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Abstract

Data augmentation (DA) has shown its effectiveness in
training Data-Efficient GANs (DE-GANs). However, ap-
plying DA in DE-GANs results in transforming the distri-
butions of generated data and real data to augmented dis-
tributions of generated data and real data. This augmen-
tation process could produce some out-of-distribution sam-
ples, known as the leaking of augmentations problem, which
is highly undesirable in DE-GANs training. Although some
methods propose “leaking-free” DAs for DE-GANs, we the-
oretically and practically argue that the leaking of augmen-
tations problem still exists in these methods. To alleviate
the leaking of augmentations in DE-GANs, in this paper,
we propose a simple yet effective method called adaptive
negative data augmentation (ANDA) for DE-GANs, with a
negligible computational cost increase. Specifically, ANDA
adaptively augments the augmented distribution of gener-
ated data using the augmented distribution of negative real
data, where the negative real data is produced by applying
negative data augmentation (NDA) on the real data. In this
case, potential leaking samples can be presented as “fake”
instances to the discriminator adaptively, which avoids the
generator (G) learning such samples, thus resulting in bet-
ter performance. Extensive experiments on several datasets
with different DE-GANs demonstrate that ANDA can effec-
tively alleviate the leaking of augmentations problem during
training and achieve better performance. Codes are avail-
able at https://github.com/zzhang05/ANDA

1. Introduction

Generative Adversarial Networks (GANs) [8] have
achieved great success [14, 15, 17, 18, 23, 39, 43] in the past
few years when working with large amounts of data. How-
ever, gathering and cleaning such enormous datasets is ex-
pensive, time-consuming, and often impossible. Therefore,
Data-Efficient GANs (DE-GANs [19]) are receiving signif-
icant attention [4, 16, 19, 36, 44].

Data augmentation (DA) has recently shown its impor-
tance in training DE-GANs. Many studies [4, 16, 44] ap-
ply DA to both real and fake data for the discriminator (D)
and generator (G) in DE-GANs to improve the DE-GANs
training. However, training DE-GANs with DA leads to
transforming the distributions of generated data and real
data to augmented distributions of generated data and real
data [31]. This augmentation process could produce out-of-
distribution samples [42, 45], known as the leaking of aug-
mentations problem in DE-GANs [16]. Although some ap-
proaches [16,35] carefully design the DA in DE-GANs and
state that their DA is leaking-free, we argue that the leak-
ing of augmentations still exists in these methods. Specifi-
cally, we provide the theoretical analysis that applying DA
in DE-GANs with non-saturating loss can yield the learning
of augmented distributions, which can unavoidably produce
some out-of-distribution samples, thus harming the training
of DE-GANs. Based on the conclusion in ADA [16], i.e.,
“a noise augmentation leads to noisy results, even if there is
none in the dataset”, the leaking of augmentations problem
can be better visualized by applying noise augmentation in
DE-GANs. Therefore, we select DE-GANs with noise aug-
mentation, i.e., Diffusion-GAN, to further demonstrate the
leaking of augmentations problem in DE-GANs. As shown
in Figure 1 (a), Diffusion-GAN [35] produces noise-based
images.

To alleviate the leaking of augmentations problem in
DE-GANs, we propose a simple yet effective method
called adaptive negative data augmentation (ANDA) for
DE-GANs. In contrast to previous DAs [4, 13, 16, 44],
ANDA augments the augmented generated data distribution
with the augmented negative real data distribution adap-
tively, where the negative real data is produced by applying
negative data augmentation (NDA) [30] on the real data.
Such augmented negative real samples are adaptively pre-
sented to the discriminator as “fake” instances to avoid G
learning potential leaking samples, hence resulting in better
performance, as shown in Figure 1 (b).

To sum up, the main contributions of this paper are as
follows:
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100-shot Panda FID 8.69

(a) Diffusion-GAN (StyGAN2 backbone)

100-shot Panda FID 7.88 (-0.81)

100-shot Grumpy Cat FID 21.87 100-shot Grumpy Cat FID 19.01 (-2.86)

(b) Diffusion-GAN (StyGAN2 backbone) + ANDA

100-shot Obama FID 28.55 100-shot Obama FID 26.40 (-2.15)

Figure 1. An illustration of the leaking of augmentations problem with Diffusion-GAN (StyleGAN2 [18] backbone) and Diffusion-GAN
(StyleGAN2 backbone) + ANDA on the 100-shot Obama, Panda and Grumpy Cat datasets without cherry-picking the results. (a) Images
generated by Diffusion-GAN (StyleGAN2 backbone). Diffusion-GAN (StyleGAN2 backbone) produces noise-based images caused by
the leaking of augmentations problem. (b) Images generated by Diffusion-GAN (StyleGAN2 backbone) + ANDA. Adding ANDA to
Diffusion-GAN (StyleGAN2 backbone) can effectively improve the leaking of augmentations problem, thus generating less noisy images
with better quality (measured by the Fréchet Inception Distance, i.e., FID [11] scores). Best viewed in color.

1. We propose a novel adaptive negative data augmenta-
tion (ANDA) for DE-GANs. This method makes D re-
gard potential leaking samples as “fake” instances dur-
ing training to avoid G learning these leaking samples
adaptively, hence resulting in better performance.

2. We analyze the leaking of augmentations problem ex-
isting in DE-GANs with non-saturating loss in both
theory and practice. Based on this, we theoretically
connect ANDA with optimizing the non-saturating
loss in DE-GANs, proving its convergence and ratio-
nality.

3. Extensive experiments on different DE-GANs [16, 35,
44] with six commonly used datasets demonstrate that
the proposed ANDA can effectively mitigate the leak-
ing of augmentations problem and achieve better per-
formance with negligible computational cost.

2. Related Work

2.1. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [8] is a form
of generative models [27, 32] in which a game is played
between two players: A generator (G) and a discriminator
(D). Specifically, G aims to produce realistic-looking sam-
ples with some given noise z to deceive D, while D aims to
distinguish whether the input sample is from the generator’s

output or real data. The objective function of GANs can be
formulated as follows:

min
G

max
D

V (G,D)=Ex∼PR[logD(x)] + Ex∼PG[log(1−D(x))].

(1)
The parameters of G and D are updated iteratively with

gradient descent methods. Theoretically, GANs have been
shown to optimize the Jensen-Shannon (JS) divergence be-
tween the generator’s distribution (PG) and real data dis-
tribution (PR). GANs are known to suffer from training
instability, yielding poor quality and diversity of generated
images. To stabilize GANs training and improve the qual-
ity and diversity of generated images, various approaches
have been proposed, focusing on more sophisticated net-
work architectures [3, 22, 23, 28, 38, 40], more stable objec-
tive functions [2, 9, 10, 21, 29], and better training strate-
gies [6, 15, 19, 20, 41] to achieve photorealistic results.

2.2. Data-Efficient GANs (DE-GANs)

Recently, data augmentation (DA) has played an impor-
tant role in improving the performance of training Data
Efficient GANs (DE-GANs). Many studies [4, 16, 31, 44]
apply DA to both real and fake samples for D and G to
guide the discriminator to avoid overfitting, thus enhancing
the training of DE-GANs. The most popular methods are
Diff-Augment [44], ADA [16], and Diffusion-GAN [35].
Diff-Augment applies the DAs to both real and fake images
for D and G without manipulating the target distribution.
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ADA is similar to Diff-Augment, while it further devises
an adaptive approach that controls the strength of data aug-
mentations. Diffusion-GAN applies the forward diffusion
process [12] as DA to both real and fake images adaptively.
The objective function of DA in StyleGAN2 [18] can be
formulated as follows:

VD(G,D) = ET (x)∼PT
R
[logD(T (x))]

+ ET (x)∼PT
G
[log(1−D(T (x)))],

VG(G,D) = −ET (x)∼PT
G
[log(D(T (x)))],

(2)

where T is a certain augmentation method. Following the
existing studies [16, 42, 45], DA applied to both real and
fake samples for D and G can cause the leaking of augmen-
tations problem during training. In this work, we extend
the study of the leaking of augmentations problem in DE-
GANs.

2.3. Negative Data Augmentation (NDA)

Recently, negative data augmentation (NDA) [30] has
been proposed to produce out-of-distribution samples to
benefit the GANs training. NDA-GANs guide the discrimi-
nator to regard the out-of-distribution samples as “fake” in-
stances to improve GANs training. A recent study, OMAS-
GAN [7], shows that the performance of NDA varies on
different datasets and backbones of GANs.

3. Methodology
3.1. Leaking of Augmentations Problem

Recently, some approaches [31, 35] have focused on ap-
plying DA in DE-GANs. They concluded that DA in DE-
GANs is leaking-free as long as two conditions are met si-
multaneously, i.e., the use of invertible DA and the appli-
cation of saturating loss in DE-GANs. However, the com-
monly used DE-GANs backbone, i.e., StyleGAN2 [18], ap-
plies non-saturating loss, which can still cause the leaking
of augmentations problem in DE-GANs. To better under-
stand this, we first provide a theoretical analysis of the leak-
ing of augmentations problem for StyleGAN2. We con-
clude that DA applied to both real and fake samples for D
and G in DE-GANs with non-saturating loss results in op-
timization of the KL-2JS divergence between augmented
generated data distribution PT

G and augmented real data dis-
tribution PT

R , shown as follows.
Based on the theory developed for the original GAN

[8], we can obtain the optimal discriminator D∗(T (x)) for
Eq.(2) as

D∗(T (x)) =
PT
R (T (x))

PT
R (T (x)) + PT

G (T (x))
. (3)

Then, given the optimal D∗, based on the Theorem 2.5
as in [1], training generator with these augmented samples
T (x) in Eq.(2) can be formulated as

VG(G,D∗) = KL(PT
G ||PT

R )− 2JS(PT
G ||PT

R ), (4)

where KL is the Kullback-Leibler divergence and JS is the
Jensen-Shannon divergence. Eq.(4) demonstrates that the
DA applied to both G and D in DE-GANs leads to the op-
timization of the KL-2JS divergence between augmented
distributions PT

G and PT
R . Compared with the DE-GANs

without DA, applying DA in DE-GANs transforms the dis-
tribution of the original generated data (PG) and real data
(PR) to augmented distributions PT

G and PT
R [31]. This aug-

mentation process can unavoidably produce some out-of-
distribution samples for both real data and generated data.
Then, these out-of-distribution samples are applied to up-
date the parameters of both G and D, therefore, harming
the training of DE-GANs.

Next, we analyze the leaking of augmentations problem
of three widely-used DA methods in DE-GANs with non-
saturating loss.
Diff-Augment [44] in DE-GANs. Diff-Augment does not
consider the leaking of augmentations problem when de-
signing the augmentation method. Therefore, as shown in
Eq.(4), applying Diff-Augment in DE-GANs results in op-
timization of the KL-2JS divergence between augmented
distributions PT

G and PT
R , which demonstrates that the leak-

ing of augmentations problem exists when Diff-Augment is
applied to DE-GANs.
ADA [16] in DE-GANs. ADA introduces adaptive discrim-
inator augmentation to alleviate the leaking of augmenta-
tions problem and states that ADA is leaking-free. How-
ever, we argue that the leaking of augmentations still exists
when ADA is applied in DE-GANs. In ADA, the augmenta-
tion is controlled by a probability p (defined in Section 3 in
the ADA paper). Specifically, augmentation is applied with
p or skipped with 1− p, where p is controlled by the degree
of overfitting of D. In other words, what ADA does is to
reduce the augmentation degree during the training of DE-
GANs. Particularly, augmentation in ADA is only applied
when D suffers from overfitting. As a result, ADA can re-
lieve the leaking of augmentations but the augmentation op-
erations still exist during training. As shown in Eq.(4), these
existing augmentation operations in ADA can yield opti-
mization of the augmented distributions, which still causes
the leaking of augmentations problem.
Diffusion [35] in DE-GANs. Diffusion-GAN applies the
forward Diffusion process to augment both real and fake
images in DE-GANs. Because Diffusion as the augmen-
tation is invertible, Diffusion in DE-GANs is leaking-free
when optimizing the saturating loss, as shown in Theorem
2 in Diffusion-GAN [35]. However, based on our analysis
above, the commonly-used DE-GANs utilize StyleGAN2
as backbones which applies non-saturating loss, leading to
optimization of Eq.(4) in DE-GANs. Therefore, the leaking
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Method FID (FFHQ-100) FID (FFHQ-140K)
StyleGAN2 [18] 179.21 3.71
StyleGAN2 + ADA [16] 82.17 3.81
StyleGAN2 + Diff-Augment [44] 61.91 4.84
Diffusion-GAN (StyleGAN2 backbone) [35] 91.11 4.99

Table 1. Experiment results on FFHQ-100 and FFHQ-140K datasets (256× 256). The FIDs (lower is better) are averaged over three runs;
all standard deviations are less than 1%, relatively.

of augmentations still exists in Diffusion-GAN.
We also demonstrate that the leaking of augmentations

problem exists in DE-GANs in practice. The experiments
are conducted on the FFHQ dataset [18] using two dif-
ferent settings: a limited data setting (FFHQ-100) and a
full data setting (FFHQ-140K). For the limited data setting,
DE-GANs suffer from the heavy overfitting of D problem
[13,16,44]. Although applying DA in DE-GANs can cause
the leaking of augmentations problem, it can significantly
address the overfitting of D problem. Since the overfitting
of D is far more significant than the leaking of augmen-
tations problem under the limited data setting, DA in DE-
GANs can achieve great improvement compared with the
baseline, with the result that the leaking of augmentations
issue is often ignored. In contrast, for the full data setting,
DE-GANs no longer suffer from the overfitting of D prob-
lem. In this case, the leaking of augmentations caused by
applying DA in DE-GANs can decrease performance com-
pared with the baseline. As shown in Table 1, compared
with baseline StyleGAN2, all commonly-used DAs in DE-
GANs achieve great improvement for the FFHQ-100 setting
but decrease the performance for the FFHQ-140K setting,
which shows that the leaking of augmentations problem ex-
ists in DE-GANs in practice.

3.2. Adaptive Negative Data Augmentation (ANDA)

We first directly apply negative data augmentation
(NDA) [30] in DE-GANs to address the leaking of augmen-
tations problem, and the results are shown in Table 2. By
adding NDA on different DE-GANs, the FID only achieves
limited improvement or even deteriorates. This is because
the performance of NDA varies on different datasets and
backbones of GANs [7]. In this case, directly applying
NDA in DE-GANs could produce part of the in-distribution
samples on the 100-shot-Obama dataset with the Style-
GAN2 backbone. These in-distribution samples presented
as the “fake” instance to D could lead to less real data being
shown to D as the “real” instance during training. Conse-
quently, directly applying NDA in DE-GANs causes more
heavy overfitting of D in the data-efficient domain, yielding
undesirable results.

To better utilize NDA and address the leaking of aug-
mentations problem for DE-GANs, motivated by ADA [16]

and APA [13], we propose a simple yet effective method
called adaptive negative data augmentation (ANDA) for
DE-GANs, as shown in Figure 2. ANDA adaptively aug-
ments the augmented generated data distribution with the
augmented negative real data distribution during training,
where the negative real data is produced by applying NDA
on the real data. Specifically, the augmented negative real
samples, i.e., potential leaking samples, will be presented to
D as fake samples adaptively. We apply a hyperparameter
λ to balance the NDA real samples and generated samples
in the proposed ANDA and perform ANDA with the prob-
ability p, where p ∈ [0, 1). The probability p should be
intuitively adjusted according to the overfitting degree of D
adaptively without any manual adjustment, irrespective of
data scales and characteristics. In order to achieve this, fol-
lowing the ADA [16] and APA [13], we utilize an overfitting
heuristic η which aims to quantify the overfitting degree of
D as follows

η = E(sign(Dreal)), Dreal = logit(D(T (x))), (5)
where sign() indicates the sign function that returns +1 for
a non-negative input; −1, otherwise. Then, we follow the
same step as in ADA [16] and APA [13] for using η to ad-
just p. The more serious overfitting of D, the less NDA-
produced data should be present as fake in our proposed
ANDA. Therefore, we design a novel adaptive strategy for
the proposed ANDA. Specifically, the NDA will be applied
with the probability (1−p) or be skipped with the probabil-
ity p. In this way, the strength of NDA can be adaptively
controlled based on the degree of overfitting. This pro-
cess can effectively avoid G learning these potential leaking
samples, finally, preventing G from producing such samples
and achieving a better result.

3.3. Theoretical Analysis

Let PT
R be the distribution of augmented real samples,

PT
G be the distribution of augmented generated samples and

P̂T
R be the distribution of augmented NDA real samples. Let

λ be the hyperparameter, which aims to balance the nega-
tive real samples and generated samples. For a given sam-
ple x, D(x) represents the estimated probability of x be-
ing classified as real or fake. To evaluate the soundness of
ANDA, we follow the theoretical analysis in APA [13] to

5415



Figure 2. The overview of adaptive negative data augmentation (ANDA) for updating D (above) and G (below) in DE-GANs. For
updating D, we augment the augmented distribution of generated data using the augmented distribution of negative real data adaptively.
The negative real data is produced by applying NDA on the real data. Specifically, such augmented negative real data is adaptively presented
to the discriminator as “fake” instances to avoid the leaking of augmentations during training. We introduce a hyperparameter λ to balance
the negative real data and generated data, and apply an overfitting heuristic η to control the adaptive process. For updating G, according
to [16, 44], the augmented generated samples are applied to update the parameters of G.

Method FID (100-shot Obama)
StyleGAN2 + ADA 45.69
StyleGAN2 + ADA + NDA 44.68 (-1.01)
StyleGAN2 + Diff-Augment 46.87
StyleGAN2 + Diff-Augment + NDA 45.47 (-1.40)
Diffusion-GAN (StyleGAN2 backbone) 28.55
Diffusion-GAN (StyleGAN2 backbone) + NDA 29.66 (+1.11)

Table 2. FID score (lower is better) on directly applying the NDA to DE-GANs on the 100-shot Obama dataset [44]. By adding NDA, the
FID only achieves limited improvement (red color) or even deteriorates (green color) on different DE-GANs. The FIDs are averaged over
three runs; all standard deviations are less than 1%, relatively.

investigate ANDA within a non-parametric framework. By
analyzing its convergence within the domain of probability
density functions, a model is portrayed with limitless capac-
ity. In an ideal scenario, the estimated probability distribu-
tion of augmented generated samples PT

G should perfectly
model the distribution of augmented real samples PT

R with-
out any bias when provided with sufficient capability and
training time.

Given the adaptive adjustment of the probability p, we
introduce an α representing the anticipated strength, ap-
proximating the impact of dynamic distribution adjustment
over the whole training process. Considering that p ∈ [0, 1),
we have 0 ≤ α < pmax < 1, where pmax is the maximum
value of probability p during training. Consequently, the ob-
jective function V (G,D) under saturating loss with ANDA
can be formulated as:

min
G

max
D

V (G,D) = ET (x)∼PT
R
[logD(T (x))]

+ ET (x)∼λ(1−α)P̂T
R
[log(1−D(T (x)))]

+ ET (x)∼(1−λ)(1+ λ
1−λ

α)PT
G
[log(1−D(T (x)))].

(6)

The loss function of StyleGAN2 is the non-saturating
loss. Therefore, the objective function VD(G,D) and
VG(G,D) for the min-max game of ANDA on StyleGAN2
can be formulated as:

VD(G,D) = ET (x)∼PT
R
[logD(T (x))]

+ ET (x)∼λ(1−α)P̂T
R
[log(1−D(T (x)))]

+ ET (x)∼(1−λ)(1+ λ
1−λ

α)PT
G
[log(1−D(T (x)))],

VG(G,D) = −ET (x)∼PT
G
[logD(T (x))].

(7)

To analyze the convergence of Eq.(7), following the
proof of GANs [8], first, we develop a lemma for the ob-
jective function as follows.

Lemma 1. Given two types of objective function
Ex∼βP+γQ[f(x)] and βEx∼P [f(x)] + γEx∼Q[f(x)], we
have that
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Ex∼βP+γQ[f(x)] = βEx∼P [f(x)] + γEx∼Q[f(x)], (8)

Proof. See supplementary materials.
where β and γ are any scalable parameters; P and Q repre-
sent one kind of distribution, respectively. Based on Lemma
1, we consider the optimal discriminator for any given gen-
erator.

Proposition 1. If the generator G is fixed, the optimal
discriminator D∗(T (x)) for ANDA is:

D∗(T (x)) =PT
R (T (x))/[PT

R (T (x)) + λ(1− α)P̂T
R (T (x))

+ (1− λ)(1 +
λ

1− λ
α)PT

G (T (x))].

(9)

Proof. See supplementary materials.
Given the optimal discriminator D∗(T (x)), for the loss

function of StyleGAN2, the goal of generator G is to mini-
mize the VG(G,D∗) in Eq.(7). To analyze the convergence
of VG(G,D∗) in Eq.(7), we should first provide the the-
oretical analysis for Eq.(6). We replace the D(T (x)) as
D∗(T (x)) and apply Lemma 1 in Eq.(6), then we have that

C(G) = ET (x)∼PT
R
[logD∗(T (x))]

+ λ(1− α)ET (x)∼P̂T
R
[log(1−D∗(T (x)))]

+ (1− λ)(1 +
λ

1− λ
α)ET (x)∼PT

G
[log(1−D∗(T (x)))].

(10)
Then, let us consider the optimization of C(G) in

Eq.(10) trained with the proposed ANDA.
Proposition 2. Given the optimal discriminator

D∗(T (x)), the minimization of C(G) in Eq.(10) can be re-
garded as:

C(G) = 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G )

− 2 log 2.

(11)
Proof. See supplementary materials.

Then, for VG(G,D) in Eq.(7), we replace D(T (x)) as
D∗(T (x)). Based on the proposition 2, we investigate the
item KL(λ(1−α)P̂T

R +(1−λ)(1+ λ
1−λα)P

T
G ||PT

R ), and
the minimization of VG(G,D∗) with the proposed ANDA
is shown in Theorem 1.

Theorem 1. Given the optimal discriminator D∗(T (x)),
the minimization of VG(G,D∗) in Eq.(7) can be regarded
as:
VG(G,D∗) =

1

(1− λ)(1 + λ
1−λ

α)
×

[KL(λ(1− α)P̂T
R + (1− λ)(1 +

λ

1− λ
α)PT

G ||PT
R )

− 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G )].

(12)
Proof. See supplementary materials.

According to f-GAN [26], both the terms KL and JS in

Eq.(12) are f -divergences in GANs. Based on the proofs
of Theorem 1 developed in NDA-GAN [30], we investi-
gate both KL divergence items KL(λ(1 − α)P̂T

R + (1 −
λ)(1 + λ

1−λα)P
T
G ||PT

R ) and KL(λ(1 − α)P̂T
R + (1 −

λ)(1 + λ
1−λα)P

T
R ||PT

R ), as well as both JS divergence
items 2JS(PT

R ||λ(1 − α)P̂T
R + (1 − λ)(1 + λ

1−λα)P
T
G )

and 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 + λ
1−λα)P

T
R ), re-

spectively. Then, we can conclude that both KL(λ(1 −
α)P̂T

R +(1−λ)(1+ λ
1−λα)P

T
G ||PT

R ) and 2JS(PT
R ||λ(1−

α)P̂T
R + (1 − λ)(1 + λ

1−λα)P
T
G ) items in Eq.(12) leads to

the optimization of the KL-2JS divergence between PT
G and

PT
R \

{
P̂T
R

}
. This goal is similar to the original DE-GANs

shown in Eq.(4). At the same time, it avoids the optimiza-
tion between PT

G and potential leaking samples distribution
P̂T
R , which demonstrates that ANDA in DE-GANs does not

influence the convergence of G and can alleviate the leaking
of augmentations problem. The detailed proof of the theory
and the training algorithm for ANDA is shown in supple-
mentary materials.

4. Experiment

We demonstrate the superiority of ANDA with several
state-of-the-art DE-GANs on widely used datasets, i.e.,
100-shot Obama, 100-shot Panda, 100-shot Grumpy Cat,
AnimalFace Dog, AnimalFace Cat in [44], and FFHQ [18]
datasets. All of these datasets are commonly used without
limitations. We conduct all the experiments on a worksta-
tion with four NVIDIA V100 GPUs. More details of the
experiments can be found in the supplementary materi-
als.

4.1. Datasets Preparation and Implementation De-
tails

We follow ADA [16] and Diff-Augment [44] to prepare
the dataset. For FFHQ, according to ADA, the images are
resized to 256×256. FID is measured using 50K generated
samples; the full training set (70K) is used as the reference
distribution. Furthermore, we set batchsize as 64 for the ex-
periments. For several low-shot datasets, the resolution of
images is 256 × 256. FID is measured using 5k generated
samples; the training set is the reference distribution. For
NDA, we select the best NDA strategy Jigsaw developed
in NDA-GAN [30] for our proposed ANDA. The hyperpa-
rameter λ is set as 0.2 for all experiments. For the imple-
mentation of Diffusion-GAN [35], according to [35], Diff-
Augment [44] is applied alongside Diffusion as the noise
augmentation to enhance the training of GANs in the data-
efficient domain.
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Method MA Pre-training? 100-shot Animal-Face

Obama Grumpy Cat Panda Cat Dog
Scale/shift [25] No Yes 50.72 34.20 21.38 54.83 83.04
MineGAN [33] No Yes 50.63 34.54 14.84 54.45 93.03
TransferGAN [34] No Yes 48.73 34.06 23.20 52.61 82.38
TransferGAN + DA [44] Yes Yes 39.85 29.77 17.12 49.10 65.57
FreezeD [24] No Yes 41.87 31.22 17.95 47.70 70.46
StyleGAN2 [18] No No 80.20 48.90 34.27 71.71 131.90
StyleGAN2∗ [18] Yes No 65.57 39.92 22.08 51.66 77.96
StyleGAN2 + Diff-Augment [44] Yes No 46.87 27.08 12.06 42.44 58.85
+ ANDA Yes No 38.61 24.31 10.63 37.38 49.66
StyleGAN2 + ADA [16] Yes No 45.69 26.62 12.90 40.77 56.83
+ ANDA Yes No 39.66 25.11 11.72 38.15 54.45
Diffusion-GAN (StyleGAN2 backbone) [35] Yes No 28.55 21.87 8.69 33.18 68.15
+ ANDA Yes No 26.40 19.01 7.88 29.26 65.74
InsGen [37] Yes No 32.42 22.01 9.85 33.01 44.93
+ ANDA Yes No 23.55 18.01 8.00 23.87 39.20

Table 3. FID score (lower is better) on several low-shot datasets (256 × 256). We follow the setting as in [44]. MA means Massive
Augmentation, which has the same meaning as in Genco [5]. For a fair comparison, the FIDs are averaged over three runs; all standard
deviations are less than 1%, relatively. The results of StyleGAN2∗ and Diffusion-GAN (StyleGAN2 backbone) are run by ourselves based
on their official open source codes.

4.2. Results on Low-shot Datasets

The results on 256 × 256 low-shot datasets are shown
in Table 3. We add ANDA on three types of DE-GANs,
i.e., StyleGAN + Diff-Augment, StyleGAN2 + ADA and
Diffusion-GAN (StyleGAN2 backbone). The results of
the Diffusion-GAN (StyleGAN2 backbone) are run by our-
selves based on the official open source codes1. Style-
GAN2 + Diff-Augment does not consider avoiding the leak-
ing of augmentations problem in the design of the aug-
mentation method. Therefore, adding ANDA can achieve
great improvement for StyleGAN2 + Diff-Augment. For
StyleGAN2 + ADA and Diffusion-GAN (StyleGAN2 back-
bone), although they consider avoiding the leaking of aug-
mentations problem in designing their augmentation meth-
ods, adding ANDA can still achieve further improvement on
StyleGAN2 + ADA and Diffusion-GAN (StyleGAN2 back-
bone). More generated images are shown in the supplemen-
tary materials.

To further demonstrate the generalization ability of
ANDA on DE-GANs, we also apply ANDA to the more
advanced DE-GANs, i.e., InsGen [37], and the results are
shown in Table 3. By adding ANDA, InsGen obtains lower
FIDs compared with the baseline, which shows that ANDA
can further increase the performance on more advanced DE-
GANs. The images generated by InsGen + ANDA can be
found in the supplementary materials.

1https://github.com/Zhendong-Wang/Diffusion-GAN

Method Seconds per 1K images
Diffusion-GAN (StyleGAN2 backbone) 24.82
+ANDA 25.17

Table 4. The training time on the 100-shot Obama dataset. The
results are calculated by averaging over ten runs on an NVIDIA
V100 GPU with batch size 64. All standard deviations are less
than 1%, relatively.

4.3. Results on FFHQ Dataset

For the experiments on the FFHQ dataset, we apply two
different experimental settings, i.e., a limited data setting
(FFHQ-100) and a full data setting (FFHQ-140K), to better
illustrate that ANDA can alleviate the leaking of augmenta-
tions problem in DE-GANs. The results are shown in Table
5. Adding ANDA in DE-GANs can improve the perfor-
mance in both settings. Particularly, ANDA can increase
the performance of DE-GANs on the FFHQ-140K setting,
which indicates that ANDA can mitigate the leaking of aug-
mentations problem in DE-GANs.

4.4. Computational Cost

The training time on the 100-shot-Obama dataset (256×
256) with Diffusion-GAN (StyleGAN2 backbone) is shown
in Table 4. The computational increase by adding ANDA in
DE-GANs is negligible.
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Method FID (FFHQ-100) FID (FFHQ-140K)
StyleGAN2 [18] 179.21 3.71
StyleGAN2 + ADA [16] 82.17 3.81
+ ANDA 71.42 3.69
StyleGAN2 + Diff-Augment [44] 61.91 4.84
+ ANDA 53.74 4.27
Diffusion-GAN (StyleGAN2 backbone) [35] 91.11 4.99
+ ANDA 61.66 4.85

Table 5. FID score (lower is better) on 256 × 256 FFHQ dataset. We perform experiments on 100 and 140K training samples on the
FFHQ dataset. Massive Augmentation (MA) is applied in all of the methods. For a fair comparison, FID is measured using 50K generated
samples. The FIDs are averaged over three runs; all standard deviations are less than 1%, relatively.

λ 0.1 0.2 0.4 0.8
FID (100-shot Obama) 39.78 39.66 40.67 41.28

Table 6. Experiment results by selecting different hyperparameters
λ in ANDA on the StyleGAN2 + ADA + ANDA method. Here,
we report the FID (lower is better) on the 100-shot Obama dataset.
The FIDs are averaged over three runs; all standard deviations are
less than 1%, relatively.

NDA methods in ANDA Jigsaw Stitching Mixup Cutmix
FID (100-shot Obama) 39.66 40.74 40.61 40.77

Table 7. Experiment results by selecting different NDA methods
in ANDA upon the StyleGAN2 + ADA + ANDA method. Here,
we report the FID (lower is better) on the 100-shot Obama dataset.
The hyperparameter λ is set as 0.2 for all the experiments. The
FIDs are averaged over three runs; all standard deviations are less
than 1%, relatively.

4.5. Ablation Study

Ablation study on applying different values of the hyper-
parameter λ (defined in Figure 2). We conduct an ablation
study by selecting the different values of the hyperparame-
ter λ in ANDA with the StyleGAN2 + ADA backbone on
the 100-shot Obama dataset, and the results are shown in
Table 6. Setting λ = 0.2 achieves the best performance.
Ablation study on applying different NDA methods in
proposed ANDA. We conduct an ablation study by select-
ing different NDA methods, i.e., Jigsaw, Stitching, Mixup,
and Cutmix as in NDA-GAN [30], for the proposed ANDA
upon the StyleGAN2 + ADA backbone. The results of
the 100-shot Obama dataset are shown in Table 7. Jig-
saw achieves better performance compared with other NDA
methods in the proposed ANDA.
Ablation study on the effectiveness of ANDA alleviating
the leaking of augmentations problem in DE-GANs. To
further demonstrate the proposed ANDA can alleviate the

Method FID (100-shot Obama)
StyleGAN2 [18] 65.57
+ANDA 65.83

Table 8. FID score (lower is better) on applying ANDA to Style-
GAN2 method. Massive Augmentation (MA) is applied in all of
the methods. The FIDs are averaged over three runs; all standard
deviations are less than 1%, relatively.

leaking of augmentations problem, rather than other prob-
lems, in DE-GANs. We conduct an ablation study by apply-
ing the ANDA to the StyleGAN2, in which no DA method
is applied in this case. The results are shown in Table 8.
It is clear that directly applying ANDA to StyleGAN2 can
slightly decrease the performance compared with the base-
line, which shows that ANDA can not directly alleviate the
overfitting of D problem. On the contrary, the improve-
ments caused by ANDA in Tables 3 and 5 demonstrate that
ANDA can alleviate the leaking of augmentations problem
in DE-GANs.

5. Conclusion

In this paper, we propose a simple yet effective method
called adaptive negative data augmentation (ANDA) for
DE-GANs, which can effectively alleviate the leaking of
augmentations problem with a negligible computational
cost increase. Experiments on several low-shot datasets
with different DE-GANs demonstrate that ANDA can ef-
fectively address the leaking of augmentations problem and
achieve better performance. The discussion of Boarder Im-
pact can be found in the supplementary materials.
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