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Abstract

Based on recent advancements in transformer-based
video models and multi-modal joint learning, we propose
a novel model, named Pose-Guided Video Transformer
(PGVT), to incorporate sparse high-level body joints loca-
tions and dense low-level visual pixels for effective learning
and accurate recognition of human actions. PGVT lever-
ages the pre-trained image models by freezing their param-
eters and introducing trainable adapters to effectively in-
tegrate two input modalities, i.e., human poses and video
frames, to learn a pose-focused spatiotemporal represen-
tation of human actions. We design two novel core mod-
ules, i.e., Pose Temporal Attention and Pose-Video Spatial
Attention, to facilitate interaction between body joint lo-
cations and uniform video tokens, enriching each modality
with contextualized information from the other. We evaluate
PGVT model on four action recognition datasets: Diving48,
Gym99, and Gym288 for fine-grained action recognition,
and Kinetics400 for coarse-grained action recognition. Our
model achieves new SOTA performance on the three fine-
grained human action recognition datasets and comparable
performance on Kinetics400 with a small number of tunable
parameters compared with SOTA methods. Various abla-
tion studies are performed which verify the benefits of our
new designs.

1. Introduction
Recognizing human actions involves capturing both spa-

tial and temporal dynamics as well as semantic represen-
tation of human movements. Existing methods that learn
spatiotemporal visual features and dependencies from video
clips tend to be computationally expensive and less effective
in learning human movements. In [21], a network model
fusing human 2D pose and video clip for human action
recognition is proposed. The inputs are images, i.e., the
heatmaps of joints and video frames, which are fed to two
CNN channels for visual feature extraction. The outputs
from the two channels are concatenated for final classifica-

tion. It also shows that introducing fusion in both early and
later stages in the model is more effective than simply ap-
plying fusion in the later stage for joint learning on pose and
visual features.

Parameter-efficient transfer learning, where large pre-
trained models are frozen while a few additional parameters
are fine-tuned, has gained pace in computer vision. How-
ever, the direct utilization of pre-trained image models for
video and pose tasks has received less attention. Further-
more, given the remarkable performance of 2D pose detec-
tors, it is intuitive to leverage pose-guided representations
for video understanding tasks, as explored in previous stud-
ies [7, 65] and more recently by Duan et al. [21]. Never-
theless, the effective way to handle pose information is still
up for discussion. Relying solely on the pose modality lim-
its the learning of non-body parts in the video, leading to a
weakness in robust semantic understanding. Since video
modality provides richer visual information compared to
the pose modality alone, it is helpful to learn diverse and
discriminate visual features. On human action recogni-
tion, the pose represented by joint points provides a high-
level knowledge of articulated human body structure and
body movement, and the video frames show the pixel-level
dense visual information of human movement in a real-
world environment. Intuitively, joint learning on these two
modalities would achieve accurate and effective knowledge
for fine-grained human action recognition where the dif-
ference between some classes is small. The self-attention
and cross-attention techniques of recent transformer archi-
tectures should give rise to a suitable way to achieve the
goal.

Motivated by the aforementioned observations and ideas,
our primary target of model design is to explicitly integrate
pose-guided spatiotemporal representations within vision
transformer architectures [18], extending this fusion across
different layers of the model. Such architecture presents
several challenges, including effectively focusing on the ap-
pearance of human bodies as they move, capturing the inter-
action among body joints, and incorporating the dynamics
of the pose with the diversity of visual appearance. In ad-
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dition, it is also helpful to involve contextual information
from the video content outside the human body as back-
ground information.

We design a novel Pose-Guided Video Transformer
(PGVT) that effectively integrates pose tokens and video
tokens, leading to effective spatiotemporal representations.
Our key idea involves introducing pose (2D body joint co-
ordinates) and video information in a manner similar to
regular patches, while also naturally integrating temporal
dynamics into this framework. By integrating pose infor-
mation into the vision transformer architecture, we aim to
improve the model’s capacity to capture intricate spatial
and temporal relationships for efficient action recognition.
Through thorough experiments on various datasets, we il-
lustrate the efficacy of our PGVT model, outperforming
existing methods on three fine-grained action recognition
datasets and highlighting the advantages of incorporating
pose guidance within vision transformers. Additionally, we
show that PGVT requires comparative or significantly lower
computing costs by fixing the pre-trained image model and
training several adapters [37,100]. The contributions can be
summarized as:

1. A novel multi-modal approach PGVT (Pose-Guided
Video Transformer) that integrates 2D poses and video
frames to learn refined pose-guided spatiotemporal rep-
resentations for fine-grained action recognition. We in-
troduce two new modules: i) Pose Temporal Attention
employs self-attention over pose representations to cap-
ture trajectory interactions; ii) Pose-Video Spatial Atten-
tion models appearance by applying co-attention over
both video tokens and pose tokens to capture pose-
weighted appearance features.

2. The PGVT leverages a pre-trained vision foundation
model by freezing its parameters and introducing a
lightweight Refining Adapter to effectively integrate the
two input modalities, equipping them with pose-guided
spatiotemporal reasoning capabilities.

3. We validate PGVT on four video action recognition
datasets where the pose is given as part of the input.
Our extensive empirical study shows improved results on
Gym99, Gym288, Diving48, and comparative results on
Kinetics400, compared with existing SOTA methods.

2. Related Work
Video action recognition. Action recognition has been a
longstanding problem in computer vision. Previous meth-
ods focused on optical flow-based features [22], while re-
cent advances have seen the emergence of transformer-
based approaches [23]. The evolution of these approaches
can be broadly categorized from temporal pooling for fea-
ture extraction [43] to recurrent networks [17,66], and even-

tually to 3D spatiotemporal kernels [11,34,38,60,84,86,88]
and two-stream networks that capture complementary sig-
nals, such as motion and spatial cues [29, 30, 81]. The re-
cent emergence of vision transformers has introduced pow-
erful models for video understanding [1, 3, 23, 69], build-
ing upon the achievement of language transformers [16]
and vision transformers [8, 19]. The use of transformers
for video action recognition has gained significant attention,
following the success of vision transformers(e.g.ViT [18])
in the image domain. Instead of traditional convolutional
networks [9,29, 60,85,99], recent approaches have focused
on extending image pre-trained models to handle video
data. This is achieved by introducing new temporal mod-
ules [1, 4, 98, 107] or by inflating image models to video
models [62]. These models “patchify” each video frame and
employ self-attention mechanisms to obtain contextualized
representations for these patches. However, a notable limi-
tation of this approach is the absence of an explicit represen-
tation of the human skeleton. In this paper, we highlight a
finding that self-attention can be jointly adopted to pose fea-
tures and video features, providing a straightforward and el-
egant mechanism to enhance spatiotemporal representations
through the inclusion of pose information. Our work lever-
ages two consecutive Pose Temporal Attention and Pose-
Video Spatial Attention modules to exploit pose-centric in-
formation.

Pre-trained large vision models. Recent works [28,39,48,
71, 83, 92, 102, 110] have utilized large-scale multi-modal
datasets, such as image/video-text pairs, to train models,
resulting in robust visual representations. These pre-trained
models demonstrated strong transferability and zero-shot
learning capabilities, and have greatly facilitated transfer
learning to various downstream tasks. However, full fine-
tuning of video data requires high computational costs,
which is impractical for many researchers and practition-
ers. Parameter-efficient fine-tuning techniques aim to re-
duce the number of trainable parameters, thereby lowering
computational costs, while still achieving or surpassing the
performance of full fine-tuning [2, 12, 31, 40, 41]. In our
work, we efficiently adapt well-pre-trained image models
(ViT pre-trained on CLIP [71]) to learn pose and video rep-
resentations, by training only a few parameters and attaining
comparable or even superior performance compared to pre-
vious SOTA. There are also several works that leverage pre-
trained CLIP for video action recognition. ActionCLIP [90]
and X-CLIP [67] require a text branch for full fine-tuning,
while PromptCLIP [42] applies prompt tuning [52] and in-
troduces blocks for temporal modeling. EVL [61] adds a
decoder branch that can learn temporal information. While
existing methods in computer vision focus on adapting
models within the same modality, our method adapts im-
age models for human pose, making it less computationally
costly than previous methods.
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Skeleton-based models. The progress of pose detec-
tion inspires skeleton-based action recognition. To ad-
dress gradient explosion and vanishing gradient challenges
in RNN [56, 79, 80, 105], some researchers [6, 32, 53,
106] propose neural networks (NN) to investigate skele-
ton sequences for spatial and temporal information through
spatial-temporal convolutions, and GCN to treat the skele-
ton sequence as a spatial-temporal graph, leveraging the
inherent graph structure of the skeleton [13, 14, 45, 49, 63,
77, 78, 96, 101]. JMRN [75] investigated to capture inter-
dependencies between joints in heatmaps separately. An-
other line of work turns the skeleton sequence into image-
like data using hand-crafted techniques [15, 97]. PoseC-
onv3D [21] employs 3D CNN on a series of 2D skeleton
heatmaps to extract features. 3D pose representation is also
investigated, such as LART [72] which uses a 3D SMPL
model, person-level tracking and tokenized human-centric
vectors for action prediction. A multi-modal approach is
also adopted [21, 58] to incorporate pose and video inputs
for video understanding. However, our work differs con-
ceptually as [21] feeds pose heatmap to a CNN, while [58]
adopts a distillation framework using flow input. Our PGVT
effectively integrates 2D body joint coordinates into the
transformer while preserving the entire spatiotemporal rep-
resentation.

3. Method
We introduce our Pose-Guided Video Transformer

(PGVT) model, which explicitly incorporates pose trajecto-
ries and visual appearance into the transformer architecture.
We provide a high-level overview of the framework in Sec-
tion 3.1, and introduce how we embed pose and video clips
in Section 3.2, followed by the more detailed architecture
of a PGVT block in Section 3.3.

3.1. Overview of PGVT framework

The whole architecture is shown in Figure 1. It consists
of an input layer, PGVT blocks and an output layer, where
the PGVT block is the core novel part. The proposed model
offers a powerful framework for efficiently leveraging pose
information within vision transformers. We aim for the pose
to exert influence on the scene’s representation throughout
a bottom-up process, allowing the calculation of attention
at the pose level and other areas within the image. This ap-
proach ensures that the model can effectively attend to pose-
related information and other significant image regions, ul-
timately enhancing its ability to understand and recognize
actions in a more comprehensive manner. By incorporat-
ing both spatial and temporal attention, our model can cap-
ture the dynamics of pose and appearance-related semantics
of pose-guided video. Joint Prediction layer, which takes
the average of the CLS tokens over all frames for pose and
video outputs separately and concatenates them for the final

prediction, enhances the discriminative power of the net-
work.

3.2. Input Layer: Embedding Pose and Video

In the Pose Embedding layer in Fig. 1, we first project
the 2D pose sequence1 of size Th × NP × 2 to a latent
space of dimension d, which aligns with the latent space
dimension of the pretrained image transformer, by a train-
able Multilayer Perceptron (MLP). The MLP is trained end-
to-end to learn the mapping of pose coordinate represen-
tation to high dimensional features, exploiting ViT tokens
for effective representation of pose modality. We obtain
pose tokens P ∈ RThNP d, by adding a learnable posi-
tion embedding and appending a classification token (CLS),
where Th denotes a high temporal resolution for the pose,
NP = J +1 and J denotes the maximum number of joints.
Similarly, we obtain video tokens through the Video Em-
bedding layer. Building upon the architectural foundation
established by ViT, we obtain video tokens Z ∈ RTlNZd,
where Tl denotes a low temporal resolution for the video,
NZ = nhnw + 1 and nhnw denotes the number of spatial
patches extracted in a frame. This representation allows us
to apply transformer-based operations effectively for sub-
sequent stages of action recognition. Self-attention mecha-
nisms are applied iteratively to these tokens, producing the
final contextualized CLS feature vectors for pose and video
modalities.

3.3. The PGVT Block

The purpose of PGVT block is to learn the latent seman-
tic dynamics of body movement using pose modality, and
then move forward to joint learning with co-attention, i.e.,
learning pose-guided spatial dynamics by extracting infor-
mation from sparse pose locations and utilising it to refine
the video tokens, as well as to employ dense video pixels
to refine the pose tokens. To be specific, each block takes
these inputs and produces refined pose tokens and video
tokens by leveraging information from the other modal-
ity. To achieve this, as shown in Fig. 1 (PGVT Block), we
employ two essential modules within the block: the Pose
Temporal Attention module (denoted as T ), which mod-
els pose trajectories, and the Pose-Video Spatial Attention
module (denoted as S), which captures appearance-related
information guided by pose. In T , we apply image pre-
trained self-attention layers with Adapter [100] to the tem-
poral dimension of pose input to learn the dependencies
over frames. Adapter has a bottleneck structure as shown
in Fig. 1 (Adapter). For S, we introduce Refining Adapter
after the image pre-trained self-attention layers. The PGVT
block takes pose and video tokens from the previous blocks.

1We use an off-the-shelf pose extractor to extract 2D pose sequence
from the raw video.
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Figure 1. PGVT Framework Architecture. Our proposed framework consists of L stages of PGVT blocks. Each block is made up of
two cascaded modules: a T module (Pose Temporal Attention) that models trajectories and a S module (Pose-Video Spatial Attention)
that models appearance. The input pose tokens are fed into the T module and output pose tokens with learned temporal information.
Afterwards, together with video tokens, temporal attended pose tokens are fed into the S module to output refined pose tensor and refined
video tensor. The outputs of a PGVT block include the input residual connection for pose and video respectively. The final prediction is
done by the Joint Prediction layer.

The output of the PGVT block consists of refined pose to-
kens and video tokens which are contextualized with infor-
mation about each other.
Architecture. The architecture of our proposed method
consists of multiple stages, denoted as L. Each stage con-
tains two sets of tokens: pose tokens {pi}NP

i=1 and video
tokens {zi}NZ

i=1. To simplify notation, we denote {pl
i}

NP
i=1

as Pl and {zli}
NZ
i=1 as Zl for each stage l. Starting from l=1,

in each stage, the pose tokens Pl are passed through T ,
which facilitates the propagation of temporal information,
resulting in temporal attended pose tokens as PT

l = T (Pl).
Next, PT

l and the video tokens Zl are passed through S to
obtain the refined tokens:

PS
l ,Z

S
l = S(PT

l ,Zl).

With residual connection, the above process is repeated for
L stages.
Pose Temporal Attention. T (in Fig. 1) is in charge of cap-
turing motion by functioning at a high refresh rate and with
a high temporal resolution. It focuses solely on modeling
pose dynamics independently of their appearance. There-
fore, it only takes the pose P as input and produces the out-

put P T . Considering its high temporal resolution, T is de-
signed to have low computational costs by taking in dense
high-level body structure. The focus of T is to model the
geometry of motion using body joint coordinates and ap-
ply self-attention to them. Drawing inspiration from recent
advancements in vision transformers, we propose a tem-
poral transformer structure to thoroughly characterise the
temporal correlations among human joints across frames.
We denote the self-attention layer pre-trained in the image
model as Attn, which is composed of a Layernorm and mul-
tiheaded self-attention (MSA) layer. Thereafter, we denote
T-Attn for temporal modeling, and similarly, S-Attn for spa-
tial modeling. Now given the pose tokens P ∈ RTh×NP×d,
we first reshape it into P ∈ RNP×Th×d. Afterwards, we
feed P into the T-Attn to capture the relationship among the
Th frames. Though T-Attn and S-Attn take in different input
dimensions, they both share weights and are frozen. The
computation of T can be written as

PAdapter
l = Adapter(T-Attn(Pl−1))

PT
l = Pl−1 +PAdapter

l

(1)

where PT
l denotes the temporal attended output from T at
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stage l.
Pose-Video Spatial Attention. S (in Fig. 1) is in charge
of capturing spatial semantics by functioning on frames of
low temporal resolution. It models the attended appear-
ance by considering both temporal attended pose represen-
tation P T and video token representation Z and produces
the output S(P T , Z). Inspired by multi-modal fusion meth-
ods [5, 20, 35, 95], S-Attn is applied independently to video
and pose features, and followed by the Refining Adapter
module (denoted as R-Adapter) for cross-modality learn-
ing. As shown in Fig. 1 (Refining Adapter), the left stream
incorporates video tokens into pose tokens, while the right
stream incorporates pose tokens into video patches, allow-
ing cross-modal interaction in the embedding space. In the
left stream, the pose tensor is first projected to a reduced
number of frames (Tl) to match the temporal dimension
of the video modality. This is done using the FC Down
(denoted as FCdown), which is a linear layer for project-
ing the temporal dimension to a lower temporal resolution
while learning the global temporal dynamics. Then the pose
and video tokens are linear projected to obtain Qi,Ki,Vi

(i ∈ P,Z):

QP = WQ
P x̂P ,KP = WK

P x̂P , VP = WV
P x̂P

QZ = WQ
Z xZ ,KZ = WK

Z xZ , VZ = WV
Z xZ

(2)

where x̂P denotes FCdown(xP ), xP represents pose input
to R-Adapter (i.e. S-Attn(PT

l )), xZ represents video in-
put to R-Adapter (i.e. S-Attn(Zl−1)). Formally, attention
between the pose tokens and video tokens is computed by
the weighted sum of the tokens of the other modality. The
fused features are projected by learned weights WO

P and
WO

Z . Subsequently, the pose tensor is projected back to
high temporal dimension Th using the FC Up (denoted as
FCup), which is a linear layer to project pose to the same
dimension as the input to our PGVT block. With a skip
connection, we compute Refining Adapter (R-Adapter) as

PR−Adapter
l = xP + FCup(W

O
P · Softmax

(
QPKZ

T

√
dk

)
VZ)

ZR−Adapter
l = xZ +WO

Z · Softmax

(
QZKP

T

√
dk

)
VP

(3)
where PR−Adapter

l and ZR−Adapter
l denote refined outputs

from R-Adapter. This design allows for the repetitive ap-
plication of the PGVT block, enabling the model to learn
and refine representations iteratively. The Refining Adapter
works similarly to the previously proposed semantic group-
ing methods [20, 64, 95]. While they learn instance-level
grouping or cross attention of vision and language, our Re-
fining Adapter refine pose and video tokens to adjust the
weights using information from the other modality. The

outputs of Refining Adapter are ThNP pose tokens and
TlNZ video tokens, which can be perceived as refined to-
ken representations based on each source of information.
The computation of S can be written as

PS
l = PT

l +PR−Adapter
l

ZS
l = Zl + ZR−Adapter

l

(4)

Output of PGVT Block. The output of the l-th PGVT
block is simply formed by an input residual connection for
pose and video respectively. In addition to the MLP layer,
we use an Adapter [100] to further tune the representations:

Pl = PS
l +MLP(LN(PS

l ) + sP ·Adapter(LN(PS
l ))

Zl = ZS
l +MLP(LN(ZS

l ) + sZ ·Adapter(LN(ZS
l ))

(5)
where sP and sZ are scaling factors [100] to control

weights from Adapter. PGVT block produces a refined ver-
sion of standard spatiotemporal input tokens while main-
taining the same dimension, functioning as a typical trans-
former layer. One can easily incorporate PGVT block
into any transformer-based model for adaptation to cross-
modality joint learning. This versatility allows the PGVT
to easily leverage any vision pre-trained model, equipping
with spatiotemporal reasoning capability and effective pa-
rameter fine-tuning.

4. Experiments
Datasets. We evaluate our PGVT on three fine-grained
action recognition datasets, i.e., Diving48 [57], Gym99
and Gym288 [76], and one coarse-grained action recogni-
tion dataset Kinetics-400 (K400) [44]. Diving48 includes
15.9K training videos and 2K validation videos focusing on
48 fine-grained diving actions. Each diving class in Div-
ing48 is distinguished by the sequence of takeoff, move-
ments in flight, and entry, requiring models to differenti-
ate fine-grained actions. The Gym99 dataset contains 20k
training videos and 8.5k evaluation videos for 99 actions
extracted from international competitions. Gym288 is an
extended version of Gym99, which is a long-tailed setting
with 23k training videos and 9.6k evaluation videos for 288
actions. The Diving and Gym datasets are created with neu-
trality towards static representations in mind, meaning that
a model cannot solely rely on backgrounds to determine the
action. K400 contains approximately 240K training videos
and 20K validation videos across 400 human action classes.
For evaluation, we employed standard classification accu-
racy as the performance metric.
Implementation Details. For all the experiments, we uti-
lize ViT (ViT-B and ViT-L) models pre-trained by CLIP
[71]. We largely follow the training settings from [100].
The implementation of PGVT was carried out in Py-
Torch. Our training procedures and code are based on the
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Table 1. Comparison to SOTA on Diving48.

Model Pretrain
Tunable

Param (M) Frames Top-1

SlowFast [29] IN-1K 54 128 77.6
TQN [103] K400 - all 81.8
TimeSformer-L [4] IN-21K 121 96 81.0
VideoSwin-B [62] IN-21K 88 - 81.9
BEVT [91] IN-21K & K400 88 - 86.7
SIFAR-B-14 [25] IN-21K 87 - 87.3
GC-TDN [33] IN-21K 27.4 16 87.6
ORViT TimeSformer [36] IN-21K 160 32 88.0
AIM ViT-B/16 [100] CLIP 11 32x3 88.9
AIM ViT-L/14 [100] CLIP 38 32x3 90.6
PGVT ViT-B/16 CLIP 75 48+16 89.5
PGVT ViT-L/14 CLIP 265 48+16 91.3

Table 2. Comparison to SOTA on Gym99 and Gym288. “M”
stands for “Modality”, “R”, “T”, “F” and “P” stand for “RGB”,
“Text”, “Flow” and “Pose”, respectively.

Model Backbone M GFLOPs Tunable
Param (M)

Gym99 Gym288
Top-1 Mean Top-1 Mean

TSN [89] BNInception R+F 33 - 86.0 76.4 79.9 37.6
TRNms [109] BNInception R+F - - 87.8 80.2 82.0 43.3
TSM [60] ResNet-50 R+F 65 24.3 88.4 81.2 83.1 46.5
I3D [10] 3D ResNet-50 R 108 - 75.6 64.4 66.1 28.2
NL I3D [93] 3D ResNet-50 R - 43.2 75.3 64.3 67.0 28.0
MTN [50] SlowOnly R - - 91.8 88.5 - -
TQN [104] S3D R+T - - 93.8 90.6 89.6 61.9
SlowOnly [29] ResNet101 R - - 93.9 90.6 86.8 51.2
3D VE [51] SlowOnly R - - 94.0 90.5 - -
VT CE [51] SlowOnly R+T - - 94.6 91.4 90.1 62.6
PoseC3D [21] SlowOnly-R50 P - - 93.2 - - -
RGBPose [21] SlowOnly-R50 R+P - - 95.6 - - -
PGVT ViT-B/16 R+P 495 75 96.1 91.4 90.7 63.4
PGVT ViT-L/14 R+P 2227 265 96.7 91.6 91.0 63.6

AIM [100] and PoseConv3D [21]. The model is trained on
one GPU for 50 epochs using AdamW [46] optimizer. The
learning rate is 8e-6 and weight decay is 5e-2. The pose
of each person in each frame is provided by the dataset
provider, or otherwise pre-extracted for computational ef-
ficiency, using a pose extractor built on HRNet [82]. The
number of joints J is the maximum number of joints in a
frame and varies for different datasets (e.g. J = 17 for the
Gym99 dataset). If there are multiple persons in a frame,
J represents the number of body joints of all persons (i.e.
J = j × n, where j denotes the maximum number of joints
per person and n denotes the number of persons). No weight
sharing was performed between the pose extractor and our
model. The computation of FLOPs and parameters for pose
extraction is not included in the subsequent analysis. We
provide an ablation study on the breakdown of the inference
time in Supplementary Material Section C.2.

4.1. Comparisons to the State of the art

We examine four video action recognition datasets and
compare our proposed approach with SOTA approaches.
The results are presented in Tables 1, 2 and 3. For the
“Frames” column, ‘x + y’ denotes x pose frames and y
video frames. We trained our models using the standard

Table 3. Comparison to SOTA on Kinetics400.

Model GFLOPs
Tunable

Param (M) Frames Top-1 Top-5

TSM R50 [60] 330 24.3 8 74.1 91.2
CorrNet-101 [87] - - 32 79.2 -
SlowFast R101 [29] 7020 59.9 32 79.8 93.9
X3D-XXL [27] 4320 20.3 32 80.4 94.6
MoViNet-A6 [47] 386 31.4 120 81.5 95.3
MViT-B [24] 4095 37 64 81.2 95.1
UniFormer-B [55] 3108 50 32 83.0 95.4
TimeSformer-L [4] 7140 121 64 80.7 94.7
ViViT-L/16×2 FE [1] 3980 311 32 80.6 92.7
VideoSwin-L [62] 7248 197 32 83.1 95.9
MViTv2-L [59] 42420 218 32 86.1 97.0
TokenLearner-L/10 [74] 48912 450 64 85.4 96.3
PromptCLIP A7 [42] - - 16 76.8 93.5
ActionCLIP [90] 16890 142 32 83.8 97.1
X-CLIP-L/14 [67] 7890 420 8 87.1 97.6
EVL ViT-L/14 [61] 8088 59 32 87.3 -
MTV-L [98] 18050 876 32 84.3 96.3
Hiera-H [73] 1159x3x5 672 16 87.8 -
DualPath [68] 1868 27 32 87.7 97.8
EVA [26] - - 8 89.7 -
UMT-L [54] 1434x3x4 304 16 90.6 98.7
TubeViT [70] 17640 - 64 90.9 -
InternVideo [94] - 1300 16 91.1 -
AIM ViT-B/16 [100] 2428 11 32x3 84.7 96.7
AIM ViT-L/14 [100] 11208 38 32x3 87.5 97.7
PGVT ViT-B/16 850 77 32+32 85.8 97.1
PGVT ViT-L/14 3832 268 32+32 89.2 98.0

splits and followed the established evaluation procedure.
Fine-grained Action Recognition. Table 1 and Table 2 il-
lustrate that our PGVT model surpasses the SOTA meth-
ods on fine-grained action recognition datasets. On the
Diving48 dataset (see Table 1), our PGVT achieves 89.5%
and 91.3% using backbones ViT-B/16 and ViT-L/14 respec-
tively, outperforming AIM [100] with the same backbones
by 0.6% and 0.7%. When compared to ORViT [36] which
leverages an object tracking model, our PGVT ViT-B/16
outperforms it by 1.5% with less than half of the tunable
parameters. This demonstrates the effectiveness of incorpo-
rating pose representation and cross-learning of spatiotem-
poral dynamics. On the Gym99 and Gym288 datasets (see
Table 2), our method outperforms all previous methods even
when compared with RGBPose-Conv3D [21] which also
take video and pose as inputs. This suggests that our pose
representation can model motion trajectories more effec-
tively, enhancing the learning of refined pose and video rep-
resentations in fine-grained actions.
Coarse-grained Action Recognition. Table 3 presents the
comparisons with SOTA video models on the K400 dataset.
We observe that our PGVT consumes much fewer GFLOPs
and tunable parameters than most of the previous methods.
PGVT ViT-L/14 achieves 89.2% top-1 accuracy using 32
pose frames and 32 video frames, which is a comparable
performance as the SOTA method InternVideo pre-trained
on K400. We attribute the comparatively modest perfor-
mance on the K400 dataset to the short videos which limit
the effectiveness of temporal reasoning. We also investi-
gate our model’s performance on K400 subset with missing
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Table 4. Effectiveness of proposed components.

Methods GFLOPs
Tunable

Param (M) Frames Top-1 Top-5

(1) Pose only 108 11 48 82.6 96.7
(2i) Video only 405 11 16 85.9 98.0
(2ii) Video only 850 11 32 87.0 98.2
(3) Late Fusion 513 23 48+16 88.1 98.8
(4) PGVT w/o T 466 68 48+16 67.1 79.1
(5) R-Adapter → 2 Adapters 383 18 48+16 87.6 98.4
(6i) PGVT w/o refined pose 437 46 48+16 89.2 99.0
(6ii) PGVT w/o refined video 437 46 48+16 88.0 98.8
(7) PGVT 495 75 48+16 89.5 99.1

Table 5. Transformer for pose.

Pre-trained Top-1 Top-5
Poseformer 86.4 97.5

CLIP Image Encoder 89.5 99.1

Table 6. Pose input forms.

Input Form GFLOPs
Tunable

Param (M) Top-1 Top-5

Heatmaps 311 11 80.1 96.0
Coordinates 108 11 82.6 96.7

full body pose. The result and discussion are presented in
Supplementary Material Section D.2.

4.2. Ablations

We conducted a comprehensive ablation study on the
Diving48 dataset to analyze the contribution of different
components in the PGVT and the performance of models
with decreased computational cost. We evaluate the model
on 48 frames of pose and 16 frames of video unless other-
wise stated.

4.2.1 Effectiveness of Components

To illustrate the efficacy of the proposed components out-
lined in Section 3, we compare our method against the
baselines including space-time pose-only and video-only
transformer models. AIM [100] with ViT-B/16 backbone
serves as the baseline architecture, where we freeze the im-
age backbone. We examine the following versions of our
model: (1) Pose only: single pose modality is fed into
baseline architecture; (2) Video only: single video modal-
ity is fed into baseline architecture, with 16 frames for
(2i) and 32 frames for (2ii); (3) Late fusion: a two-stage
approach with pre-trained pose-only and video-only mod-
els, followed by concatenating the features for whole net-
work fine-tuning. (4) PGVT w/o T : T is removed; (5) R-
Adapter → 2 Adapters: we replace R-Adapter with two par-
allel Adapters [100] for pose and video respectively without

cross-modality attention; (6) Inside R-Adapter, we further
investigate the effectiveness of the two streams separately:
(6i) PGVT w/o refined pose; and (6ii) PGVT w/o refined
video; (7) PGVT. The details of the architecture design are
presented in the Supplementary Material Section B.

The results for the baselines are presented in the top part
of Table 4. We observe that the pose-only model, despite
48 frames input, has significantly fewer GFLOPs than the
video-only model (108 vs.405). The video-only model with
16 frames improves its spatial representations, resulting in a
performance increase (82.6% to 85.9%). However, this ap-
proach substantially increases the GFLOPs. The video-only
model with 32 frames further increases the performance but
at the cost of further increasing the GLOPs to 850.

In the bottom part of Table 4, we intend to narrow the
performance gap and even outperforming the video-only
model by adding a small number of video frames to the
pose-only model. The late fusion approach in Method (3)
achieves better performance (88.1%) than baselines, but re-
quires two-stage training. In Method (4), both the pose and
video tokens are fed directly to S, leading to a substantial
performance drop from 89.5% to 67.1%. This affirms the
critical role of temporal attention in PGVT. In Method (5),
replacing R-Adapter with two original Adapters decreases
the performance to 87.6%, yet surpassing video-only model
(2ii) with its effective temporal modeling and joint pose-
video learning. For Methods (6i) and (6ii), the addition
of R-Adapter for cross-modality learning further improves
the performance.Without refining pose features in Method
(6i), the performance only drops by 0.3%, while Method
(6ii) without refining video features suffers 1.5% perfor-
mance drop. This shows the importance of pose-guided
features in capturing strong spatiotemporal interaction be-
tween high-level temporal dynamics and video spatial rep-
resentation. Finally, Method (7), which is our PGVT model,
achieves not only better accuracy than the 32 frames video-
only model (89.5% vs. 87.0%) but also with fewer GFLOPs
(495M vs.850). It also outperforms the late fusion approach
without the need for two-stage training. These results suc-
cessfully validate the effectiveness of our proposed pose-
focused strategies.

4.2.2 Ablations on Pose Learning

We evaluate different pre-trained models for pose stream
and different pose input forms. First, we investigate re-
placing the pre-trained model for the pose in PGVT ViT-
B/16 from CLIP image encoder to Poseformer [108]. As
shown in Table 5, the CLIP image encoder achieves better
performance. Secondly, we also investigate to use of pose
heatmaps to replace the pose joint coordinate representa-
tion. We generate heatmaps as per [21], with a resolution
of 112x112. The comparison is shown in Table 6. It can
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Figure 2. Visual examples show the improvements of visual attention by joint learning from pose tokens and video tokens in PGVT. A
brighter colour and bigger dot in each pose frame means more attention.

be observed that the pose joint representation gives rise to
better performance. The potential reasons are discussed in
Supplementary Material Section B.2.

4.2.3 Decreasing Computational Cost

We demonstrate that the computational cost could be fur-
ther reduced with only a minor decrease in performance.
We experiment with how the embedding dimension in the
pose branch and the number of video frames affect perfor-
mance respectively. Details can be found in the Supplemen-
tary Material Section B.3.

4.3. Visualisation

A few examples for visual examination of the effective-
ness of PGVT are shown in Fig. 2. “Video Attn” and “Pose
Attn” are visualisation of video-only and pose-only base-
lines, and “Refined Video Attn” and “Refined Pose Attn”
are visualisation of PGVT features. It can be observed that
PGVT improves the spatial attention around correspond-
ing body joints and temporal attention to fast-moving body
joints, leading to a more effective representation of human
action recognition. This feature enables our model to cap-
ture and represent diverse visual patterns effectively.

4.4. Discussions

In this study, we showcase the effectiveness of a pose-
guided method that incorporates pose and video representa-
tions and propagates them into transformer layers. A lim-
itation of our work is that we rely on externally provided
pose rather than generating them within the model without
supervision. Exploring the use of self-generated pose is an
interesting area for future research.

Nevertheless, we believe that our work has a positive so-
cial impact, due to its potential to incorporate composition-
ality, achieving spatiotemporal reasoning capability with
cost-effective training. Our method is straightforward and
widely applicable, enabling the use of more effective foun-
dation models. It is worth noting that our design of reusing
image models for pose temporal modeling is sufficiently ro-
bust for datasets that place a stronger emphasis on the tem-
poral dimension. Our approach is not limited to specific
pre-trained models and can be applied to different architec-
tures for future deployments. As pose modeling is a kind
of sequence modeling, it is worthwhile to explore the reuse
of pre-trained weights from more powerful sequential mod-
els instead of relying solely on image models, to enhance
temporal modeling capabilities.

5. Conclusion

In this work, we have proposed Pose-Guided Video
Transformer (PGVT), a novel approach for efficiently trans-
ferring pre-trained image models to video action recog-
nition with pose and video inputs. We introduced Pose
Temporal Attention module and Pose-Video Spatial Atten-
tion module to incorporate pose-guided spatiotemporal rea-
soning into an image model. Our model learns tempo-
ral dynamics semantics from pose and pose-guided spa-
tial dynamics from pose and video to facilitate composi-
tional understanding. With pose input, we can use fewer
video frames than those models using dense video frames.
By keeping the pre-trained image model frozen and up-
dating the newly added adapters, our method reduces the
training cost compared to most of the existing approaches,
while achieving comparable or superior performance to
prior SOTA methods on four benchmark datasets.
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Sören Schwertfeger, Cyrill Stachniss, and Mu Li. Video
contrastive learning with global context. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 3195–3204, 2021. 2

[49] Jungho Lee, Minhyeok Lee, Dogyoon Lee, and Sangyoun
Lee. Hierarchically decomposed graph convolutional net-
works for skeleton-based action recognition, 2022. 3

[50] Mei Chee Leong, Hui Li Tan, Haosong Zhang, Liyuan Li,
Feng Lin, and Joo Hwee Lim. Joint learning on the hierar-
chy representation for fine-grained human action recogni-
tion. In ICIP, pages 1059–1063. IEEE, 2021. 6

[51] Mei Chee Leong, Haosong Zhang, Hui Li Tan, Liyuan Li,
and Joo Hwee Lim. Combined cnn transformer encoder for
enhanced fine-grained human action recognition, 2022. 6

[52] Brian Lester, Rami Al-Rfou, and Noah Constant. The
power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691, 2021. 2

[53] Chuankun Li, Yonghong Hou, Pichao Wang, and Wanqing
Li. Joint distance maps based action recognition with con-
volutional neural networks. IEEE Signal Processing Let-
ters, 24(5):624–628, may 2017. 3

[54] Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He,
Limin Wang, and Yu Qiao. Unmasked teacher: Towards
training-efficient video foundation models, 2023. 6

[55] Kunchang Li, Yali Wang, Gao Peng, Guanglu Song, Yu Liu,
Hongsheng Li, and Yu Qiao. Uniformer: Unified trans-
former for efficient spatial-temporal representation learn-
ing. In International Conference on Learning Representa-
tions, 2021. 6

[56] Wenbo Li, Longyin Wen, Ming-Ching Chang, Ser Nam
Lim, and Siwei Lyu. Adaptive rnn tree for large-scale
human action recognition. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 1453–1461,
2017. 3

[57] Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: To-
wards action recognition without representation bias. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 513–528, 2018. 5

[58] Yinxiao Li, Zhichao Lu, Xuehan Xiong, and Jonathan
Huang. Perf-net: Pose empowered rgb-flow net, 2021. 3

[59] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. Mvitv2: Improved multiscale vision transformers

6654



for classification and detection. In 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 4794–4804, 2022. 6

[60] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding, 2019. 2, 6

[61] Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de
Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Frozen clip models are efficient video learners.
arXiv preprint arXiv:2208.03550, 2022. 2, 6

[62] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3202–3211, 2022. 2, 6

[63] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong
Wang, and Wanli Ouyang. Disentangling and unifying
graph convolutions for skeleton-based action recognition,
2020. 3

[64] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention, 2020. 5

[65] Diogo C. Luvizon, David Picard, and Hedi Tabia. 2d/3d
pose estimation and action recognition using multitask deep
learning, 2018. 1

[66] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-
jayanarasimhan, Oriol Vinyals, Rajat Monga, and George
Toderici. Beyond short snippets: Deep networks for video
classification, 2015. 2

[67] Bolin Ni, Houwen Peng, Minghao Chen, Songyang
Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang,
and Haibin Ling. Expanding language-image pretrained
models for general video recognition. arXiv preprint
arXiv:2208.02816, 2022. 2, 6

[68] Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Dual-
path adaptation from image to video transformers, 2023. 6

[69] Mandela Patrick, Dylan Campbell, Yuki M. Asano, Is-
han Misra, Florian Metze, Christoph Feichtenhofer, Andrea
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