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Abstract

Generative adversarial networks (GANs) have achieved
great success and become more and more popular in re-
cent years. However, understanding of the min-max game
in GANS s training is still limited. In this paper, we first uti-
lize information game theory to analyze the min-max game
in GANs and introduce a new viewpoint on the GANs train-
ing that the min-max game in existing GANSs is unfair during
training, leading to sub-optimal convergence. To tackle this,
we propose a novel GAN called Information Gap GAN (1G-
GAN), which consists of one generator (G) and two discrim-
inators (D1 and D»). Specifically, we apply different data
augmentation methods to Dy and Ds, respectively. The in-
formation gap between different data augmentation meth-
ods can change the information received by each player
in the min-max game and lead to all three players G, D1
and D5 in IGGAN obtaining incomplete information, which
improves the fairness of the min-max game, yielding better
convergence. We conduct extensive experiments for large-
scale and limited data settings on several common datasets
with two backbones, i.e., BigGAN and StyleGAN2. The
results demonstrate that IGGAN can achieve a higher In-
ception Score (IS) and a lower Fréchet Inception Distance
(FID) compared with other GANs. Codes are available at
https://github.com/zzhang05/IGGAN

1. Introduction

Generative adversarial networks (GANs) [10] are a form
of generative model consisting of a generator (G) and a
discriminator (D). Specifically, G produces synthetic data
with some given noise, while D distinguishes whether the
data is from the generator’s output or real data.

GANSs can produce visually appealing samples and have
become more and more popular in image video synthesis
tasks [4,21,23,41,45,46]. Although GANs have achieved
impressive results in recent years [5, 12, 14-17,26,27, 30,

], understanding of the min-max game in GANs training
is still limited [37,39]. In this paper, we first apply informa-
tion theory [34] to analyze the min-max game in GANs. We
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Figure 1. Training Fréchet Inception Distance (FID) [11] (lower is
better) curves of BigGAN [3], BigGAN + Diff-Augment [50] and
IGGAN on the 10% CIFAR-10 dataset. In this figure, [GGAN is
based on the BigGAN backbone and achieves better convergence.
Best viewed in color.

demonstrate that this game is unfair because the G obtains
incomplete information while the Ds always obtain com-
plete information during the training of GANs. This can
cause sub-optimal convergence in GANs [37,39].

To assist with understanding this issue, we provide a
brief illustration as follows. In the GANs model, the aim
of the G is to make the D reward a high score for D(G(z))
[10], where z is the input noise of G. During the training
of the unfair min-max GANSs, there exists a type of gen-
erator output G*(z) which can cause D to reward a high
score for D(G*(z)) [1], indicating that G has deceived D
successfully for this situation. We represent the support of
this type of G*(z) under discriminator D as Pp(G*(z)).
In this case, producing samples based on Pp(G*(z)) is the
dominant strategy [6] for G in the min-max game. These
generated similar distribution samples can be regarded as
bad samples during training [36], which may finally cause
the well-known mode collapse problem [22], leading to sub-
optimal convergence [37].

To address this, we propose a novel GAN called Infor-
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mation Gap GAN (IGGAN), a three-player min-max game
consisting of one generator and two discriminators. We ap-
ply different data augmentation methods to D; and Ds, re-
spectively. The different information provided by different
data augmentations causes the information gap between D1
and Ds. Because of this, all three players, i.e., G, Dy and
D, obtain incomplete information in the min-max game.
The incomplete information obtained by each player en-
ables IGGAN to improve the fairness of the min-max game
during training. In this case, there no longer exists a domi-
nant strategy for G in the min-max game; therefore, G can
produce more diverse images during training. To better un-
derstand this, suppose there exists a type of generator out-
put G*(z) that can cause the output of one discriminator
(D or Dy) to reward a high score, this type of G*(z) typ-
ically cannot cause another discriminator to reward a high
score due to the information gap between D; and Do, which
can prevent G from producing similar distribution samples.
In other words, IGGAN throws away the less diverse (bad)
samples during training, similar to top-k GAN [36]. Hence,
IGGAN can achieve a better optimization between the dis-
tribution of G (Pg) and the distribution of real data (Pga;q),
leading to better convergence, as shown in Figure 1.

To sum up, the main contributions of this paper are as
follows.

1. By applying information min-max game theory [34] to
analyze the existing GANs, we are the first to unveil
that the min-max game in existing GANSs is unfair. We
believe it is one of the core issues in GANS training
and, therefore, expect that this finding can inform fu-
ture research on GANSs.

2. To improve the min-max game in GANs, we propose
a new GAN called IGGAN, which consists of one
generator (G) and two discriminators (D7 and D).
We apply different data augmentation methods to D,
and D, resulting in the information gap between D1
and Dy, which can improve the fairness of the min-
max game during training, thus yielding better conver-
gence.

3. Experiments on several datasets, i.e., CIFAR-10/100
[18], STL10 [7], CelebA [24], FFHQ [17] and LSUN-
CAT [43] with two backbones, i.e., BigGAN [3] and
StyleGAN2 [17], demonstrate that IGGAN can obtain
a higher Inception Score (IS) [31] and a lower Fréchet
Inception Distance (FID) [!1] compared with other
state-of-the-art GANSs.

2. Background
2.1. Generative Adversarial Networks (GANSs)

Generative adversarial networks (GANS) [10] consist of
a generator G and a discriminator D. Given the real image

data x drawn from the distribution pg,¢, and a prior on the
input noise p.(z), G attempts to generate an output image
G(z) that confuses D into believing that G(z) comes from
Pdata- In contrast, D attempts to distinguish between sam-
ples from z and G(z). Then, the two-player min-max game
between D and G is formulated as:

ngn max V(D,G) =Eymp,... [log D(z)]
+ Eonp. [log(1 — D(G(2)))]-

6]

The parameters of G and D are updated iteratively with
gradient descent methods. The equilibrium can finally be
reached when D cannot differentiate between the pg,¢, and

p=(2).
2.2. Training GANs with Augmentations

Recent successes in GANs have affirmed the importance
of using data augmentation in GANSs training [38]. We clas-
sify this type of GANs as GANs with augmentations. Ac-
cording to the data augmentation methods used, augmenta-
tion GANs can be categorized as either positive data aug-
mentation (PDA) GANSs [15,38,47,50,51] or negative data
augmentation (NDA) GANs [35]. PDA-GANs guide the
discriminator to avoid overfitting, while NDA-GANSs lead
the discriminator to learn the out-of-distribution samples in
order to improve GANSs training. These two types of aug-
mentation methods can both benefit the training of GANS.

2.3. Training GANs with Multiple Discriminators

To improve the training of GANs, GANs with multiple
discriminators [32, 33, 48,49] have been proposed. These
consist of one generator and several discriminators. The
typical example is the D2GAN [28] which consists of one
generator and two discriminators. D2GAN is different from
the original GANS as it is a three-player min-max game.
The generator G aims to produce realistic-looking samples
to fool both of the discriminators. The first discriminator
D, rewards high scores for samples from the data distri-
bution, while the second one Dy favors samples from the
generator. All three players are parameterized by neural
networks, wherein D; and D5 do not share their parame-
ters.

2.4. Complete and Incomplete Information Game

In game theory, a complete information game [34] is a
game in which knowledge about other players is available
to all participants. Complete information is the concept that
each player in the game is aware of the sequence, strate-
gies, and pay-offs throughout gameplay. On the contrary, a
game with incomplete information [34] is a game where the
players do not have common knowledge of the game being
played.
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Figure 2. The overview of the IGGAN. (a) IGGAN with NDA in D; and PDA in D2: IGGAN (NDA + PDA). The information gap
between PDA and NDA can help improve the fairness of the min-max game in the GAN. We use hyperparameter A to balance the NDA

data and fake data, and we directly apply the PDA to both real and fake samples as in Diff-Augment [
]. Note that <—— indicates a loss term pushing pairs to be apart. (b) IGGAN with different PDAs in D and D»:

of augmentations [

] and ADA [15] to avoid the leaking

IGGAN (PDA + PDA). The information gap between different PDAs can help improve the fairness of the min-max game in the GANs. We
also directly apply the PDA to both real and fake samples to avoid leaking of augmentations. Best viewed in color.

3. Methodology
3.1. Analysis of the Unfair Min-Max Game in GANs

In the GANs min-max game, each player takes action in
its game round. We define the game round of the generator
and discriminator as Rg and Rp, and the action of the gen-
erator and discriminator as Ag and Ap, respectively. We
then analyze the unfair min-max game problem in GANSs as
follows.

GANSs can be regarded as a two-player min-max game
where the two players are G and D. In R¢g, G cannot know
all the information of D for two reasons. First, according
to Algorithm 1 of the original GANs [10], only the fake
samples are used to optimize the parameters of G. On the
contrary, both real and fake samples are used to optimize
the parameters of D. Second, based on the observation as
in [2,20,40], G only obtains part of the information of D
in the min-max game. In this case, Ag is only based on
incomplete information in the min-max game. In contrast,
in Rp, D knows all the information of G (i.e., the input
and output of G) and real data. Therefore, Ap is based on
complete information in the min-max game. To sum up, in
GANSs, G obtains incomplete information, while D obtains
complete information in the GANs min-max game, which
means that the min-max game is unfair.

Recently, many techniques have been applied to GANs
to improve GANSs training, including employing augmen-
tations or multiple discriminators. In the next section, we
will show that these modifications do not prevent the Ds
from obtaining complete information in the min-max game.
GANSs with multiple discriminators. We select the most
simple GANs with multi discriminators, i.e., D2GAN [28],
for our analysis. D2GAN can be regarded as a three-player
min-max game where the three players are G, Dy, and Ds.

In Rg, G cannot know all the information of D1 and Ds.
Thus, A¢ is based on incomplete information in the min-
max game. In contrast, in Rp,, D; knows all the informa-
tion of G and D», because the real data and fake data to D,
and Dy are the same. Therefore, Ap, is based on complete
information in the min-max game. Similarly, in Rp,, D2
knows all the information of G and D1, hence, Ap, is also
based on complete information in the min-max game. In
summary, in the GANs with multi-discriminator, GG obtains
incomplete information, while D; and D» obtain complete
information, which means their min-max game is unfair.
GANs with augmentations. Compared to GANs, GANs
with augmentations apply data augmentations to improve
the training. The data augmentations do not influence in-
formation obtained by the players in the min-max game.
Therefore, for the player GG, Ag is based on incomplete in-
formation. On the contrary, for the player D, Ap is based
on complete information in the min-max game. To con-
clude, in augmentation GANs, GG obtains incomplete in-
formation, while D obtains complete information, which
means the min-max game in the GANs with augmentations
is unfair.

Based on the theory developed in [37], this unfair min-
max game can harm the training of GANs and finally cause
sub-optimal convergence in GANs.

3.2. IGGAN

The overview of IGGAN is shown in Fig.2. IGGAN con-
sists of one generator and two discriminators with different
data augmentations. According to the type of data augmen-
tation methods, IGGAN consists of two cases. In case 1,
as shown in Figure 2(a), NDA is applied to the first dis-
criminator D to produce the out-of-distribution samples.
At the same time, PDA is applied to the second discrimina-
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tor Do to improve the training. We utilize the information
gap between NDA and PDA to improve the fairness of the
min-max game. In case 2, as shown in Figure 2(b), dif-
ferent PDAs are applied to D; and D to produce the in-
formation gap, respectively. We utilize the information gap
between different PDAs to improve the fairness of the min-
max game. According to NDA-GAN [35], all of the NDA
methods aim to produce similar out-of-distribution samples.
Thus, we do not apply different NDAs in IGGAN because
it cannot produce the desired information gap (referring to
the experimental results in Table 11). Next, we show that
the information gap in the IGGAN can indeed help improve
the fairness of the min-max game as follows.

Although the architecture of the IGGAN is similar to the
D2GAN [28], the min-max game it employs is different.
In Rg, G cannot know all the information of D and Ds.
Thus, A¢ is only based on incomplete information in the
min-max game. At the same time, in Rp,, D; knows all the
information of G but does not know all of the information of
D, since D; cannot know the data augmentation informa-
tion of Ds. Therefore, Ap, is based on incomplete informa-
tion in the min-max game. Similarly, in Rp,, Do knows all
the information of the G but does not know all the informa-
tion of D1, because D5 cannot know the data augmentation
information of D;. In this case, Ap, is also based on in-
complete information in the min-max game. Therefore, in
IGGAN, all players obtain incomplete information which
improves the fairness of the min-max game. To assist with
understanding how improving the fairness of the min-max
game, as achieved in IGGAN, can benefit the training of
GANSs, we conduct a brief experiment on the 10% CIFAR-
10 dataset using the BigGAN backbone, the results of which
are shown in Fig 1. IGGAN can achieve better convergence.

We further demonstrate that the changes of information
for each player do not influence IGGAN to reach the Nash
equilibrium in both cases, as shown in Theorem 1.
Theorem 1. Theoretical analysis of IGGAN.

Case 1: IGGAN with NDA in D; and PDA in D,

Let P € P(x) be any distribution over x with disjoint
support than pgqsq, such that supp(paata) N supp(P) = @.
Let PT € pyata be any distribution over real data. Let Dy :
x — Rand D5 : x — R be the set of discriminators over ,
f i R>¢ — R be a convex, semi-continuous function such
that f(1) = 0, f* be the convex conjugate of f, f be the
derivative of f, Gy be a distribution with sample space Y,
and G} € Gy be any distribution over sample space x. T'
is one kind of PDA method. Then YA € (0, 1], we have

argmin_ max
G()EP(X)DI ,DQZX%R

- ; Li(AGg+(1—\)P,Dy,Ds) (2
?;’;iﬁ”‘éﬁph%”‘ﬁ%@ F(AGo + ( ) 1,D2) (2)

Ls(Go, D1, Dy)

= Pdata>

where Lf (Gg , D1, Dz) = ECE"’Pdata [Dl (‘r)]_ECENGQ [f* (Dl (.Z‘))]+
Eunpyara [D2(T(2))] — Ezng, lf*(D2(T(2)))] is the objective
function for IGGAN following NDA-GAN [35] and f-GAN
[29]. The optimal discriminators for D and D5 are differ-
ent, shown as follows:

argmazL§(AGg + (1 — \)P, Dy)

Di:x—R (3)

= f (Pdata/ (AGo + (1 = \) P).
argmaxL¢(Go, Do) = f(PT/GT). (4)
Da:x—R

Proof. See supplementary materials.
Case 2: IGGAN with different PDAs in D, and D,

Let PTr, P2 € paaiq be any distribution over real data.
Let D; : x — Rand D3 : x — R be the set of discrimi-
nators over X, f : R>o — R be a convex, semi-continuous
function such that f(1) = 0, f* be the convex conjugate
of f, f/ be the derivative of f, Gy be a distribution with
sample space y, and GaTl,GaT2 € Gy be any distribution
over sample space x. T} and 75 are different PDA methods.
Then VA € (0, 1], we have

argmin_ mazx

L(Gy,D1,Dy) = 7
GyeP(x)P1,D2:x—R f( 0, 1 2) Pdata 5)

where L;(Go,D1,D2) = Eop g, DA(T1 (2)-Eancy [ (D1 (T1 ()] +
Eorpyara |D2(T2(2))] — Ewwcy [f*(D2(T2(2)))] 1S the objective
function for IGGAN following NDA-GAN [35] and f-GAN
[29]. The optimal discriminators for D and D, are differ-
ent, shown as follows:

argmazL(G, D1) = f (PT/G]Y). (6)
Dq:x—R
argmaxLy;(Gg, Do) = f (P2 /Gy?). 7
Do:x—R

Proof. See supplementary materials.

4. Experiment

We demonstrate the superiority of IGGAN by comparing
it with other state-of-the-art GANs on several datasets, i.e.,
CIFAR-10 [ 18], CIFAR-100 [ 18], STL-10 [7], CelebA [24],
FFHQ [17] and LSUN-CAT [43]. More details of experi-
ments can be found in the supplementary materials.

4.1. Datasets Preparation

We select vanilla BigGAN [3] and vanilla StyleGAN2
[17] as our backbones. In IGGAN, the two discrimina-
tors have the same architecture. Moreover, if we apply the
NDA in IGGAN, following NDA-GAN [35], we set hyper-
parameter A as 0.25 for the CIFAR-10, STL-10 and CelebA
datasets, and 0.5 for the CIFAR-100 dataset.

For the BigGAN [3] backbone, we follow NDA-GAN
[35] to prepare datasets: (a) CIFAR-10 [18] contains 60K
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Method IS[31] FID[11]

BigGAN [3] - 18.64
BigGAN + Diff-Augment [50] - 15.23
CR-BigGAN [47] - 14.56
GN-BigGAN [42] 8.72 13.71
ICR-SNGAN [51] - 13.36
NDA-GAN (Jigsaw) [35] - 12.61
Vision-aided-BigGAN [19] - 11.17
DAG-GAN [38] - 10.89
IGGAN (PDA + PDA) 8.96 11.04
IGGAN (NDA + PDA) 8.99 10.68

Table 1. IS (higher is better) and FID (lower is better) on the
CIFAR-10 dataset with unconditional generation. For a fair com-
parison, IS and FID are measured using 10k samples; the test
set is the reference distribution. Here, BigGAN is selected as
the backbone for all the methods. The Best FID of all the methods
is reported in the Table.

32 x 32 images with 10 labels, out of which 50K are used for
training, and 10K are used for testing; (b) CIFAR-100 [18]
contains 60K 32 x 32 images with 100 labels, out of which
50K are used for training, and 10K are used for testing; (c)
CelebA [24] contains 162,770 training images and 19,962
test images, which are resized to 64 x 64; (d) STL-10 [7]
contains 100K (unlabeled) training images and 8K (labeled)
test images, which are resized to 32 x 32. In our exper-
iments, following the number of images in the test set of
each dataset, we use 10K generated images for CIFAR-
10, 10K for CIFAR-100, 19,962 for CelebA, and 8K for
STL-10. The test set for each dataset is used as the ref-
erence distribution for FID calculation, following prior
work [47]. For the SyleGAN2 [17] backbone, we follow
StyleGAN2 + ADA [15] and Diff-Augment [50] to prepare
datasets (FFHQ [17] and LSUN-CAT [43]). FFHQ contains
70K images and LSUN-CAT contains 200K images. The
images in FFHQ and LSUN-CAT are resized to 256 x 256.
Following Diff-Augment [50], we perform experiments on
30K, 10K, 5K and 1K training samples. The full dataset
is used as the reference distribution for FID calculation,
following prior work [50].

4.2. Results using BigGAN Backbone
4.2.1 Results on several standard datasets

The results on the commonly used CIFAR-10 dataset are
shown in Table 1 (unconditional results) and Table 2 (condi-
tional results). We compare two cases of IGGAN with other
state-of-the-art GANs on BigGAN backbone. For IGGAN
(NDA + PDA), we apply the widely used Diff-Augment
[50] as PDA to avoid leaking of augmentations [15] dur-
ing training, and one of the methods shown in Table III
as NDA. The results of applying different NDA methods,

Method IS [31] FID[11]
BigGAN [3] 9.06 11.51
GN-BigGAN [42] 9.22 10.05
CR-BigGAN [47] - 11.48
NDA-BigGAN (Jigsaw) [35] - 9.42
BCR-BigGAN [51] 9.29 9.21
BigGAN + Diff-Augment [50]  9.22 8.47
Cntr+BCR-BigGAN [52] 941 8.30
Vision-aided-BigGAN [19] - 8.27
IGGAN (PDA + PDA) 9.32 8.26
IGGAN (NDA + PDA) 9.43 8.15

Table 2. IS (higher is better) and FID (lower is better) on the
CIFAR-10 dataset with conditional generation. For a fair com-
parison, IS and FID are measured using 10k samples; the test
set is the reference distribution. Here, BigGAN is selected as
the backbone for all the methods. The Best FID of all the methods
is reported in the Table.

i.e., Jigsaw, Stitching, Mixup, and Cutmix in the IGGAN
on several standard datasets are shown in Table 4, we re-
port the best NDA and PDA combination results in IGGAN
in Tables 1 and 2 for the comparison. For IGGAN (PDA
+ PDA), based on the conclusion in [52], we apply Trans-
lation and Cutout as PDA, respectively, to avoid leaking of
augmentations [15]. As shown in Tables 1 and 2, IGGAN
(NDA + PDA) obtains the highest Inception Score (IS) and
lowest FID compared with existing state-of-the-art GANs
on both unconditional and conditional CIFAR-10 datasets.

Furthermore, to further show the effectiveness of the in-
formation gap between D; and D, we build several GAN
experimental settings based on the PDA and NDA for the
ablation study, as shown in Table 5. In Table 5, we do not
apply different NDAs in one D as our experimental settings
because NDA-GAN [35] has already shown that applying
different NDAs in one D can achieve lower performance.
At the same time, we also do not apply different PDAs in
one D because DAG-GAN [38] has demonstrated that dif-
ferent PDAs in one D can result in a worse performance.
We compared the two types of IGGAN with other GAN
settings on CIFAR10/100, STL10 and CelebA datasets, and
the results are shown in Table 3. IGGAN achieves con-
siderable improvement compared with other GAN settings
on these datasets. In addition, different PDAs can unavoid-
ably produce some similar distribution samples. Thus, IG-
GAN (NDA + PDA) can provide a greater information gap
than IGGAN (PDA + PDA), hence resulting in better re-
sults. More generated results of IGGAN can be found in
the supplementary materials.
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NDA-GAN PDA-GAN Mix-GAN IGGAN (PDA + PDA) IGGAN (NDA + PDA)
C10 (U) 12.61 11.87 12.08 11.04 10.68
C10 9.42 8.47 8.78 8.26 8.15
C100 (U) 19.72 16.94 17.28 16.78 16.00
C100 13.90 11.93 12.31 11.73 11.30
STL10 (U) 23.94 22.93 23.34 21.97 21.39
CelebA (U) 22.62 21.36 21.89 21.01 20.63

Table 3. FID Score (lower is better) of IGGAN and other GAN settings on CIFAR-10 (C10), CIFAR-100 (C100), STL10 and CelebA
datasets. Here, we select BigGAN as the backbone for all settings and report the best NDA and PDA combination results in IGGAN; (U)
means unconditional dataset settings. The test set for each dataset is used as the reference distribution for FID calculation, as in prior

work [47]. For a fair comparison, results are the best run result.

Jigsaw  Stitching Mixup Cutmix
C10U 10.68 10.90 11.01 11.19
C10 8.32 8.22 8.31 8.15
C100U  16.00 16.57 16.70 16.22
C100 11.30 11.75 11.92 11.53
STL10  21.39 22.24 22.74 2170
CelebA  20.67 21.03 20.85  20.63

Table 4. FID Score (lower is better) on applying different NDA
methods to IGGAN on several datasets. For NDA, we apply the
NDA methods shown in [35]. The results in red and green repre-
sent the best result and second-best results, respectively.

Method Numeber of D NDA PDA
NDA-GAN 1 Yes No
PDA-GAN 1 No Yes
Mix-GAN 1 Yes Yes
IGGAN (PDA + PDA) 2 No Yes
IGGAN (NDA + PDA) 2 Yes Yes

Table 5. Experimental settings for NDA-GAN, PDA-GAN, Mix-
GAN, and two types of IGGAN. NDA-GAN consists of NDA in
one D, and we apply the jigsaw, which has been shown to obtain
the best performance in this setting [35]. PDA-GAN consists of
PDA in one D, and the commonly used Diff-Augment [50] is ap-
plied in this setting. For Mix-GAN, we apply NDA (jigsaw) and
PDA (Diff-Augment) in one D. For IGGAN with NDA in D; and
PDA in D,, we apply Diff-Augment as PDA, and one of the NDA
methods as in [35] as NDA. For IGGAN with different PDAs in
D1 and D5, based on the conclusion in [52], we apply Translation
and Cutout as PDA, respectively.

4.2.2 Results on limited data

We also apply the IGGAN to the limited CIFAR-10 and
CIFAR-100 datasets. We use the same limited data settings
as in Diff-Augment [50], i.e., only use 10% and 20% of the
CIFAR-10 and CIFAR-100 training set to train the model.
From the results shown in Table 6, we can find that IG-

Figure 3. A comparison of the generated images on the 10%
CIFAR-10 dataset (each line representing one class): (a) Images
generated by BigGAN + Diff-Augment; (b) Images generated by
IGGAN. Best viewed in color.

GAN achieves state-of-the-art performance without Mas-
sive Augmentation (MA) and obtains comparable results
with Massive Augmentation (MA) on the 10% and 20%
CIFAR-10 and CIFAR-100 datasets. Furthermore, to fur-
ther show the effectiveness of the information gap between
D, and D,, we also compared IGGAN with other GAN set-
tings, and the results are shown in Table 7. IGGAN achieves
considerable improvement compared with these GANs on
the limited CIFAR-10/100 datasets.

To further show the superiority of IGGAN, the compar-
ison of generated images on the 10% CIFAR-10 dataset is
shown in Figure 3.

4.3. Results using StyleGAN2 Backbone

According to OMASGAN [9], NDA is not useful for all
of the GAN backbones. Thus, we first apply the NDA on
StyleGAN?2 and find that NDA results in worse performance
on StyleGAN?2, as shown in Table 8. This means that NDA
fails to produce the out-of-distribution samples. These gen-
erated in-distribution samples not only harm GANs training
but also prevent us from utilizing PDA and NDA to build the
information gap in StyleGAN2. Therefore, we only apply
different PDAs (case 2) in IGGAN to improve the min-max
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Method MA FID (10% C10) FID (20% C10) FID (10% C100) FID (20% C100)
Non-saturated GAN [10] No 41.99 18.59 70.50 32.64
LS-GAN [25] No 41.68 21.60 54.69 27.09
RAHinge GAN [13] No 48.13 23.90 52.72 28.79
BigGAN [3] No 48.08 21.86 66.71 32.99
StyleGAN + ADA [15] No 36.02 23.08 45.87 32.30
BigGAN + GenCo [§8] No 28.08 16.57 40.98 26.15
IGGAN (PDA + PDA) No 25.17 15.48 38.61 22.57
IGGAN (NDA + PDA) No 23.56 13.91 37.48 21.64
BigGAN + Diff-Augment [50] Yes 23.34 14.53 35.39 22.55
DAG-GAN [38] Yes 21.30 13.10 51.14 26.51
BigGAN + GenCo [8] Yes 18.10 12.61 25.22 18.44
IGGAN (PDA + PDA) Yes 19.61 13.27 29.98 20.04
IGGAN (NDA + PDA) Yes 17.91 12.44 27.02 19.36

Table 6. FID (lower is better) on the limited CIFAR-10 (C10) and CIFAR-100 (C100) datasets (10% and 20%). MA means Massive
Augmentation, which has the same meaning as in Genco [8]. Here, we select BigGAN as the backbone for IGGAN. The test set for each
dataset is used as the reference distribution for FID calculation, as in prior work [47]. For a fair comparison, results are averaged over

three evaluation runs; all standard deviations are less than 1% relatively.

NDA-GAN PDA-GAN Mix-GAN IGGAN (PDA + PDA) IGGAN (NDA + PDA)
10% C10 33.26 23.34 26.93 19.61 17.91
20% C10 16.83 14.53 14.85 13.27 12.44
10% C100 42.29 35.39 33.86 29.98 27.02
20% C100 26.95 22.55 25.99 20.04 19.36

Table 7. FID Score (lower is better) of IGGAN and other GAN settings on limited CIFAR-10 (C10) and CIFAR-100 (C100) settings. For
a fair comparison, BigGAN is applied as the backbone for all settings. MA is applied for all settings. The FIDs are averaged over three

runs; all standard deviations are less than 1% relatively.

Method FFHQ (1K) LSUN-CAT (1K)
StyleGAN2 62.16 182.85
+NDA (Jigsaw) 65.31 190.77
+NDA (Stitch) 67.68 196.47
+NDA (Mixup) 64.22 185.54
+NDA (Cutmix) 68.93 199.06

Table 8. FID score (lower is better) on applying different NDAs in
StyleGAN2. Massive Augmentation (MA) is applied in both set-
tings. The FIDs are averaged over five runs; all standard deviations
are less than 1% relatively.

game. The commonly used data augmentation methods,
i.e., Diff-Augment [50] and ADA [15], are selected as dif-
ferent PDAs in the IGGAN to avoid the leaking of augmen-
tations. The results on 256 x 256 FFHQ and LSUN-CAT
datasets are shown in Table 9. IGGAN achieves state-of-
the-art performance compared with other methods. More
generated images by IGGAN on FFHQ and LSUN-CAT
datasets can be found in the supplementary materials.

Furthermore, Genco [8] also applies multiple discrimi-
nators and data augmentations in their method. For a fair
comparison with Genco on FFHQ and LSUN datasets, the
results of IGGAN without Massive Augmentation (MA)
are shown in Table 10. IGGAN achieves a considerable
improvement compared with Genco on the FFHQ-1K and
LSUNCAT-1K datasets. To better show the superiority of
IGGAN, the generated images on FFHQ-1K are shown in
Figure 4. IGGAN produces higher-quality images com-
pared with Genco.

4.4. Ablation Study

To show that the information gap is helpful for GANs
training, we first apply IGGAN (NDA + NDA) with two dif-
ferent NDAs (Jigsaw and Stitching) to D; and D, respec-
tively. Then, we apply the same PDA (Diff-Augment) to
D; and D, respectively. These two experimental settings
cannot produce the information gap between D; and D,
in the IGGAN. The results of the ablation study are shown
in Table 11. Without the information gap between D; and
D5, IGGAN cannot obtain a better FID than the baseline.
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Method FFHQ LSUN-CAT

30K 10K 5K IK 30K 10K 5K IK
StyleGAN2 [17] 6.16 1475 2660 62.16 10.12  17.93 34.69 18285
StyleGAN2 + Diff-Augment [50]  5.05  7.86 1045 2566  9.68 1207 1611 4226
StyleGAN2 + ADA [15] 546 813 1096 2129 1050  13.13 1695 4325
IGGAN (PDA + PDA) 489 7.4 947 2016 914 1120 1585  30.80

Table 9. FID score (lower is better) on 256 x 256 FFHQ and LSUN-CAT datasets. Following Diff-Augment [50], we perform experiments
on 30K, 10K, 5K and 1K training samples. Massive Augmentation (MA) is applied in all of the methods. For a fair comparison, StyleGAN2

is selected as the backbone for IGGAN. The FIDs are averaged over five runs; all standard deviations are less than 1% relatively.

Figure 4. A comparison of the generated images on the FFHQ-1K dataset. (a) Images generated by Genco; (b) Images generated by
IGGAN (PDA + PDA). Massive Augmentation (MA) is not applied in both methods for a fair comparison. Best viewed in color.

FFHQ LSUN-CAT FID FID
Method (1K) (1K) Method (C10U) (C10)
StyleGAN2 [17] 100.13 186.88 NDA-BigGAN 12.61 9.42
Genco [8] 65.31 140.08 IGGAN (NDA + NDA) 12.82  9.61
IGGAN (PDA + PDA) 24.10 34.47 BigGAN + Diff-Augment 11.87 8.47
IGGAN (Diff-Augment in Dy and D) 11.98  8.62
) IGGAN (NDA + PDA) 10.68 8.15
Table 10. FID score (lower is better) on FFHQ-1K and LSUN-
1K datasets. For a fair comparison, StyleGAN?2 is selected as the
backbone for all settings and Massive Augmentation (MA) is not Table 11. Experiment results for an ablation study on the ef-

applied in all methods. We report FID over three runs; all standard
deviations are less than 1% relatively.

In contrast, with the information gap between Dy and Do,
IGGAN achieves a considerable improvement. This shows
the information gap between different data augmentations
is helpful for GAN training and can improve performance.

5. Conclusion

In this paper, by analyzing the min-max game of GANSs,
we unveil a novel insight into an issue that inhibits GAN
training, namely the min-max game is unfair in existing
GANSs during training, leading to sub-optimal convergence.
To address this, we propose a new GAN called IGGAN,
consisting of one generator and two discriminators, where
we apply different data augmentations to each discrimina-
tor and utilize the information gap between different data

fectiveness of the information gap in IGGAN. C10U means the
CIFAR-10 dataset with unconditional generation, and C10 means
the CIFAR-10 dataset with conditional generation. Here, we select
BigGAN as the backbone for all settings and report the results of
IGGAN (NDA + PDA) with the best NDA and PDA combination.

augmentations to make all three players obtain incomplete
information and thus improve the fairness of the min-max
game, yielding better convergence. Experiments on CIFAR-
10/100, STL10, CelebA with BigGAN and experiments on
FFHQ and LSUN-CAT datasets with StyleGAN2 demon-
strate the superiority of IGGAN.
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