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Abstract

Early object detection (OD) is a crucial task for the
safety of many dynamic systems. Current OD algorithms
have limited success for small objects at a long distance.
To improve the accuracy and efficiency of such a task, we
propose a novel set of algorithms that divide the image into
patches, select patches with objects at various scales, elab-
orate the details of a small object, and detect it as early as
possible. Our approach is built upon a transformer-based
network and integrates the diffusion model to improve the
detection accuracy. As demonstrated on BDD100K, our al-
gorithms enhance the mAP for small objects from 1.03 to
8.93, and reduce the data volume in computation by more
than 77%.

1. Introduction
Object detection (OD) plays a vital role in numerous

real-world applications, such as autonomous driving, and
robotics. Despite the proliferation of diverse algorithms for
this task, existing methods still face significant challenges
in early object detection, a crucial aspect enabling prompt
and proactive decision-making. In such scenarios, objects
in captured images are often significantly reduced in size
due to long distances. As illustrated in Fig. 1, when images
contain only a limited number of objects, and the perfor-
mance of object detection significantly deteriorates due to
insufficient data volume.

To address this challenge, we can exploit super-
resolution (SR) algorithms to reconstruct the higher-
resolution images, thereby augmenting the data available
for subsequent object detection models. SR is also a classic
problem in computer vision, boasting a plethora of solu-
tions tailored for this task. Recently, the diffusion models,
such as DDPM [13], have showcased remarkable capabili-
ties in image generation and demonstrated greater stability

Figure 1. (Left): Objects occupy only a small proportion of the
entire image in this example of BDD100K dataset. (Right): With
object pixels decreasing, the OD performance rapidly drops.

compared to generative adversarial networks (GAN) [10].
Moreover, research focusing on the application of Condi-
tional Diffusion Models (CDM) [14,30], for SR has yielded
notable advancements. Through the utilization of diffu-
sion models for high-resolution image generation, we can
achieve substantial enhancements in object detection per-
formance, particularly for datasets with a low object-to-
image ratio. However, diffusion models come with a sig-
nificant computational cost, which poses a challenge for
real-world applications like autonomous driving. From the
image example in Fig. 1, the holistic refinement of the im-
age results in a considerable computational burden on back-
ground pixels, leading to an excessive waste of resources
that does not yield any meaningful contributions to OD.

In this paper, we introduce a novel algorithm, named Di-
chotomized Patch Refinement (DPR), to tackle the afore-
mentioned problem. DPR leverages CDM to exclusively
reconstruct patches that encompass objects, employing a
Patch-Selector module for accurate patch classification.
While the task of directly localizing small objects presents
considerable challenges, discerning the presence or absence
of objects within patches proves to be a more feasible ap-
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proach. By leveraging the Patch-Selector module, we can
efficiently filter out irrelevant patches that do not contribute
to the subsequent OD task. This strategy significantly re-
duces the data volume, enabling the immediate generation
of refined images using CDM to greatly enhance object de-
tection accuracy. To facilitate the module’s implementa-
tion, we devise a hierarchical patch encoder inspired by the
structure of the Swin Transformer [22] to extract embed-
dings for individual patches. Furthermore, we incorporate
a patch classifier through the introduction of a classification
token, following a similar approach to ViT [8]. Moreover,
in line with our network’s hierarchical structure, we intro-
duce a pyramid patch class label to ensure an ample inclu-
sion of positive patches. Our experiments, conducted on the
BDD100K dataset, provide compelling evidence of DPR’s
efficacy and accuracy for early object detection.

To summarize, our key contributions are as follows:

• We design a Patch-Selector module, incorporating the
attention mechanism, to effectively sift desired patches
containing objects from images. Moreover, we intro-
duce a hierarchical architecture and employ a pyramid
loss function to further improve the selection process.

• By harnessing the capabilities of Conditional Diffu-
sion Models (CDM), we effectively refine solely the
selected patches, yielding enhanced performance in
object detection.

• By enlarging negative patches with interpolation, we
seamlessly combine all processed patches to form
complete images. Through comprehensive experi-
ments on both patches and entire images, we demon-
strate that our DPR achieves competitive early object
detection performance with 77.2% reduction of the
computation.

2. Related work
2.1. Diffusion Models for Image SR

Initially, ConvNets gained prominence in image super-
resolution [18, 23], particularly with the seminal work on
the SRCNN model [7]. However, the introduction of
generative adversarial networks (GAN) by Goodfellow et
al. [10] revolutionized the field, offering unprecedented
image generation capabilities. GAN-based SR methods
[5,16,17,19,34], have since become prevalent. These tech-
niques employ game theory-inspired competition between
a generator and a discriminator to drive iterative improve-
ments and generate high-quality images. Nonetheless, chal-
lenges related to training stability and model convergence
persist in GAN-based SR methods.

Instead, diffusion models [31] have demonstrated supe-
rior performance in image generation and exhibit enhanced

stability. The introduction of DDPM by Jonathanet al. [13],
has further popularized the use of diffusion models in the
field of image generation, displacing the reliance on GANs.
Additionally, recent research has focused on techniques for
fast sampling [11, 15, 24, 25, 36, 37]. DDIM [32] acceler-
ates the sampling process by 10× to 50× through the in-
troduction of a more efficient class of implicit probabilis-
tic models. Given the remarkable performance of diffusion
models in image generation, several studies have explored
their application in SR by leveraging CDM. For instance,
Saharia et al. proposed SR3 [30], which demonstrates im-
proved SR performance based on CDM. Similarly, Jonathan
et al. introduced Cascaded Diffusion Models [14], which
further advances the field of SR.

2.2. Object Detection (OD)

Traditional methods for OD, such as Faster RCNN [9],
primarily rely on convolutional layers. The introduction of
anchor boxes in Faster R-CNN, a two-stage OD algorithm,
has significantly transformed conventional methodologies.
Consequently, numerous convolution-based methods, such
as YOLO [2,26–28], Mask R-CNN [12], have emerged and
continually improved performance in OD.

Furthermore, the attention mechanism [33], initially in-
troduced in ViT [8] for image classification, has been
widely adopted in various computer vision tasks, includ-
ing OD. This is primarily due to the transformer’s ability
to model long-range dependencies. Carion et al. proposed
DETR [3], which formulates OD as a direct set predic-
tion problem and employs a transformer encoder-decoder
network. DINO [4], introduced by Caron et al., lever-
ages self-supervised learning to develop a new transformer
network based on ViT. To reduce computation, Liu et al.
proposed Swin Transformer [21, 22], which incorporates a
novel window-based self-attention mechanism. Inspired by
BERT [6] in natural language processing, Bao et al. pre-
sented BEiT [1] for computer vision applications.

3. Methodology
As illustrated in Fig. 2, DPR comprises three cru-

cial modules: Patch-Selector, Patch-Refiner, and Patch-
Organizer. The Patch-Selector module is responsible for ex-
tracting patch features and performing classification. Sub-
sequently, the Patch-Refiner module elaborates on the pos-
itive patches, leveraging CDM to reconstruct them to a
higher resolution, thereby enhancing object detection preci-
sion. Lastly, to completely show the efficiency and accuracy
of our proposed method, we employ inexpensive interpola-
tion techniques to enlarge the negative patches and organize
all patches into entire images to facilitate a direct compari-
son with the original images. In this section, we provide a
detailed discussion of all the modules, and outline the spe-
cific training procedures of DPR, which are presented in
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Figure 2. Overall architecture of DPR (Dichotomized Patch Refinement). By dividing all patches of the original image into two groups
based on whether it contains objects or not before the image reconstruction, we leverage CDM to process only positive patches to reduce
computation and improve the performance for the subsequent OD task since negative patches don’t contribute to OD. There are two major
components for training: Patch-Selector module with learnable parameters θ, and CDM with parameters ϕ.

Algorithm 1. Additionally, Algorithm 2 elucidates the sam-
pling and testing processes.

Algorithm 1 Training with DPR

Input: Image data Iin ∈ RHin×Win×Cin , patch class
labels y1 ∈ RH

2 ×W
2 ×1, y2 ∈ RH

4 ×W
4 ×1, y3 ∈

RH
8 ×W

8 ×1, and hyper-parameters α1:T

1: Randomly initialize Patch-Selector model parameters
θ, and CDM model paramters ϕ

2: for each epoch t = 1, 2, ... do
3: r1, r2, r3 = fθPE

(Iin) ▷ Patch encoding with TL
4: si = softmax(fθPC

(ri)) ∀i ∈ 1, 2, 3 ▷ Patch
classification

5: LP (θ) =
∑3

i=1(−yilog(si)−β(1−yi)log(1−si))
▷ Pyramid loss

6: θ ← θ − ηθ∇θLP (θ) ▷ Update Patch-Selector
model

7: end for
8: s = max(s1, s2, s3) ▷ Aggregation of predictions
9: z = Iin × s ▷ Positive patch selection

10: repeat
11: (z,x0) ∼ p(z,x0) ▷ Sample positive patch data
12: t ∼ Uniform({1, . . . , T})
13: ϵ ∼ N (0, I)
14: ϕ← ϕ−ηϕ∇ϕ∥fϕ(z,

√
ᾱtx0+(1− ᾱt)ϵ, t)−ϵ∥2

▷ Update CDM model
15: until converged

3.1. Patch-Selector

Network architecture. This module splits the image
into 8 × 8 patches non-overlapping and classifies them to

determine if it contains objects or not. Specifically, as de-
picted in Fig. 3, the input image, Iin ∈ RHin×Win×Cin

(Hin, Win, and Cin are the input image height, width and
the number of channels), undergoes a hierarchical patch en-
coder comprising multiple Transformer Layers (TL). This
process generates patch representations at three different
scales, namely r1 ∈ RH

2 ×W
2 ×2C , r2 ∈ RH

4 ×W
4 ×4C ,

r3 ∈ RH
8 ×W

8 ×8C , as the following equations,

r1 = TL1(TL0(EL(Iin))) (1)
r2 = TL2(r1) (2)
r3 = TL3(r2) (3)

where TLi denotes the ith Transformer Layer, and EL is
the embedding layer at the beginning of the network. H , W
depend on the patch size.

Our TL is similar to the Swin Transformer structure,
and it consists of three components: one feature merg-
ing layer for representation down-sampling, one window-
based multi-head self-attention block (W-MSA), and an-
other shifted window-based multi-head self-attention block
(SW-MSA) to capture information across windows. Specif-
ically, W-MSA splits the input feature into n ∗ n non-
overlapping windows, where n depends on the window size
and feature size, and captures global contextual information
within each window. W-MSA solely considers connections
within each window, potentially missing out on connections
across windows. To address this limitation, SW-MSA shifts
the feature by the half of window size before partitioning to
enable the cross-window connections.

Specifically, the features r1, r2, and r3 correspond to
patches of size 2Hin

H × 2Win

W , 4Hin

H × 4Win

W and 8Hin

H ×
8Win

W , respectively. To classify these patches, we compute
the cross-attention with the learnable classification token,
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Figure 3. The design of Patch-Selector Module. (a) Utilizing
a hierarchical architecture encoder, input images are embedded
into features at three different scales. Subsequently, patches within
these features undergo classification and aggregation to form the
final output. (b) Each Transformer Layer (TL) includes a feature
merging block and multiple window-based self-attention blocks.

denoted as c. The computation can be expressed as follows:

Qi = riW
q
i , Ki = cW k

i , V i = cW v
i ∀i ∈ 1, 2, 3

(4)

Ai = softmax(
QiK

T
i√

d
)V i ∀i ∈ 1, 2, 3 (5)

where W q
i , W k

i , and W v
i are linear layer weights for query,

key, and value matrices.
Next, the features are passed through a multi-layer per-

ceptron (MLP) and a softmax layer to predict the class for
each patch as follows,

si = softmax(MLPi(Ai)) ∀i ∈ 1, 2, 3 (6)

where MLPi denotes the output layer for the ith feature
embeddings.

Accordingly to the network structure, we introduce a
pyramid label that contains, y1 ∈ RH

2 ×W
2 ×1, y2 ∈

RH
4 ×W

4 ×1, and y3 ∈ RH
8 ×W

8 ×1, to supervise the training
of Patch-Selector module by assigning positive labels to the
patches that contain objects.

To minimize information loss, the final prediction is de-
rived by selecting the maximum value from three scales af-
ter up-sampling to the same size with bilinear interpolation,
ensuring the retention of a greater number of patches.

Algorithm 2 Sampling and Testing with DPR

Input: Image data Iin ∈ RHin×Win×Cin , and hyper-
parameters α1:T

1: z = fθ(Iin) ▷ Partition to patches and classify
2: for each patch z1, z2, ...,zK do
3: if z is positive then
4: Sample xT ∼ N (0, I)
5: for t = T, ..., 1 do
6: ϵt ∼ N (0, I) if t > 1, else ϵt = 0
7: xt−1 ← 1√

αt
(xt − 1−αt√

1−ᾱt
fϕ(z, x̃t, t)) +

βtϵt ▷ Remove the noise iteratively
8: end for
9: else

10: x0 = Enlarge(z) ▷ Enlarge negative patches
11: end if
12: end for
13: Randomly initialize OD model parameters θ′

14: for each epoch t = 1, 2, ... do
15: Update model θ′ with x0

16: end for
17: Output the prediction of object classes and bounding

boxes with trained model, and evaluate mAP

Loss Function. The loss for each patch is computed us-
ing cross-entropy. To incorporate predictions from the hi-
erarchical network at three scales and reduce false negative
(FN) predictions, we introduce a combined loss formula-
tion. This formulation involves the weighted sum of indi-
vidual losses and can be expressed as follows

LP =

3∑
i=1

(−yilog(si)− β(1− yi)log(1− si)) (7)

where β is a hyper-parameter to adjust weight, and we
set it to 0.01 in our experiments.

3.2. Patch-Refiner

Depending on the patch class, different refinement ap-
proaches are employed. For positive patches, the condi-
tional diffusion models (CDM) reconstructs them with finer
details. Conversely, negative patches are scaled up using
simpler up-sampling methods, such as bilinear interpolation
(BI), in the Enlarge module.

CDM. Diffusion Models consist of a forward process
that progressively corrupts the input data over T timesteps
by keeping adding Gaussian noise, and a reverse process to
restore the original data from the final corrupted data. And
for CDM, the reconstruction of the corrupted data is per-
formed based on an additional signal that is related to the
original data, such as a lower-resolution image in the con-
text of super-resolution (SR).
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Let z ∈ RHp×Wp×Cp (Hp, Wp, Cp are the patch
height, width, and the number of channels) denote the low-
resolution patches we obtain from the Patch-Selector mod-
ule while x0 ∈ R8Hp×8Wp×Cp is high-resolution data.
Then, the forward process of our CDM is adding Gaussian
noise to x0 over T steps as follows,

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (8)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (9)

= N (xt;
√
ᾱtx0, (1− ᾱt)I) (10)

where α1:T , β1:T are hyper-parameters, subject to 0 <
αt < 1, αt + βt = 1, and ᾱt =

∏t
i=1 αi. They deter-

mine the variance of the noise added at each iteration. And
ᾱt should be small enough, so that the final signal xT we
acquire after the forward process is roughly also a standard
Gaussian noise.

To gradually recover the original data from the final
noise, the CDM model fϕ(z, x̃t, t) is trained to predict the
added noise in each step with the input of low-resolution
image z, noisy image x̃t, and t, where the noisy image at
timestep t could be obtained from Eq. (10):

x̃t =
√
ᾱtx0 + (1− ᾱt)ϵ, ϵ ∼ N (0, I) (11)

And for the reverse sampling process, the model recovers
the high-resolution patch x0 from xT conditioned on z with
the following equations,

pϕ(xt−1|xt, z) = N (xt−1;µϕ(z, x̃t, t), σ
2
t I) (12)

We set the variance σ2
t I to βt, and we could compute the

mean with the estimated noise from CDM model as follows,

µϕ(z, x̃t, t) =
1
√
αt

(xt −
1− αt√
1− ᾱt

fϕ(z, x̃t, t)) (13)

Finally, the iterative elaboration process is done with the
following equation:

xt−1 ←
1
√
αt

(xt −
1− αt√
1− ᾱt

fϕ(z, x̃t, t)) + βtϵt (14)

where ϵt ∼ N (0, I)
Enlarge. In real-world applications, we discard all neg-

ative patches since they do not contribute to the subsequent
object detection (OD) task. However, this approach can
compromise the integrity of the dataset labels, which in turn
affects the fairness of experimental comparisons. To en-
sure a fair evaluation and demonstrate the effectiveness of
our approach, we perform scaling on these negative patches
using bilinear interpolation (BI), nearest interpolation, or
bicubic interpolation, thereby matching them to the same
resolution as the positive patches.

3.3. Patch-Organizer

By leveraging this module, we combine all the refined
positive and negative patches based on their original loca-
tions (i.e., the indices of the x-axis and y-axis in the out-
put of Patch-Selector), resulting in the generation of en-
tire images to provide further evidence of the advancements
achieved by our DPR algorithm, accompanied by reduced
computational requirements.

4. Experiments
4.1. Dataset and Training Details

As described in Sec. 1, we evenly partition the
BDD100K dataset [35] based on the ratio of object pix-
els into several subsets to test OD, and we select a sub-
set of small ratio to simulate the early detection scenario,
where distant objects are typically smaller in size. Our algo-
rithm primarily focuses on enhancing OD performance for
the subset with the longest distance, which is named FBDD
and consists of images with an object pixel ratio of less than
1.5%. And we select another subset named NBDD, which
contains larger objects with a foreground pixel ratio ranging
from 15% to 23%, for model fine-tuning. Both subsets con-
tain around 4000 training images and about 1000 validation
images with the original size of 1280× 720.

For Patch-Selector optimization, we resize all the images
to be 1024× 1024 before inputting them to the model. The
first embedding layer utilizes a kernel and stride size of 16,
with a channel number of 96. We set the learning rates to
0.001 for the convolution-based network and 0.00001 for
the attention-based network. For each TL, the depth, win-
dow size, and attention head number are set to 2, 7, 3. To
align with the hierarchical network structure, we introduce a
pyramid label that encompasses three scales: 8×8, 16×16,
and 32× 32. The patch selection results from the three dif-
ferent scales are then aggregated to a output resolution of
8 × 8. Once this module gets optimized, input images are
resized to be 128× 128 or 64× 64 for training.

We mainly train the CDM to upscale the 16×16 patches
to 128×128 in 1000 timesteps for OD evaluation, although
our results show that it also performs well for larger reso-
lution reconstruction. The network architecture is based on
U-Net [29], with parameters similar to SR3 [30]. We con-
duct OD testing using YOLOv8, a state-of-the-art OD algo-
rithm. We experimented with two NVIDIA A6000 GPUs.

4.2. CDM for Patch Refinement

We perform an extensive evaluation of the CDM for
patch refinement, comparing its performance against BI. In
Tab. 1, we present the results for 4 different scales with BI
or CDM. In all cases, the high-resolution output is 128×128
given various input low-resolution patches. We evaluate
metrics such as Peak Signal-to-Noise Ratio (PSNR) and
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Patch resolution Scale PSNR↑ SSIM↑ FID↓ KID↓ mAP↑
BI CDM BI CDM BI CDM BI CDM BI CDM

4× 4 ×32 18.06 21.64 0.7560 0.9045 388.70 16.32 0.4624 0.0111 1.50 10.30
8× 8 ×16 19.96 23.76 0.8390 0.9384 276.7 8.399 0.3155 0.0033 3.48 9.14
16× 16 ×8 22.33 24.85 0.9044 0.9518 161.7 8.120 0.1707 0.0032 5.89 12.00
32× 32 ×4 25.61 22.00 0.9557 0.9160 51.12 23.72 0.0440 0.0147 11.20 13.80

Table 1. Results of patch refinement. The patches generated by CDM could provide better features for image classification and OD.

Structural Similarity Index (SSIM), which measure the sim-
ilarity between the generated patches and the ground-truth
high-resolution patches. Additionally, we employ Fréchet
Inception Distance (FID) and Kernel Inception Distance
(KID) to compare the features extracted from these patches
for image classification. Furthermore, we measure the mean
Average Precision (mAP), which serves as the evaluation
metric for our primary objective, OD. Generally, the patches
generated by CDM outperform those from BI across all
metrics. Despite that 32 × 32 patches from BI exhibit a
higher similarity to the original patches, as indicated by the
results of PSNR and SSIM, their features for image classifi-
cation and OD are still inferior to those generated by CDM.
The superiority of CDM is explicitly demonstrated with the
mAP comparison in Fig. 4a.

In addition, we create some new datasets for OD evalua-
tion by gradually substituting the original high-resolution
patches with the processed patches obtained from BI or
CDM. As shown in Fig. 4b, the OD performance exhibits
a more pronounced improvement with an increased propor-
tion of processed patches from CDM. This observation un-
derscores the notable advantages offered by CDM.

4.3. Patch Selection

Architecture of Patch-Classifier. While we have estab-
lished the viability of CDM for SR, the challenge lies in ac-
curately selecting patches containing objects. Achieving su-
perior performance in the subsequent OD task requires care-
ful consideration of the true positive rate (TPR) during the
patch selection stage, as any irreversible information loss at
this stage can severely degrade the detection performance.
To address this, we utilize multiple transformer layers as
the encoder to generate patch embeddings. And our pri-
mary focus is on the design of the Patch-Classifier module,
which determines the presence of objects in each patch. The
impact of the adopted techniques in the design of the Patch-
Selector Module is presented in Table 2. Initially, we em-
ployed convolution layers (Conv-C), which yielded satis-
factory results on NBDD dataset. However, by introducing
a learnable token and utilizing cross-attention, we achieved
even better performance (Attention-C). Moreover, by incor-
porating a hierarchical network structure and pyramid label
(Attention-PC), we observed further improvements across

(a) OD results by refining patches of various scales.

(b) OD results by refining a different number of patches.

Figure 4. (a) CDM performs better for refining images. (b) More
processed patches by CDM provide better performance.

all metrics, particularly in terms of TPR. Comparatively,
convolution-based networks also benefited from the hierar-
chical structure and pyramid label (Conv-PC), but they were
unable to match the performance of the attention-based.

Aggregation and pyramid loss. The results in the sixth
row (Attention-AC) of Tab. 2 demonstrate that incorporat-
ing an aggregation block reduces information loss, as evi-
denced by the higher TPR. Furthermore, by modifying the
loss function to place greater emphasis on positive patches,
we observed further improvements in TPR, as shown in the
seventh row (Attention-WC). With our final Patch-Selector
architecture, we achieved a decent TPR for the FBDD
dataset, as indicated in the last row of the table.
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Method TPR (Recall) maxF IoU

Conv-C 0.7539 0.7983 0.6350
Attention-C 0.8700 0.8521 0.7192
Conv-PC 0.8277 0.8600 0.7297
Attention-PC 0.9084 0.8855 0.7459
Attention-AC 0.9511 0.8809 0.6499
Attention-WC 0.9720 0.6946 0.6283
FBDD 0.9101 - -

Table 2. After adopting all the techniques, our final architecture,
Attention-WC, performs the best. The last row is the result of
Attention-WC for FBDD dataset while others pertain to NBDD.

Model size. We explore different model sizes for the
Patch-Selector module, specifically using 4, 5, or 6 trans-
former layers. In Tab. 3, utilizing a network with only 4
transformer layers can achieve equivalent performance in
patch selection while reducing FLOPs to 5.01%.

Method TPR #Params FLOPs(B)

Attention-PC/6 0.8962 1103.99M 121.47
Attention-PC/5 0.8917 336.31M 27.03
Attention-PC/4 0.8472 119.71M 6.09
Attention-AC/6 0.9537 1103.99M 121.47
Attention-AC/5 0.9459 336.31M 27.03
Attention-AC/4 0.9423 119.71M 6.09

Table 3. Results for model size. Four Transformer Layers achieve
similar performance with much lower computation.

4.4. Comparison of OD Performance

To fully demonstrate the merit of our approach, we not
only detect objects from patches with bounding box labels
different from the original image due to patch partitioning
for OD performance comparison, but we also integrate the
entire images for detection. As we scale the 16×16 patches
to 128×128, we use the results obtained by directly feeding
the 16 × 16 patches into the OD model as the baseline for
patch-wise detection. We compare the performance of our
DPR with this baseline as well as other methods. Addition-
ally, since we have 8× 8 patches, the entire image is scaled
from 128 × 128 to 1024 × 1024. Similarly, we use the re-
sults of the low-resolution 128× 128 image as the baseline
for image-wise detection.

Patch-wise detection. Besides our approach, we gener-
ate high-resolution patches with another two methods, BI
and SR3 [30], for comparison. BI simply scales up all
patches to 128×128 using bilinear interpolation while SR3
is a conditional diffusion model (CDM) based on DDPM
that performs entire image super-resolution (SR). The PP

columns in Tab. 5 present the results when we feed only
positive patches to OD, which is the approach we adopt in
real-world applications. For BI and SR3, we assume that
they can perfectly select positive patches (i.e., TPR is 1).
The PP columns show our DPR performs the best.

To address the potential unfairness in the previous exper-
iments, we also evaluate OD with both positive and negative
patches, shown in the AP columns. As mentioned in Sec. 3,
negative patches of DPR are enlarged with BI. Additionally,
we conduct an experiment where all negative patches are re-
placed with black patches to simulate the removal of nega-
tive patches, denoted as DPR-B. DPR achieves comparable
performance to SR3 with significantly fewer average refined
patches of each image (14.59 on average versus 64). This
highlights the computational efficiency of our approach. In-
terestingly, DPR-B outperforms DPR, suggesting that the
selection results of our Patch-Selector module contribute to
OD. By excluding the negative patches, which may intro-
duce noise and confusion, our approach focuses solely on
the positive patches, leading to improved detection results.

Image-wise detection. Figure 5 shows the visual com-
parison of BI and our DPR after integrating patches. While
the overall generated images from DPR appear similar to
BI, the crucial patches containing objects exhibit finer de-
tails, indicating that only a small amount of data need to be
processed by CDM, leading to more efficient computation.

Quantitative results for OD are presented in Tab. 4. To
compare with another SR method, SwinIR [20], and main-
tain consistency, we align our evaluation with SwinIR’s set-
ting, upscaling images from 64×64 to 512×512. We show
the results of ground truth high-resolution images in the ta-
ble as the upper bound. SR3 can perform much better than
transformer-based SwinIR. DPR achieves the highest mAP
among all the methods, resulting in an improved mAP from
0.194 to 4.33, while DPR can enhance mAP from 1.03 to
8.93 when upscaling images from 128×128 to 1024×1024.

Efficiency of our approach. To trade off the computa-
tion and performance, we experiment with various thresh-
olds for patch classification when upscaling images from
64 × 64 to 512 × 512 in Tab. 6. The second row, yielding

Image Size Method mAP TPR Precision

512× 512 GT 7.48 0.106 0.309
64× 64 GT 0.194 0.017 0.009

512× 512

BI 0.732 0.024 0.235
SwinIR [20] 0.674 0.026 0.103
SR3 [30] 2.38 0.061 0.423
DPR(Ours) 4.33 0.078 0.457

1024×1024 DPR(Ours) 8.93 0.142 0.274

Table 4. The last row of 1024×1024 is upscaled from 128×128.
DPR performs the best for images-wise OD evaluation.
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Patch Size Method # Patch mAP mAP50 TPR Precision FLOPs
(B)PP AP PP AP PP AP PP AP

16× 16 - - 1.99 1.63 4.25 3.33 0.0493 0.0362 0.0818 0.0677 -

128× 128

BI 100% 2.82 2.37 5.59 4.46 0.0618 0.0382 0.2430 0.2910 34.41
SR3 [30] 100% 4.55 3.46 8.23 6.92 0.0843 0.0623 0.3170 0.3930 34.41
DPR 22.8% 5.12 3.45 9.05 6.82 0.0886 0.0606 0.1930 0.3870 7.85
DPR-B - - 3.54 - 7.82 - 0.0557 - 0.5200 -

Table 5. Results of patch-wise OD. PP denotes the experiments with only positive patches, and AP is tested for all patches.The third
column (# Patch) shows the ratio of reconstructed patches for each image. mAP is the primary evaluation metric for OD. Our DPR obtains
higher mAP with fewer patches refined.

Figure 5. The visual comparison of Bilinear interpolation and CDM. The resolution of all images is 1024 × 1024 generated from
128 × 128 input when each patch of the images is scaled up from 16 × 16 to 128 × 128. Within the red boxes, the enlarged key patches
from our DPR that contain objects exhibit finer details.

PS TPR # Patch mAP mAP50 Precision

0.9813 71% 4.65 9.56 0.399
0.8972 37% 4.33 8.96 0.457
0.6290 11% 2.53 5.75 0.463
0.2120 3% 2.53 6.12 0.422

Table 6. By selecting different thresholds to assign patches, the
second row achieves a comparable performance with 63% com-
putation reduction. PS TPR of 0.8972 means about 90% positive
patches are correctly selected by Patch-Selector (PS).

mAP of 4.33, stands out as the optimal choice, achieving
63% computation reduction.

For FBDD up-sampling from 128× 128 to 1024× 1024
with the same threshold, our PS module outputs only 22.8%
patches for CDM generation and OD, and the FLOPs of
PS are negligible compared to CDM, which means we save
77.2% computation compared to full-image generation, as
demonstrated in Tab. 5.

5. Conclusion
In this paper, we propose a novel Dichotomized Patch

Refinement algorithm (DPR) to efficiently enhance the
OD performance by selectively reconstructing the high-
resolution patches of images with conditional diffusion
models. With a hierarchical transformer-based network
and pyramid loss function, positive patches containing ob-
jects are accurately located. With patch-wise CDM, low-
resolution positive patches are significantly refined, thereby
improving the performance of the subsequent OD task. And
the experimental results on the BDD100k dataset show that
DPR effectively improves the mAP for early object detec-
tion from 1.03 to 8.93 with only 22.8% computation.
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