios Gasteratos. Attention!
a lightweight 2d hand pose estimation approach. IEEE Sen-
sors Journal, 21(10):11488–11496, 2020. 2

[34] Akash Sengupta, Ignas Budvytis, and Roberto Cipolla. Hu-
maniflow: Ancestor-conditioned normalising flows on so (3)
manifolds for human pose and shape distribution estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4779–4789, 2023. 1,
2

[35] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.
Cross-modal deep variational hand pose estimation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 89–98, 2018. 7

[36] Ingo Steinwart. On the influence of the kernel on the consis-
tency of support vector machines. Journal of machine learn-
ing research, 2(Nov):67–93, 2001. 6

[37] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen
Wei. Integral human pose regression. In Proceedings of
the European conference on computer vision (ECCV), pages
529–545, 2018. 2

[38] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 1

[39] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models
and faster training. In International conference on machine
learning, pages 10096–10106. PMLR, 2021. 1

[40] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph
Bregler. Joint training of a convolutional network and a
graphical model for human pose estimation. Advances in
neural information processing systems, 27, 2014. 1, 2

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[42] Tom Wehrbein, Marco Rudolph, Bodo Rosenhahn, and Bas-
tian Wandt. Probabilistic monocular 3d human pose es-
timation with normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 11199–11208, 2021. 2

[43] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser
Sheikh. Convolutional pose machines. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 4724–4732, 2016. 2

[44] Yufei Wu, Xiaofei Ruan, Yu Zhang, Huang Zhou, Shengyu
Du, and Gang Wu. Lightweight architecture for real-time
hand pose estimation with deep supervision. Symmetry,
11(4):585, 2019. 2

[45] Fu Xiong, Boshen Zhang, Yang Xiao, Zhiguo Cao, Taidong
Yu, Joey Tianyi Zhou, and Junsong Yuan. A2j: Anchor-to-
joint regression network for 3d articulated pose estimation
from a single depth image. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 793–
802, 2019. 2

[46] Linlin Yang and Angela Yao. Disentangling latent hands
for image synthesis and pose estimation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9877–9886, 2019. 7

[47] Baowen Zhang, Yangang Wang, Xiaoming Deng, Yinda
Zhang, Ping Tan, Cuixia Ma, and Hongan Wang. Interact-
ing two-hand 3d pose and shape reconstruction from single
color image. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 11354–11363, 2021.
2, 6, 7

[48] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

[49] Christian Zimmermann and Thomas Brox. Learning to esti-
mate 3d hand pose from single rgb images. In Proceedings of
the IEEE international conference on computer vision, pages
4903–4911, 2017. 6, 7

6257


