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Abstract

A variety of real-world applications rely on accurate pre-
dictions of 3D human motion from their past observations.
While existing methods have made notable progress, their
predictions over subsecond horizons can still be off by many
centimeters. In this paper, we argue that achieving pre-
cise human motion prediction requires characterizing the
fundamental physics principles governing body movements.
We introduce PhysMoP, a novel framework that incorpo-
rates Physics for human Motion Prediction. PhysMoP es-
timates the body configuration of the next frame by solving
the Euler-Lagrange equations, a set of Ordinary Different
Equations describing the physical motion rules. To limit
the inherent problem of error accumulation over time, Phys-
MoP leverages a data-driven model and iteratively guides
the physics-based prediction via a fusion model. Through
extensive experiments, we demonstrate that PhysMoP sig-
nificantly outperforms existing approaches at subsecond
prediction horizons. For example, at a prediction horizon
of 80 msec, PhysMoP outperforms traditional data-driven
approaches by a factor of 10 or more.

1. Introduction
A wide range of real-world applications such as au-

tonomous driving [13], intelligent robotics [28], and an-
imation [50], rely on accurate prediction of the 3D posi-
tion and configuration of a human body based on observa-
tions of its past motion. Traditional approaches to human
motion prediction employ statistical methods that include
Gaussian process models [31, 59, 62] and Restricted Boltz-
mann Machines (RBMs) [7, 57]. These approaches incor-
porate specific assumptions about the distribution of mo-
tion data. Although these assumptions can represent sim-
ple body movements, accurately modeling complex motion
patterns requires a more sophisticated characterization.

The code of this work is available at https://github.com/
zhangy76/PhysMoP.

Over the last decade, as the availability of publicly ac-
cessible motion capture data has increased [21, 25, 43], re-
searchers have made promising progress on existing bench-
marks [12, 22, 41, 45, 46, 72] by applying deep learning to
human motion prediction. Various deep models have been
proposed to model motion sequences, such as those based
on Recurrent Neural Networks (RNN) [10,16,19,47], Con-
volutional Neural Networks (CNN) [4, 9, 32, 34, 56], and
Transformers [3, 39, 48]. Additionally, variants of Gener-
ative Adversarial Networks (GAN) [6, 20, 26] and Varia-
tional Auto-encoder (VAE) [66] have been used to model
motion data distributions [30, 53, 65, 69]. While these deep
models have shown the capacity to capture complex motion
patterns, they are purely data-driven, overlooking a crucial
fact: human bodies are physical bodies and their movement
adheres to physical motion rules. The central thesis of this
paper is that, by incorporating fundamental principles of
physical motion into predictive models of human motion,
the prediction accuracy can be improved significantly, es-
pecially over subsecond time horizons.

The human body is an intricate physical system, where
multiple interconnected body parts work together to facili-
tate intricate movements. To effectively model and analyze
its dynamic behavior, one can employ the Euler-Lagrange
equations [14], which capture the same basic physical prin-
ciples as Newton’s laws of motion but provide a more useful
description of 3D body motion in a generalized coordinate
system. Specifically, the generalized coordinate system can
be chosen as needed, such as body joint angles; the Euler-
Lagrange equations describe body movements through a set
of second order Ordinary Differential Equations (ODEs)
of the generalized position over time. For motion predic-
tion, exploiting the Euler-Lagrange equations can enable
the inference of additional physical information for a pre-
diction model to improve its performance [71]. The Euler-
Lagrange equations can also be utilized to derive physical
constraints, the imposition of which can enhance the qual-
ity of human motion synthesis outputs [42,63,67] as well as
monocular 3D human reconstruction results [17,24,33,54].
Particularly, the physical artifacts often presented in data-
driven estimates, such as unrealistic motion jittering, are no-
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tably alleviated. While current methods have made promis-
ing progress by integrating physics, they have not explored
the way to directly synergize physics and neural networks.
Specifically, these approaches primarily employ the Euler-
Lagrange equations to preprocess data for training deep
models or to impose constraints for refining predictions
generated by deep models. In contrast, our work aims to
directly integrate physics into a motion prediction model,
seamlessly merging physics and deep learning without sep-
arate incorporation processes.

Recently, physics-informed deep learning has demon-
strated significant promises in model prediction accuracy,
training speed, and generalization [27]. Unknown par-
tial differential equations [51] and intricate Lagrangian dy-
namics [11] can be accurately and efficiently solved and
captured through neural networks. Inspired by these ap-
proaches, we present a novel approach to incorporate the
Euler-Lagrange equations into a human motion prediction
model by directly specifying and solving the equations
through neural networks. We demonstrate that the proposed
approach, PhysMoP, can significantly improve the predic-
tion accuracy over existing methods and achieve more phys-
ically plausible estimates.

In summary, the main contributions of our work are:

• We propose PhysMoP, a novel approach that effec-
tively incorporates physics principles into predictive
models of human motion. PhysMoP is built upon a
physics-based motion prediction model that encodes
the Euler-Lagrange equations by explicitly specifying
and solving them to estimate future motion.

• PhysMoP further utilizes a data-driven model to effec-
tively guide long-term predictions and mitigate error
accumulation in the physics-based estimations through
a fusion model.

• Through experiments, we demonstrate that PhysMoP
significantly outperforms existing works, with particu-
lar advantages in short-term human motion prediction.

2. Related Work
In this section, we review existing literature on data-

driven techniques for predicting human motion and then
discuss adjacent prior work that has leveraged physics to
improve models of human dynamics, which have been em-
ployed for motion prediction and other related tasks.
Data-Driven Human Motion Prediction. Early efforts
that rely on data to model motion patterns included statisti-
cal approaches [7, 31, 59, 62]. They made various assump-
tions about data dependencies and representation, such as
the fixed variable relationships and the binary-valued units
introduced in RBMs [57]. Their applicability is limited
to simple movements that exhibit consistent patterns over

time. Recently, with the availability of a larger amount
of motion data, deep learning methods have proven to be
superior at modeling complex motion patterns. To ef-
fectively capture the temporal dependency in body move-
ments, RNN and their variations [10, 16, 19, 47] have been
proposed. These traditional RNN-based temporal models,
however, are not effective in capturing spatial information.
To remedy this problem, several authors have employed
CNN [9, 32], while others have used Graph Convolutional
Networks (GCN) [4,12,34,35] whereby human body move-
ment is modeled as a graph with nodes represented by body
joints. Furthermore, to better capture the dependency in
both spatial and temporal domains, others have considered
spatio-temporal graph convolution [56, 72]. Recently, Guo
et al. [22] show better performance by utilizing Multi-Layer
Perceptrons (MLPs). Xu et al. [64] further leverage geomet-
ric equivariance in motion data to improve the accuracy of
conventional deep models. Nonetheless, as will be elabo-
rated in Sec. 4, these approaches can suffer inherently from
their failure to take advantage of the physics principles gov-
erning human motion.
Physics-Based Human Dynamics Modeling and Motion
Prediction. Modeling human dynamics with physics re-
quires the model to characterize the equations governing
physical motion. Such physics-based models have been
employed in different tasks to improve purely data-driven
estimates. In monocular 3D human body reconstruction,
some methods have formulated an optimization problem
to jointly estimate unknown physical parameters in the
Euler-Lagrange equations and improve the data-driven es-
timates [17, 18, 36, 52, 55, 63]. Others adopt learned poli-
cies to simulate realistic movements from initial data-driven
estimates [24, 33, 40, 54, 68]. Instead of hinging on data-
driven estimates and strive to refine them, we integrate
physics principles directly into a prediction model to gen-
erate accurate future motion prediction. Furthermore, our
approach stands apart from existing human motion predic-
tion works that have incorporated physics mainly at a data
level. In detail, Maeda et al. [42] employed a learned pol-
icy to eliminate physical artifacts exhibited in synthesized
motion and then harnessed the enhanced quality to train
motion prediction models, thereby improving model per-
formance. Zhang et al. [71] employed the Euler-Lagrange
equations to infer motion forces from observed motion and
then used these forces as additional inputs to a motion pre-
diction model, thereby enhancing the model’s performance.
In this paper, we integrate physics at a model level. We pro-
pose a novel framework that directly injects physics into a
learning-based motion prediction model end-to-end.

3. Proposed Method
An overview of our proposed approach, PhysMoP, is il-

lustrated in Fig. 1. Below we first introduce the relevant
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Figure 1. Overview of the proposed approach PhysMoP. PhysMoP includes a physics-based model that effectively incorporates the
Euler-Lagrange equations to estimate next frame’s body configuration by capturing the forward and inverse dynamics process. Meanwhile,
PhysMoP includes a data-driven branch to capture long-term dependency and a fusion model to leverage the data-driven prediction as
guidance for the physics-based model to alleviate the problem of error accumulation.

physics knowledge characterized by PhysMoP in Sec. 3.1.
The main component of PhysMoP is a physics-based mo-
tion prediction model that iteratively estimates future body
configuration from input history motion and three previous
estimates as will be elaborated in Sec. 3.2. Meanwhile,
as will be introduced in Sec. 3.3, PhysMoP alleviates the
error accumulated over time in the iterative prediction by
including a data-driven model to capture long-term depen-
dency and guide the physics-based motion prediction model
through a fusion model. Lastly, in Sec. 3.4, we discuss the
training and testing procedure of PhysMoP.

3.1. Physics Principles in Human Motion
In this section, we first elaborate the formulation of the

Euler-Lagrange equations. Then, we introduce the forward
and inverse dynamics process, by which those equations are
used to model human dynamics.
The Euler-Lagrange Equations. The Euler-Lagrange
equations are formulated in a generalized coordinate sys-
tem, which consists of variables that fully specify the con-
figuration of a physical system. In the context of model-
ing human motion, based on the successful human model
SMPL [37], a human body configuration can be described
using low-dimensional body pose and body shape param-
eters. Specifically, SMPL represents the human body
through a 3D mesh model composed of 6890 vertices. The
body pose parameters ✓ 2 R24⇥3 correspond to joint an-

gles, defining the rotations of 23 body joints and a root ro-
tation. On the other hand, the shape parameters � 2 R10

are coefficients for body shape bases, controlling variations
in body attributes, such as width, height, and more. Given
✓ and �, the vertex and body joint positions of a 3D human
can be obtained through forward kinematics. In the task of
human motion prediction, the body shape of a subject re-
mains unchanged. The motion trajectory in a world frame
can be fully specified by the body pose parameters ✓ along
with the body translation parameters T 2 R3. Therefore,
we define the generalized coordinate as:

q = {✓,T}, (1)

where q 2 R75. During implementation, ✓ represents the
Euler angles of body joints. Unlike existing approaches that
use a fixed rotation order to compute the Euler angles, we
follow [70] and consider the biomechanically constrained
joint angle ranges to determine the rotation order, thereby
preventing duplicate angle solutions.

Given the generalized coordinate system defined above,
we denote the generalized velocity and acceleration at
frame t as q̇t 2 R75 and q̈t 2 R75, respectively. The body
dynamics, which are governed by the Euler-Lagrange equa-
tion, can be described as:

Mtq̈t +Ct = Gt, (2)

where Mt 2 R75⇥75 represents the generalized inertia ma-
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trix, which is determined by the generalized position qt and
the physical parameters including body mass and inertia.
Ct 2 R75 represents the generalized bias force, including
Coriolis, centrifugal, and gravitational forces. Ct is de-
pendent on the generalized position, velocity, and physical
properties of the human body. Lastly, Gt 2 R75 represents
the generalized forces, which include both external forces
(e.g., ground reaction forces) and internal forces (e.g., joint
actuations that drive the rotation of different body joints).
Forward and Inverse Dynamics. When employing the
Euler-Lagrange equations to model and analyze human mo-
tion, two essential processes are involved: forward dynam-
ics and inverse dynamics. Forward dynamics focuses on
solving the Euler-Lagrange equations to predict the next
frame’s 3D body configuration, given the physical param-
eters Mt, Ct, and the forces Gt. Specifically, starting from
the fully specified Eq. 2, we first solve for q̈, which is then
utilized to determine future motion using Euler’s Method,
expressed as follows:

q̈t = Mt�1
(Gt �Ct)

q̇t+1 = q̇t + q̈t�t

qt+1 = qt + q̇t�t

(3)

where �t represents the time interval between frames,
Mt�1 is the inverse of the generalized inertia matrix. In-
verse dynamics, on the other hand, aims at estimating the
unknown physical parameters from observed motion. In
this work, we propose to incorporate the Euler-Lagrange
equations into model prediction by explicitly capturing the
forward and inverse dynamics processes through a physics-
based motion prediction model, as introduced below.

3.2. Physics-Based Human Motion Prediction
As illustrated in the top part of Fig. 1, the physics-based

human motion prediction model predicts the future motion
state q̂T+n

physics for frame T + n by taking two inputs: the
complete input history motion {qt}T1 and the motion states
at three frames before T + n, denoted as {q̂t}T+n�1

T+n�3.
The physics-based model first characterizes the inverse

dynamics by using neural networks to estimate the unknown
physical parameters. Two separate Multi-Layer Perceptrons
(MLP) are employed to extract hp, features related to the
physical properties of the subject, and hg , features related
to the geometry information near the current frame:

hp = MLPh,p({qt}T1 ), (4a)

hg = MLPh,g({q̂t}T+n�1
T+n�3). (4b)

We only consider three previous frames to extract the ge-
ometry features as information in three time frames can
fully specify the Euler-Lagrange equations at certain time t.
These extracted features are then concatenated and passed

through three additional MLPs to respectively predict the
unknown physical parameters in Eq. 2:

MT+n�2 = MLPM (hp � hg), (5a)

CT+n�2 = MLPC(hp � hg), (5b)

GT+n�2 = MLPG(hp � hg). (5c)

Here, our design is aimed to fully leverage the expressivity
of neural networks. We rigorously adhere to the physics
equations to be characterized, specifically Eq. 2, in order to
preserve the relationships among these physical parameters.
Given the predicted physical parameters, the physics-based
model employs an ODE solver to predict q̂T+n

physics, where
forward dynamics is performed following Eq. 3.

For training of the physics-based model, we utilize

Lphysics =
PT+N

T+1 kqt � q̂t
physicsk+ �

PT+N
T+1 kJt � Ĵt

physicsk, (6)

where qt is the ground truth generalized position and Jt

are the ground truth 3D body joint positions computed us-
ing forward kinematic based on the generalized positions
qt. On the other hand, q̂t

physics and Ĵt
physics are the corre-

sponding estimates generated by the physics-based model.
To predict future motion, we can iteratively apply the

physics-based motion prediction model to generate configu-
ration at the next frame from the previous estimates and the
input history motion. However, the physics-based model
generates future motion estimates primarily considering the
information near the current frame. The accumulation of er-
rors at each frame can be nontrivial as the prediction horizon
increases. To address this issue, we introduce a data-driven
model and a fusion model to alleviate the problem of error
accumulation, as described below.

3.3. Integrating Motion Prediction Guidance
Data-Driven Model. Existing methods have demonstrated
promising progress on utilizing data to capture long-term
dependencies, where future human motion is directly pre-
dicted using neural networks from input history motion
{qt}T1 . Building upon the model proposed by [22], we
introduce an data-driven human motion prediction model
based on MLP to capture long-term dependencies and gen-
erate future data-driven estimates as:

{q̂t
data}T+N

T+1 = MLPdata({qt}T1 ). (7)

For training the data-driven model, we utilize the follow-
ing loss functions:

Ldata =
PT+N

T+1 kqt � q̂t
datak+ �

PT+N
T+1 kJt � Ĵt

datak, (8)

where Ĵt
data are 3D body joint positions computed from

q̂t
data using forward kinematics.

Fusion Model. As shall be seen in Sec. 4, the physics-
based model is superior to data-driven approaches at short
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prediction horizons, but data-driven approaches are better
at longer time horizons due to the abovementioned error ac-
cumulation issue. Therefore, we introduce an additional fu-
sion model that combines the data-driven prediction and the
physics-based prediction optimally. Specifically, at a future
frame t, the output of the fusion model is:

q̂t
fusion = (1� ŵt)q̂t

physics + ŵtq̂t
data, (9)

where ŵt is a scalar fusion weight. Note that, instead of
directly fusing the two estimates in one round, we perform
iterative fusion to fully leverage the physics-based estima-
tion. q̂t

physics is therefore the physics-based prediction gen-
erated using previous fusion estimates. Executing fusion
from t = T + 1 to t = T +N results in {q̂t

fusion}
T+N
T+1 .

To estimate the fusion weights, we utilize an MLP that
takes as input the data-driven estimates and the physics-
based estimates q̂t

physics,p (purely using physics without fu-
sion), and outputs the weights at different time frames:

{ŵt}T+N
T+1 = MLPfusion({q̂t

data, q̂
t
physics,p}T+N

T+1 ). (10)

As the errors are accumulated over time, we perform a time
position encoding by adding a time index vector {t}T+N

T+1 to
the data-driven and physics-based estimates. The resulting
values are then used for predicting the weights.

The loss function for training the fusion model is:

Lfusion =
T+NX

T+1

kqt � q̂t
fusionk+ �

T+NX

T+1

kJt � Ĵt
fusionk

+ �reg

T+NX

T+1

|ŵt|

(11)

where Ĵt
fusion are the 3D body joint positions computed

based on q̂t
fusion. We introduce a regularization term on

the fusion weights to encourage the prediction to rely more
on the physics-based estimation.

3.4. Model Training and Testing Strategy
Model Training. Training of PhysMoP is two-stage. In the
first stage, we train the physics-based model and the data-
driven model by minimizing Eq. 6 and Eq. 8, respectively.
For training the physics-based model, we employ a strategy
inspired by [8, 60] where we use ground truth three previ-
ous estimates as input to the physics-based model for faster
convergence. Once the training of the physics-based and
data-driven models converges, we fix their model weights
and proceed to the second stage, where we train the fusion
model by minimizing Eq. 11.
Model Testing. During testing, given input history motion
{qt}T1 , we use the trained physics-based and data-driven
model to respectively generate the physics-based and data-
driven estimates. We then utilize the two estimates to com-
pute the fusion weights and iteratively apply the fusion fol-
lowing Eq. 9 to obtain the final future motion estimates.

4. Experiment
We validate our proposed approach following the stan-

dard protocol used by [22, 41, 45, 46] and [56, 72]. Below
we present the detailed experiment settings. In Sec. 4.1, we
demonstrate the superior performance compared to State-
of-the-Arts (SOTAs), followed by a qualitative evaluation in
Sec. 4.2. Finally, we discuss our ablation study in Sec. 4.3.
Datasets. We employ three Motion Capture (MoCap)
datasets for training and evaluation: Human3.6M [25],
AMASS [43], and 3DPW [61]. Human3.6M consists of
motion sequences of 7 subjects (S1, S5-9, S11) performing
15 daily actions. Testing utilizes S5, while the rest are for
training and validation. AMASS is a collection of multiple
MoCap datasets, including a larger number of subjects and
actions. Training utilizes its training subset, and evaluation
is performed on AMASS-BMLrub [58]. Lastly, 3DPW is a
dataset collected from unconstrained environments, includ-
ing complex activities like uphill walking and running for a
bus. We evaluate the model trained on AMASS on the test
set of 3DPW to assess its generalization performance.
Implementation. The input history length T is 25, and the
output future prediction length N is 25. In contrast to pre-
vious works that exclude body translation and rotation, we
consider them during both training and testing, creating a
more challenging setting. For training loss weights, we set
� = 2 and �reg = 1. We utilize the Adam optimizer with
a weight decay of 1e�4. The initial learning rate is set to
3e�4, and we apply a learning rate decay of 0.9 after ev-
ery 500 training steps. For Human3.6M, we train the data-
driven, physics-based, and fusion models for 30, 10, and 10
epochs, respectively. For AMASS, we train the data-driven,
physics-based, and fusion models for 5, 2, and 2 epochs, re-
spectively. Please refer to Supp. A for details of the model
architecture and other experiment settings.
Evaluation Metrics. To measure the motion prediction
quality, we report Mean Per Joint Position Error (MPJPE)
at different future time stamps. MPJPE is computed as
the mean 3D Euclidean distance between the predicted and
ground truth joint positions after aligning the root joint.

4.1. Comparison with State-of-the-Arts (SOTAs)
First, we report PhysMoP’s improvements over SOTA

through the evaluation of short-term (<500ms) and long-
term (>500ms) human motion prediction on Human3.6M,
AMASS, and 3DPW. Then, we highlight PhysMoP’s su-
perior performance on short-term motion prediction via
action-wise evaluation on Human3.6M.
Improvements Over State-of-the-Arts (SOTAs). We first
discuss the evaluation on Human3.6M. Existing methods
adopt two different evaluation protocols: Human3.6M-P1
and Human3.6M-P2. Human3.6M-P1 considers the tar-
get time frame [22, 41, 45, 46], while Human3.6M-P2 con-
siders the average of all frames up to the target time
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Human3.6M-P1 MPJPE (#)

Time (ms) 80 160 320 400 560 720 880 1000

LTD [46] 12.2 25.4 50.7 61.5 79.6 93.6 105.2 112.4
Hisrep [45] 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1
MSR-GCN [12] 11.3 24.3 50.8 61.9 80.0 - - 112.9
SPGSN† [35] 10.4 22.3 47.1 58.3 77.4 - - 109.6
ST-DGCN [41] 10.6 23.1 47.1 57.9 76.3 90.7 102.4 109.7
siMLPe [22] 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4
EqMotion† [64] 9.1 20.1 43.7 55.0 73.4 - - 106.9

Ours 2.1 7.6 28.4 43.8 72.9 86.2 96.1 103.9

Human3.6M-P2 MPJPE (#)

Time (ms) 80 160 320 400 560 720 880 1000

STS-GCN [56] 10.1 17.1 33.1 38.3 50.8 60.1 68.9 75.6
STG-GCN [72] 10.1 16.9 32.5 38.5 50.0 - - 72.9
siMLPe [22] 4.5 9.8 22.0 28.1 39.3 49.2 57.8 63.7

Ours 1.4 3.7 11.6 17.2 30.5 41.9 51.1 57.1

Table 1. Evaluation of prediction accuracy over various hori-
zons on Human3.6M. Human3.6M-P1 (top) and Human3.6M-P2
(bottom) stand for computing MPJPE (unit of mm) following the
protocol used by [22,41,45,46] and [56,72], respectively. Results
of other works are obtained from [22] and the respective paper (†).

AMASS-BMLrub MPJPE (#)

Time (ms) 80 160 320 400 560 720 880 1000

convS2S [32] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5
LTD [46] 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2
Hisrep [45] 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2
siMLPe [22] 10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7

Ours 0.6 2.1 9.0 13.0 23.9 37.1 50.0 61.4

3DPW MPJPE (#)

Time (ms) 80 160 320 400 560 720 880 1000

convS2S [32] 18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
LTD [46] 12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5
Hisrep [45] 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7
siMLPe [22] 12.1 22.1 38.1 44.5 54.9 62.4 68.2 72.2

Ours 0.7 3.6 15.1 19.8 30.3 43.5 58.6 70.9

Table 2. Evaluation of prediction accuracy over various time
horizons on AMASS-BMLrub (top) and 3DPW (bottom). The
model is trained on the AMASS training set and 3DPW is utilized
for cross-dataset evaluation. Results of other works are obtained
from [22]. The unit of MPJPE is mm.

frame [56, 72]. We report the evaluation results under
both protocols in Tab. 1 and compare with existing meth-
ods under the same protocol. As shown, PhysMoP outper-
forms SOTA on both short-term and long-term motion pre-
diction. Specifically, siMLPe [22] achieves the best per-
formance among purely data-driven methods by utilizing
MLP to model motion data. EqMotion [64] reaches a bet-
ter model performance than siMPLe by further integrat-
ing domain knowledge about the geometric equivariance
in motion data. PhysMoP significantly outperforms them
by incorporating physics knowledge. Under Human3.6M-
P1, PhysMoP reduces MPJPE achieved by siMLPe from
109.4mm and EqMotion from 106.9mm to 103.9mm at
1000ms. The error reduction becomes much more signif-
icant for shorter prediction horizons. For example, Phys-
MoP achieves MPJPE of just 2.1mm — a decrease of 78.1%
from siMLPe’s MPJPE of 9.6mm at 80ms. When evalu-
ating under Human3.6M-P2, the enhancements introduced
by PhysMoP remain consistent, demonstrating its superior-
ity over existing approaches. Moreover, PhysMoP is simi-
larly superior to existing data-driven methods when evalu-
ated on other datasets such as AMASS-BMLrub and 3DPW,
as illustrated in Tab. 2. For either within-dataset (AMASS-
BMLrub) or cross-dataset (3DPW) evaluation, PhysMoP
achieves consistent improvements over SOTAs on both
short-term and long-term motion prediction accuracy. Par-
ticularly, for a prediction horizon of 80ms, siMLPe achieves
MPJPE of 10.8mm on AMASS-BMLrub and 12.1mm on
3DPW, while PhysMoP achieves 0.6mm and 0.7mm, re-
spectively – reductions of nearly 95%.

Existing methods utilize various neural networks to
model body movements. In contrast, PhysMoP, by effec-
tively incorporating physics, achieves superior performance
on different datasets, both within-dataset and cross-dataset.
To provide deeper insights into the short-term prediction ca-
pabilities of PhysMoP, we now delve into its action-wise
human motion prediction performance on Human3.6M.
Superior Short-Term Prediction Performance. Tab. 3
presents MPJPE of short-term motion prediction
(<=400ms) on different actions in Human3.6M. To
highlight the improvements of PhysMoP over existing
methods, we also report the relative error reduction (RED).
As demonstrated, PhysMoP is superior across all actions
to a degree that increases as the time horizons become
shorter. Interestingly, the advantage of PhysMoP at the
400ms horizon is smallest for actions like “Walking” for
which the average acceleration is largest (about twice that
of the average across all actions), and can be worse than
for existing approaches (in this case, our method yields
MPJPE of 42.4mm vs. 39.2 for EqMotion). It is reasonable
that the activities for which the physics-based model is
least effective are those for which human muscular activity
shifts on the fastest time scales.
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Time (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Action Walking Eating Smoking Discussion
Hisrep [45] 10.0 19.5 34.2 39.8 6.4 14.0 28.7 36.2 7.0 14.9 29.9 36.4 10.2 23.4 52.1 65.4
ST-DGCN [41] 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7
siMLPe [22] 9.9 - - 39.6 5.9 - - 36.1 6.5 - - 36.3 9.4 - - 64.3
EqMotion [64] 9.0 17.5 32.6 39.2 6.3 13.6 28.9 36.5 5.5 11.3 23.0 29.3 8.2 18.9 42.1 53.9
Ours 2.6 9.0 29.0 42.4 1.3 4.9 19.9 31.1 1.3 4.9 19.5 31.6 2.0 7.6 31.0 48.3
(RED, %) 71.1 48.6 11.0 - 78.0 64.0 30.7 13.9 76.4 56.6 15.2 - 75.6 59.8 26.4 10.4
Action Directions Greeting Phoning Posing
Hisrep [45] 7.4 18.4 44.5 56.5 13.7 30.1 63.8 78.1 8.6 18.3 39.0 49.2 10.2 24.2 58.5 75.8
ST-DGCN [41] 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 8.3 18.3 38.7 48.4 10.7 25.7 60.0 76.6
siMLPe [22] 6.5 - - 55.8 12.4 - - 77.3 8.1 - - 48.6 8.8 - - 73.8
EqMotion [64] 6.3 15.8 38.9 50.1 - - - - 7.4 16.7 36.9 47.0 8.2 18.9 43.4 57.5
Ours 1.6 6.0 23.8 37.6 2.9 10.2 37.0 56.1 1.7 6.2 23.6 37.0 2.2 8.1 30.0 46.3
(RED, %) 74.6 62.0 38.8 25.0 76.6 66.1 42.0 27.4 77.0 62.9 36.0 21.3 73.2 57.1 30.9 19.5
Action Purchases Sitting Sitting down Taking photo
Hisrep [45] 13.0 29.2 60.4 73.9 9.3 20.1 44.3 56.0 14.9 30.7 59.1 72.0 8.3 18.4 40.7 51.5
ST-DGCN [41] 12.5 28.7 60.1 73.3 8.8 19.2 42.4 53.8 13.9 27.9 57.4 71.5 8.4 18.9 42.0 53.3
siMLPe [22] 11.7 - - 72.4 8.6 - - 55.2 13.6 - - 70.8 7.8 - - 50.8
EqMotion [64] - - - - 8.1 18.0 41.2 52.9 13.0 26.5 56.2 70.7 - - - -
Ours 2.5 9.1 36.0 56.1 1.7 6.2 23.7 37.4 2.7 9.6 31.6 46.8 1.6 6.0 24.4 38.3
(RED, %) 80.0 68.3 40.1 23.5 79.0 65.6 42.5 29.3 79.2 63.8 43.8 33.8 81.0 68.3 41.9 28.1
Action Waiting Walking dog Walking together Average
Hisrep [45] 8.7 19.2 43.4 54.9 20.1 40.3 73.3 86.3 8.9 18.4 35.1 41.9 10.4 22.6 47.1 58.3
ST-DGCN [41] 8.9 20.1 43.6 54.3 18.8 39.3 73.7 86.4 8.7 18.6 34.4 41.0 10.3 22.7 47.4 58.5
siMLPe [22] 7.8 - - 53.2 18.2 - - 83.6 8.4 - - 41.2 9.6 21.7 46.3 57.3
EqMotion [64] 7.6 17.4 39.9 51.1 - - - - 7.8 16.1 30.6 37.1 9.1 20.1 43.7 55.0
Ours 1.9 7.0 25.8 39.8 3.6 12.5 45.0 68.9 2.1 7.2 25.4 39.5 2.1 7.6 28.4 43.8
(RED, %) 75.0 59.8 35.3 22.1 80.2 68.2 38.6 20.2 73.1 55.3 17.0 - 77.0 62.2 35.0 20.4

Table 3. Action-wise evaluation of short-term motion prediction on Human3.6M. MPJPE (unit of mm) is computed using the protocol
used by [22,41,45,46] (Human3.6M-P1). Results of other works are obtained from the respective papers. The values of MPJPE are in mm;
thus smaller values are better. Besides MPJPE, we report the relative error REDuction (RED), which is calculated as the error reduction
achieved by PhsyMoP (Ours) relative to the second best (marked by underline). RED is caculated in percentage (%). Larger RED indicates
larger improvements achieved by PhysMoP over existing approaches.

4.2. Qualitative Evaluation
We showcase two examples of 3D human motion pre-

dicted by PhysMoP in Fig. 2. The motion sequences are
from the Human3.6M test set. As illustrated, PhysMoP
generates favourable results at different prediction horizons.
We note that existing methods do not model global rotation,
while PhysMoP can further recover accurate global rotation.

4.3. Ablation Study
This section includes the ablation study to illustrate the

effectiveness of different components of PhysMoP.
Benefits of the Physics-Based, Data-Driven, and Fusion
Model. We individually evaluate the physics-based, data-
driven, and fusion model and report the results in Tab. 4. As

shown, the physics-based model, when not integrating the
motion prediction guidance given by the data-driven and fu-
sion model, generates precise short-term motion prediction
but its long-term prediction can suffer at longer time stamps
(“Physics” in Tab. 4). The data-driven model, on the other
hand, has poor short-term motion prediction performance
but it demonstrates better performance in long-term predic-
tion than the physics-based model (“Data” in Tab. 4). By
combining the two results using the proposed fusion model,
PhysMoP takes the advantages of the two models. We also
demonstrate that the estimates obtained by our proposed
fusion strategy is better than the heuristic method, that is
taking the averaging of the physics-based and data-driven
estimates (“Vanilla” in Tab. 4). To further study the effec-
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Figure 2. Qualitative evaluation of PhysMoP. The motion se-
quences are from Human3.6M test set. The ground truth and es-
timated future motion is marked in grey and blue colors, respec-
tively. Larger overlaps between the two configurations indicate
smaller prediction errors.

Human3.6M Time Physics Data Fusion
(ms) Vanilla PhysMoP

MPJPE
(#)

80 2.1 4.4 4.1 2.1
160 7.6 10.6 10.7 7.6
320 28.4 33.8 34.6 28.4
400 42.2 47.8 46.7 43.8
560 72.8 68.7 68.2 72.9
720 102.6 85.0 85.1 86.2
880 129.8 97.3 97.1 96.1
1000 148.2 103.3 103.4 103.9

ACCL (#) - 1.8 8.2 3.3 2.3

Table 4. Ablation study on different components of PhysMoP.
“Physics” and “Data” represents the data-driven and physics-based
model, respectively. “Vanilla” means generating prediction by di-
rectly taking the average of the data-driven and physics-based es-
timates. Computing MPJPE (mm) at different future time stamps
follows [22, 41, 45, 46] (Human3.6M-P1). “ACCL” stands for the
acceleration error averaged over time to measure the physical plau-
sibility of the predicted motion.

tiveness of PhysMoP, we compare the joint angles estimated
by the data-driven model, physics-based model, and Phys-
MoP with examples illustrated in Fig. 3. As shown, the joint
angles estimated by the data-driven model (orange curves)
exhibit excessive jittering even at the starting future time
stamps (such as <400ms). By contrast, the physics-based
estimates offer a smoother trajectory and higher accuracy
within shorter time horizons, almost aligning perfectly with
the ground truth (grey curves). However, the physics-based

Figure 3. Joint angles estimated by PhysMoP with comparison
to the data-driven and physics-based model. The testing motion
sequences are from Human3.6M test set. The curves are estimated
joint angles of left leg with comparison to the ground truth at dif-
ferent future time stamps.

estimates may deviate from the ground truth over time, lead-
ing to a worse prediction accuracy than the data-driven es-
timates. By leveraging the fusion model, PhysMoP’s esti-
mates are closer to the ground truth. The differences in the
estimated joint angles over time emphasize the advantages
of PhysMoP in addressing the limitations of purely data-
driven approaches by effectively incorporating physics.
Improved Physical Plausibility. Incorporating physics
also results in more realistic prediction, where the estimates
retain better physical plausibility. We demonstrate Phys-
MoP’s improved physical plausibility through the evalua-
tion of acceleration error (please refer [68] for the calcu-
lation details). We compute the average acceleration error
over all joints and future frames and report the results in
Tab. 4. ACCL has a unit of mm/frame2, with smaller val-
ues indicating better physical plausibility. PhysMoP signif-
icantly reduces the acceleration error achieved by the data-
driven model from 8.2 to 2.3. This further highlights the
advantage of incorporating physics principles into the mo-
tion prediction model.

5. Conclusion
We have demonstrated that, by incorporating funda-

mental physics principles into predictive models of human
motion, the prediction accuracy can be improved signifi-
cantly over horizons of up to one second. At extremely
short prediction horizons of 80 msec or a bit more, the im-
provement can be over a factor of 10 in some cases. Specif-
ically, we introduced PhysMoP, a method that incorporates
the Euler-Lagrange equations by explicitly capturing the
forward and inverse dynamics using neural networks. Phys-
MoP utilizes data-driven and fusion models to guide the
physics-based prediction, thereby reducing the error accu-
mulation that plagues purely physics-based approaches and
generating predictions that leverage human behavioral pat-
terns gleaned from data while also observing physical laws.
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