
On the Quantification of Image Reconstruction Uncertainty without Training Data

Jiaxin Zhang
Intuit AI Research

jxzhangai@gmail.com

Sirui Bi
Walmart Global Tech
siruijhu@gmail.com

Victor Fung
Georgia Institute of Technology

victorfung@gatech.edu

Abstract

Computational imaging plays a pivotal role in determin-
ing hidden information from sparse measurements. A robust
inverse solver is crucial to fully characterize the uncertainty
induced by these measurements, as it allows for the esti-
mation of the complete posterior of unrecoverable targets.
This, in turn, facilitates a probabilistic interpretation of ob-
servational data for decision-making. In this study, we pro-
pose a deep variational framework that leverages a deep
generative model to learn an approximate posterior distribu-
tion to effectively quantify image reconstruction uncertainty
without the need for training data. We parameterize the tar-
get posterior using a flow-based model and minimize their
Kullback-Leibler (KL) divergence to achieve accurate uncer-
tainty estimation. To bolster stability, we introduce a robust
flow-based model with bi-directional regularization and en-
hance expressivity through gradient boosting. Additionally,
we incorporate a space-filling design to achieve substantial
variance reduction on both latent prior space and target
posterior space. We validate our method on several bench-
mark tasks and two real-world applications, namely fastMRI
and black hole image reconstruction. Our results indicate
that our method provides reliable and high-quality image
reconstruction with robust uncertainty estimation.

1. Introduction
In computer vision and image processing, computational

image reconstruction is a typical inverse problem where the
goal is to learn and recover a hidden image x from directly
measured data y via a forward operator F . Such mapping
y = F(x), referred to as the forward process is often well-
established. Unfortunately, the inverse process x = F−1(y),
proceeds in the opposite direction, which is a nontrivial task
since it is often ill-posed. A regularized optimization is
formulated to recover the hidden image x∗:

x∗ = argmin
x

{L(y,F(x)) + λ ω(x)} , (1)

where L is a loss function to measure the difference between
the measurement data and the forward prediction, ω is a

regularization function, and λ is a regularization weight.
The regularization function, including ℓ1-norm and total
variation, are often used to constrain the image to a unique
inverse solution in under-sampled imaging systems [11, 39].

Recent trends have focused on using deep learning for
computational image reconstruction, which does not rely on
an explicit forward model or iterative updates but performs
learned inversion from representative large datasets [7, 57],
with applications in medical science, biology, astronomy and
more. However, most of these existing studies in regular-
ized optimization [32, 34] and feed-forward deep learning
approaches [7, 42, 45] mainly focus on pursuing a unique
inverse solution by recovering a single point estimate. This
leads to a significant limitation when working with under-
determined systems where it is conceivable that multiple
inverse image solutions would be equally consistent with the
measured data [4,40]. Practically, in many cases, only partial
and limited measurements are available which naturally leads
to a reconstruction uncertainty. Thus, a reconstruction using
a point estimate without uncertainty quantification would
potentially mislead the decision-making process [55, 56].
Therefore, the ability to characterize and quantify recon-
struction uncertainty is of paramount relevance. In principle,
Bayesian methods are an attractive route to address the in-
verse problems with uncertainty estimation. However, in
practice, the exact Bayesian treatment of complex problems
is usually intractable [54]. The common limitation is to re-
sort to inference and sampling, typically by Markov Chain
Monte Carlo (MCMC), which are often prohibitively expen-
sive for imaging problems due to the curse of dimensionality.

For nonlinear, non-convex image reconstruction prob-
lems, a deeper architecture with enough expressivity may be
required to approximate the complex posterior distribution.
However, increasing model depth will result in overfitting,
as well as making sampling and computing inefficient [53].
The essential assumption of invertibility is also potentially
violated along with instability issues caused by the aggre-
gation of numerical errors. The imprecision and variation
in flow-based models induce additional uncertainties. More-
over, the variation in posterior distribution caused by latent
space sampling is also non-negligible for the evaluation of
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the total reconstruction uncertainty. These challenges make
accurate uncertainty estimation to be a nontrivial task.

Main contributions. We present a novel uncertainty-aware
method for achieving reliable image reconstruction with
an accurate estimation of data uncertainty resulting from
measurement noise and sparsity. Our approach leverages a
deep variational framework with robust generative flows and
variance-reduced sampling to accurately characterize and
quantify reconstruction uncertainty without any training data.
We propose a flow-based variational approach to approxi-
mate the posterior distribution of a target image, minimizing
model uncertainties by building a robust flow-based model
with enhanced stability through bi-directional regularization
and improved flexibility through gradient boosting. We con-
servatively propagate the statistics of latent distribution to
the posterior through a deterministic invertible transforma-
tion, replacing simple random sampling with generalized
Latin Hypercube Sampling to achieve significant variance
reduction on posterior approximation. We demonstrate our
method on fastMRI reconstruction and interferometric imag-
ing problems, showing that it achieves reliable and high-
quality reconstruction with accurate uncertainty evaluation.

2. Background
Normalizing flows. Generative models, such as GANs
and VAEs, are intractable for explicitly learning the prob-
ability density function which plays a fundamental role
in uncertainty estimation. Flow-based generative mod-
els overcome this difficulty with the help of normalizing
flows (NFs), which describe the transformation from a la-
tent density z0 ∼ π0(z0) to a target density τ(x), where
x = zK ∼ πK(zK) through a sequence of invertible map-
pings Tk : Rd → Rd, k = 1, ...,K. By using the change of
variables rule

τ(x) = πk(zk) = πk−1(zk−1)

∣∣∣∣det ∂T −1
k

∂zk−1

∣∣∣∣ , (2)

where the target density πK(zK) obtained by successively
transforming a random variable z0 through a chain of K
transformations zK = TK ◦ · · · ◦ T1(z0) is

log τ(x) = log πK(zK) = log π0(z0)−
K∑
k=1

log

∣∣∣∣det ∂Tk
∂zk−1

∣∣∣∣
where each transformation Tk must be sufficiently expressive
while being theoretically invertible and efficient to compute
the Jacobian determinant. Affine coupling functions [14,
24] are often used because they are simple and efficient
to compute. However, these benefits come at the cost of
expressivity and flexibility; many flows must be stacked to
learn a complex representation.

Density estimation. Assuming that samples {xi}Mi=1 drawn
from a probability density p(x) are available, our goal
is to learn a flow-based model τϕ(x) parameterized by
the vector ϕ through a transformation x = T (z) of a la-
tent density π0(z) with T = TK ◦ · · · ◦ T1 as a K-step
flow. This is achieved by minimizing the KL-divergence
DKL = KL(p(x) ∥ τϕ(x)), which is equivalent to maximum
likelihood estimate (MLE).

Variational inference. The goal is to approximate the pos-
terior distribution p through a variational distribution πK
encoded by a flow-based model τϕ(x), which is tractable to
compute and draw samples. This is achieved by minimizing
the KL-divergence DKL = KL(πK ∥ p), which is equivalent
to maximizing an evidence lower bound

Vϕ(x) = EzK∼πK(zK) [− log p(x, zK) + log πK(zK |x)] .

Evaluation metrics for deep generative models. Design-
ing indicative evaluation metrics for generative models and
samples remains a challenge. A commonly used metric for
measuring the similarity between real and generated images
has been the Fréchet Inception Distance (FID) score [20]
but it fails to separate two critical aspects of the quality of
generative models: fidelity that refers to the degree to which
the generated samples resemble the real ones, and diversity,
which measures whether the generated samples cover the full
variability of the real samples. Sajjadi et al. [36] proposed
the two-value metrics (precision and recall) to capture the
two characteristics separately. Recently, Naeem et al. [31]
introduced two reliable metrics (density and coverage) to
evaluate the quality of the generated posterior samples and
measure the difference between them and ground truth. den-
sity improves upon the precision metric by dealing with the
overestimation issue and coverage instead of recall metric
is to better measure the diversity by building the nearest
neighbor manifolds around the true samples.

3. Methodology
3.1. Deep Variational Framework

Our goal is to build a deep variational framework to ac-
curately estimate the data uncertainty quantified by an ap-
proximation of the posterior distribution. The regularized
optimization for solving inverse problems can be written in
terms of data fidelity (data fitting loss) and regularity:

x∗ = argmin
x

{LD(y,F(x)) + λω(x)}

= argmin
x

{
∥ y −F(x) ∥2︸ ︷︷ ︸

Data fidelity

+ λω(x)︸ ︷︷ ︸
Regularity

}
. (3)

Assuming the forward operator F is known and the mea-
surement noise statistics are given, we can reformulate the
inverse problem in a probabilistic way. In the Bayesian
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perspective, the regularized inverse problem in Eq. 3 can
be solved by Bayesian inference but aims to maximize the
posterior distribution by searching a point estimator x∗:

x∗ = argmax
x

{
log p(x|y)︸ ︷︷ ︸

Posterior

}
= argmax

x

{
log p(y|x)︸ ︷︷ ︸
Data likelihood

+ log p(x)︸ ︷︷ ︸
Prior

}
,

(4)

where the prior distribution p(x) (e.g., image prior [42] in
reconstruction problems) defines a similar regularization
term and data likelihood p(y|x) corresponds to the data
fidelity in Eq. 3. If we parameterize the target x using a
generative model x = Tϕ(z), z ∼ N (0, I) with model
parameter ϕ, an approximate posterior distribution τϕ∗(x)
is obtained by minimizing the KL-divergence between the
generative distribution and the target posterior distribution

ϕ∗ = argmin
ϕ

KL(τϕ(x) ∥ p(x|y))

= argmin
ϕ

Ex∼τϕ(x)[− log p(y|x)

− log p(x) + log τϕ(x)].

(5)

Unfortunately, the probability density (likelihood) τϕ(x)
cannot be exactly evaluated by most existing generative
models, such as GANs or VAEs. Flow-based models offer a
promising approach to computing the likelihood exactly via
the change of variable theorem with invertible architectures.
Therefore, we can reformulate the equation in terms of a
flow-based model as

ϕ∗ = argmin
ϕ

Ez∼π(z) [− log p(y|Tϕ(z))

− log p(Tϕ(z)) + log π(z)− log
∣∣det∇zTϕ(z)

∣∣] .
(6)

Replacing data likelihood and prior terms by using data fi-
delity loss and regularization function in Eq. 3, we can define
a new optimization problem where it can be approximated
by a Monte Carlo method in practice:

ϕ∗ = argmin
ϕ

Ez∼π(z) [LD(y,F(Tϕ(z))) + λω(Tϕ(z))

+ log π(z)− log
∣∣det∇zTϕ(z)

∣∣]
= argmin

ϕ

M∑
j=1

[
LD(y,F(Tϕ(zj))) + λω(Tϕ(zj))

− log
∣∣det∇zTϕ(zj)

∣∣︸ ︷︷ ︸
Entropy

]
,

(7)
where π(z) is a constant and log

∣∣det∇zTϕ(zj)
∣∣ is entropy

that is critical to encourage sample diversity and exploration
to avoid generative models from collapsing to a deterministic
solution.

Note that the flow-based model is very critical and sensi-
tive to uncertainty estimation and quantification within this
variational framework. To perform accurate data uncertainty
estimation, the uncertainty associated with the flow-based
model must be minimized. To this end, we develop a Ro-
bust Generative Flow (RGF) model with enhanced stability,
expressivity, and flexibility, while conserving efficient in-
ference and sampling without increasing architecture depth.

3.2. Robust Generative Flows (RGF)

3.2.1 Stability of invertible architectures

The proposed variational framework relies on the essen-
tial assumption of the theoretical invertibility in flow-based
models. However, this assumption is challenged by recent
studies [5,6,25] with findings that the commonly used invert-
ible architectures Tϕ, such as additive and affine coupling
blocks, suffer from exploding inverses and thus prone to be-
coming numerically non-invertible [21], which will violate
the assumption underlying their main advantages, including
efficient sampling and exact likelihood estimation. Typically,
the coupling blocks show an exploding inverse effect because
the singular values of the forward mapping tend to zero as
depth increases. The numerical errors introduced in both
forward and inverse mapping will aggravate the imprecision
and instability which renders the architecture non-invertible
and results in uncontrollable model uncertainties that are
intractable to characterize.

The stability of invertible neural network (INN) archi-
tectures can be analyzed by the property of bi-Lipschitz
continuity if there exists a constant L := Lip(T ) and a con-
stant L∗ := Lip(T −1) such that for all x1, x2; y1, y2 ∈ Rd

||T (x1)− T (x2)|| ≤ L||x1 − x2||,
||T −1(y1)− T −1(y2)|| ≤ L∗||y1 − y2||.

(8)

Penalty terms on the Jacobian can be used to enforce INN
stability locally. If T is Lipschitz continuous and differ-
entiable, we have Lip(T ) = supx∈Rd ||JT (x)||2. Instead
of estimating Lip(T ) using random samples, we use finite
differences (FD) to approximate Lip(T ) as

Lip(T ) = sup
x∈Rd

||JT (x)||2

≈ sup
x∈Rd

sup
||ν||2=1

1

ε
||T (x)− T (x+ εν)||2,

(9)

where ε > 0 is a step size in FD. This penalty term (as
a regularizer) can be added to the loss function on both
directions T and T −1 such that we have a stable forward
and inverse mapping. This bi-directional FD regularization
can remedy the non-invertible failures in many coupling
blocks including spline function.
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Figure 1. Sampling of 2D densities using variational inference with energy function.

Metrics RNVP NSF RGF RGFL

Precision↑ 0.951 0.988 0.992 0.996
Recall↑ 0.996 0.994 0.997 0.997

Density↑ 0.823 0.962 0.987 0.989
Coverage↑ 0.909 0.926 0.950 0.961

Metrics RNVP NSF RGF RGFL
Precision↑ 0.988 0.993 0.994 0.997

Recall↑ 0.997 0.998 0.998 0.999
Density↑ 0.889 0.948 0.989 1.001

Coverage↑ 0.912 0.951 0.946 0.964

Metrics RNVP NSF RGF RGFL
Precision↑ 0.969 0.987 0.993 0.994

Recall↑ 0.994 0.996 0.996 0.996
Density↑ 0.829 0.942 0.987 1.003

Coverage↑ 0.877 0.934 0.940 0.965

Table 1. Evaluation metrics.

3.2.2 Enhanced expressivity and flexibility

Recent trends in NFs have focused on creating deeper, more
complex transformations to increase the flexibility of the
learned distribution. However, a deeper structure of flows of-
ten renders instability and uncertainty caused by aggregation
of the numerical errors. Also, with greater model complex-
ity comes a greater risk of overfitting while slowing down
training, sampling, and inference [17]. To address these
issues, we propose to use a gradient boosting approach for
increasing the expressiveness of the neural spline flow (NSF)
model [15]. Our new model is built by iteratively adding
new NF components with gradient boosting, where each
new NF component is fit to the residual of the previously
trained components. A weight is then learned via stochas-
tic gradient descent for each component, which results in a
mixture model structure, whose flexibility increases as more
components are added.

Gradient boosting flow model. A gradient boosting flow
model is constructed by successively adding new compo-
nents, where each new component t(c)K is a K-step normal-
izing flow that matches the functional gradient of the loss
function from the (c − 1) previously trained flow compo-
nents T (c−1)

k . Typically, the gradient boost flow model is
constructed by a convex combination of fixed and new flow
components:

T (c)
K (z | x) = (1− βc)T (c−1)

K (z | x) + βct
(c)
K (z | x), (10)

where x are the observed data, z are the latent variables and
βc is the weight to the new component where βc ∈ [0, 1]
to sure the mixture model in Eq. 10 is a valid probability
distribution.

To pursue a variational posterior that closely matches
the true posterior, which corresponds to the reverse KL-
divergence KL(τϕ(x) ∥ p(x|y)). Thus, we seek to minimize

the variational bound:

Vϕ(x) = ET (c)
K

[log T (c)
K (zK | x)− log p(y | x, zK)]. (11)

Boosting components updating. Given the objective func-
tion in Eq. 11, we proceed with deriving updates for new
boosting components. First, at the current stage c, we let
T (c−1)
K to be fixed, and the target is learning the component

t
(c)
K and the weight βc based on functional gradient descent

(FGD) [30]. We take the gradient of objective in Eq. 11 with
respect to T (c)

K at βc → 0:

∇T (c)
K

Vϕ(x)
∣∣
βc→0

= − log
p(y | x, zK)

T (c−1)
K (z | x)

. (12)

Since T (c−1)
K (z | x) are the fixed components, then mini-

mizing the loss Vϕ(x) can be achieved by selecting a new
component t(c)K that has the maximum inner product with the
negative of the gradient [30]. As a result, we can choose a
t
(c)
K (z | x) based on:

t
(c)
K (z | x) = argmin

tK∈TK

E
tK(z|x)

[
− log

p(y | x, z(c)K )

T (c−1)
K (z

(c)
K | x)

]
(13)

where zcK denotes a sample transformed by component c’s
flow.

Components weights updating. Once the t
(c)
K (zK | x) is

estimated, the gradient boost flow model needs to determine
the corresponding βc ∈ [0, 1]. However, jointly optimizing
both t

(c)
K and the weights βc is a challenging optimization

problem. We therefore consider a two-step optimization
strategy which means that we first train t

(c)
K until conver-

gence and then optimize the corresponding weight βc by
using the objective in Eq. 13. Similarly, the weights on each
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component can be updated by using the gradient of the loss
Vϕ(x) with respect to βc, as shown in Algorithm 1.

∂Vϕ(x)
∂βc

=

n∑
i=1

(
E

t
(c)
K (z|xi)

[
ξ
(s−1)
βc

(z | xi)
]

− E
T (c−1)
K (z|xi)

[
ξ
(s−1)
βc

(z | xi)
]) (14)

where ξ
(s−1)
βc

(z | xi) is defined as ξ
(s−1)
βc

(z | xi) =

log T (c−1)
K (z | x)− log p(y | x, zK).

Algorithm 1 Updating component weights βc by SGD

1: Requirement and initialization: predefined C, step size
λ, tolerance ϵ. Set s = 0, β(0)

c = 1/C

2: While |β(s)
c − β

(s−1)
c | < ϵ do

3: Generate samples z(c−1)
K,i ∼ T (c−1)

K (z | xi) and z
(c)
K,i ∼

t
(c)
K (z | xi) for i = 1, ..., n

4: Estimate gradients using the MC method ∇βcVψ(x) =
1/n

∑n
i=1

[
ξ
(s−1)
βc

(z
(c)
K,i | xi)− ξ

(s−1)
βc

(z
(c−1)
K,i | xi)

]
5: Update weights β(s)

c = β
(s−1)
c −λ∇βc

and clip weights
β
(s)
c to [0, 1]

6: s = s+ 1
7: return β

(s)
c

3.3. Variance-reduced Latent Sampling

Rather than using simple random sampling (SRS) with a
larger variance, Latin Hypercube Sampling (LHS) is an ideal
candidate with variance reduction, which is generalized in
terms of a spectrum of stratified sampling, referred to as par-
tially stratified sampling (PSS), which shows to reduce vari-
ance associated with variable interaction but LHS reduces
variance associated with additive (main) effects. A hybrid
combination of LHS and PSS, named Latinized partially
stratified sampling (LPSS) proposed by [37] can reduce vari-
ance associated with variable interaction and additive effects
simultaneously. However, classical LHS used in LPSS suf-
fers from a lack of exploratory capability due to its random
pair scheme. To better explore all possible inverse solutions,
we propose to leverage maximin criteria - maximizes the
minimum distance between all pairs of points,

Xn = argmaxmin {d(xi,xk) : i ̸= k = 1, ...,M} (15)

where d(x,x′) =
∑M
k=1(xi−x′

k)
2 is the Euclidean distance.

Instead of random pair, these criteria will greatly improve
the space-filling properties of LPSS, specifically in high-
dimensional space. Note that, unlike quasi-Monte Carlo
(QMC) methods [12], e.g., Sobol sequence shown in Fig.
2 as well, which are limited in high dimensional problem

[27], but LPSS performs well with space-filling property and
variance reduction in high dimensions.

Algorithm 2 shows the workflow of our proposed varia-
tional framework with robust generative flows and variance-
reduced latent sampling given a single measurement data.

Algorithm 2 RGF in variational perspective

1: Requirements: RGF model Tϕ parameterized by ϕ,
number of gradient boosting (GB) component C, FD
regularization coefficient λ, forward operator F , mea-
surement data y, training batch size bz , evaluation batch
size ez ,

2: Draw random samples from the latent space zj ∼ p(z)
using LPSS, where the sample size is bz × iz

3: Generate image samples by xj = Tϕ(zj) where Tϕ(zj)
is defined by initial gradient boosting (GB) mixture
model in Eq. 10 with bi-directional FD regularized loss
in Eq. 9.

4: Predict the measurement y by evaluating the forward
operator yj = F(xj) = F(Tϕ(zj))

5: Evaluate the total loss Ltotal defined in Eq. 7 by a sum-
mation of the data fidelity, prior and entropy loss.

6: Update new gradient boosting components based on
Eq. 13 with a two-stage optimization strategy

7: Update boosting component weights according to Eq. 14
with stochastic gradient descent in Algorithm 1.

8: After training is done, generate posterior samples, and
estimate the statistical quantities.

3.4. RGF Representational Capability

Next, we demonstrate that our proposed RGF can im-
prove the representational capability of deterministic NFs
at a given network size. Here we use images to define com-
plicated two-dimensional distributions as the target distribu-
tions to be sampled. This benchmark inspired by [51] aims
at generating high-quality images from the exact density
to compare the performance of different generative models
with four blocks. Fig.1 shows the sampling of DNA, Fox,
and NeurIPS logo cases with different methods. As expected,
RealNVP [14] has limitations in representational capability,
which results in a blurred image without detailed structures.
NSF [15] outperforms RNVP with a better structure on 2D
images, but still fails to resolve details, specifically in the
Fox and NeurIPS logo cases, at the selected neural architec-
ture. Note that all the flow-based models tend to have a better
representational capability as the depth increases but we fix
their depth in four blocks to perform a fair comparison.

Our proposed RGF (with SRS) achieves high-quality ap-
proximation through a combination of gradient boosting and
stable regularization with a shallow architecture. Although
the samples in RGF are close to the ground truth, their per-
formance can be further improved by using LPSS. Although
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Figure 2. (Left) Illustration of mechanism for normalizing flows. The prior Gaussian samples drawn from the latent distribution are
transformed to the posterior samples that match the target density by using a sequence of invertible mappings. (Right) Illustration of prior
samples using four sampling algorithms for latent variables.

visual differences may be slight between RGF and RGFL, we
differ them with a quantitative comparison using evaluation
metrics (see Table 1). RGFL shows superior performance on
both fidelity and diversity aspects of the generated images.
In other words, the RGF model boosted by LPSS achieves
not only a more accurate approximation to the true samples
but also better captures the uncertainty (variation) in real
samples. Both advantages are useful for quantifying the
reconstruction uncertainty.

4. Experiments

4.1. Experimental setup

Tasks and datasets. We evaluate our method on two image
reconstruction tasks: (1) compressed sensing MRI, from
fastMRI dataset [52] with images of size 320× 320; and (2)
Interferometric imaging, using blackhole images from the
Event Horizon Telescope (EHT) [1, 2], with images of size
160 × 160. For both cases, we only use one data, which
contains one specific measurement and the corresponding
ground truth. The original images are resized to 128× 128
for fastMRI and 32× 32 for blackhole cases.

Implementation. We use 6 flow steps and 4 residual blocks
for each step so that we have a total of 24 transformations
in our RGF model. The whole model is trained on a single
V100 GPU by using 20000 epochs with a batch size of 32
and an initial learning rate of 1E-4 in Adam.

Evaluation metrics. After training, 1000 samples drawn
from the learned posterior distribution are used to evaluate
the mean, standard deviation, and absolute error, which
represents the bias between the mean image and ground
truth. To evaluate the performance of the generative model,
we provide a quantitative evaluation of the sample fidelity
using precision and density, and the sample diversity using
recall and coverage.

Baselines. We compare our proposed methods with a couple
of methods including (1) conditional variational autoencoder

(cVAE) [38], which is typically used as a baseline method;
(2) Deep Probabilistic Imaging (DPI), proposed by [40],
mainly uses the RealNVP model for image Reconstruction;
(3) GlowIP, which uses invertible generative models for in-
verse problems and image reconstruction [3]; (4) NSF, which
is neural spline flows [15] used in our deep variational frame-
work. RGFL is our proposed method which uses robust
generative flows (RGF) with Latinized partially stratified
sampling (LPSS). Although some recent methods [45,48,49],
look very promising, we can not compare them if there are
no available open-source codes.

Metrics Brain case with 4× speedup

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 8.87E-5 1.21E-5 8.82E-6 6.90E-6 9.73E-7

Abs. Error ↓ 8.72E-5 3.31E-5 6.91E-6 1.83E-6 1.78E-6

Brain case with 6× speedup

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 1.02E-4 1.97E-5 1.02E-5 7.33E-6 2.35E-6

Abs. Error ↓ 1.39E-4 5.70E-5 8.04E-6 6.99E-6 4.58E-6

Brain case with 8× speedup

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 2.58E-4 3.83E-5 2.27E-5 9.14E-6 4.10E-6

Abs. Error ↓ 4.65E-4 8.81E-5 1.33E-5 8.04E-6 7.12E-6

Table 2. FastMRI brain case results compared to baseline methods.

4.2. FastMRI Case Study

Partial and under-sampled noisy measurements in MRI
will lead to reconstruction uncertainty. We show that our
RGFL method can be successfully applied to quantify the
reconstruction variation and bias on two cases (brain and
knee) with acceleration factors 4×, 6×, and 8×. Fig. 3
shows the reconstruction results with pixel-wise statistics of
the estimated posterior distribution. For both cases with a
speedup 4× factor, our RGFL shows a more accurate mean
estimate with a smaller absolute error than the DPI baseline
with a larger architecture. Our advantage in terms of standard
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Figure 3. FastMRI reconstruction of brain case (up) and knee
case (bottom) at three different acceleration speedup factors: 4X,
6X, and 8X (each shown in a column). Row 1 shows the ground
truth and sampling masks for each case. Row 2-4 shows the mean,
standard deviation, and absolute error for the estimated posterior
samples.

deviation is more significant due to higher model robustness
and variance reduction. Although the pixel-wise variance
of the reconstruction tends to be larger as the speedup fac-
tor increases, our method provides a more reliable image
reconstruction compared with other baselines.

We further use the mean of the standard deviation and
the absolute error to quantitatively compare the pixel-wise
statistics (see Table 2 and 3). Our method outperforms the
other baselines in terms of accuracy (bias) and variation of
the reconstruction. Specifically, our estimation achieves sig-

Metrics Knee case with 4× speedup

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 7.98E-6 5.94E-6 4.33E-6 3.84E-6 1.24E-6

Abs. Error ↓ 7.99E-6 4.83E-6 2.55E-6 9.36E-7 7.03E-7

Knee case with 6× speedup

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 9.53E-6 9.33E-6 6.48E-6 4.71E-6 2.05E-6

Abs. Error ↓ 1.02E-5 6.02E-6 4.87E-6 1.96E-6 9.11E-7

Knee case with 8× speedup

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 3.61E-5 1.60E-5 9.96E-6 5.18E-6 3.71E-6

Abs. Error ↓ 3.45E-5 7.94E-6 6.07E-6 2.06E-6 1.15E-6

Table 3. FastMRI knee case results compared to baseline methods.

nificant variance reduction with 1-2 orders of magnitude. Re-
garding the sample fidelity and diversity metrics, our method
also shows competitive performance in most cases.

4.3. Interferometric Imaging Case Study

Our approach can be also applied to study radio interfero-
metric astronomical imaging which was used to take the first
black hole images. Sparse spatial frequency measurements
are used to recover the underlying astronomical image (see
Fig. 4). Relatively large telescope-based gain and phase
error in the measurement noise lead to a non-convex image
reconstruction problem where a challenge is the potential for
multi-modal posterior distribution — different solutions fit
the same measurement data visually and reasonably well. In
this case, a synthetic black hole is used to illustrate our capa-
bility on reconstructed uncertainty estimation and multiple
modes detection [40].

Metrics Reconstructed black hole images (mode 1)

cVAE DPI NSF GrowIP RGFL
Std. Dev. ↓ 1.23E-3 6.09E-4 5.43E-4 2.17E-4 1.20E-4

Abs. Error ↓ 9.76E-4 3.85E-4 2.65E-4 1.06E-4 1.08E-4

Table 4. Statistical comparison of the estimated posteriors on the
black hole image reconstruction (mode 1).

Fig. 4 shows multiple samples drawn from the learned
generative model. Note that two different modes of recon-
struction are captured by our RGFL model. t-SNE plots
present a clear clustering of samples into two modes. Mode
1 fits the target image better than mode 2 which exhibits
roughly 180-degree rotations. We perform statistical analy-
sis for each mode to quantify the mean and standard devia-
tion of the multi-modal posterior. Note that the uncertainty
characterized by standard deviation shows a similar shape
to the mean estimator. Mode 1, which is close to the correct
solution, results in a smaller bias estimator than mode 2 (see
Table 4). In this case, the space-filling sampling would be
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Figure 4. (Left) Measured frequency samples for EHT observing the M87∗ [1, 2] and target synthetic black hole image; (Right) t-SNE result
of posterior samples and statistics of the posterior samples on each model [40].

more important to capture the multi-modal posterior distri-
bution. This can also be observed by the recall and coverage
metrics in Table 4. Our method outperforms the other base-
lines with more accurate and reliable results.

5. Related work

Bayesian deep learning. Deep learning for solving inverse
problems requires uncertainty estimation to be reliable in
real settings. Bayesian deep learning [22, 23, 50], specifi-
cally Bayesian neural networks [19] can achieve this goal
while offering a computationally tractable way for recover-
ing reconstruction uncertainty. However, exact inference in
the BNN framework is not a trivial task, so several varia-
tional approximation approaches are proposed to deal with
the scalability challenges. Monte Carlo dropout [16] can
be seen as a promising alternative approach that is easy to
implement and evaluate. Deep ensemble [28] methods pro-
posed by combining multiple deep models from different
initializations have outperformed BNN. Recent methods on
deterministic uncertainty quantification [43, 44] use a single
forward pass but scale well to large datasets. Although these
approaches show impressive performance, they rely on su-
pervised learning with paired input-output datasets and only
characterize the uncertainty conditioned on a training set.

Variational approaches. Variational methods offer a more
efficient alternative approximating true but intractable pos-
terior distribution by an optimally selected tractable dis-
tribution family [9]. However, the restriction to limited
distribution families fails if the true posterior is too com-
plex. Recent advances in conditional generative models,
such as conditional GANs (cGANs) [46], overcome this
restriction in principle, but have limitations in satisfactory
diversity in practice. Another commonly adopted option is
conditional VAEs (cVAEs) [38], which outperform cGANs
in some cases, but in fact, the direct application of both
conditional generative models in computational imaging is
challenging because a large number of data is typically re-
quired [41]. This introduces additional difficulties if our
observations and measurements are expensive to collect.

Deep flow-based models. Many very recent efforts have
been made to solve inverse problems via deep generative

models [3, 8, 10, 13, 40, 49]. The flow-based model is a po-
tential alternative via learning of a nonlinear transformation
between the true posterior distribution and a simple prior
distribution [14, 18, 24, 33, 35, 51]. These flow-based models
possess critical properties: (a) the neural architecture is in-
vertible, (b) the forward and inverse mapping is efficiently
computable and (c) the Jacobian is tractable, which allows
explicit computation of posterior probabilities. Fully invert-
ible neural networks (INNs) are a natural choice to satisfy
these properties and can be built using coupling layers, as
introduced in the RealNVP [14] which is simple and effi-
cient to compute. Although in principle, RealNVP layers
are theoretically invertible, the actual computational of their
inverse is not stable and sometimes even non-invertible due
to aggravating numerical errors [6]. Many efforts have been
spent to improve the stability, invertibility, flexibility, and
expressivity of the flow-based models [26, 33, 47, 51], which
inspired us to extend for the task of computing posterior in
real-world imaging reconstruction.

Recently, Asim et al. [3] focused on producing a point
estimate motivated by the MAP formulation and Wang et
al. [49] aims at studying the full distributional recovery via
variational inference. A follow-up study from [48] is to
study image inverse problems with a normalizing flow prior,
which is achieved by proposing a formulation that views the
solution as the maximum a posteriori estimate of the image
conditioned on the measurements. Our work is motivated
by these recent advances but focuses on how to assess the
image reconstruction (data) uncertainty with an explicitly
known forward model with very sparse observations.

6. Conclusion
We propose an uncertainty-aware framework that lever-

ages a deep variational approach with robust generative flows
and variance-reduced sampling to perform an accurate esti-
mation of image reconstruction uncertainty. The results on
multiple benchmarks and real-world tasks demonstrate our
advantages in uncertainty estimation. Although the current
RGFL methods show superior performance on these imaging
reconstruction tasks, the total computational cost will be a
major concern if we plan to scale to complex high-resolution
images, e.g., large-scale scientific simulations [29].
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