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Abstract

Retail photography imposes specific requirements on im-
ages. For instance, images may need uniform background
colors, consistent model poses, centered products, and con-
sistent lighting. Minor deviations from these standards im-
pact a site’s aesthetic appeal, making the images unsuitable
for use. We show that Stable Diffusion methods, as currently
applied, do not respect these requirements. The usual prac-
tice of training the denoiser with a very noisy image and
starting inference with a sample of pure noise leads to in-
consistent generated images during inference. This incon-
sistency occurs because it is easy to tell the difference be-
tween samples of the training and inference distributions.
As a result, a network trained with centered retail product
images with uniform backgrounds generates images with
erratic backgrounds. The problem is easily fixed by ini-
tializing inference with samples from an approximation of
noisy images. However, in using such an approximation, the
joint distribution of text and noisy image at inference time
still slightly differs from that at training time. This discrep-
ancy is corrected by training the network with samples from
the approximate noisy image distribution. Extensive exper-
iments on real application data show significant qualitative
and quantitative improvements in performance from adopt-
ing these procedures. Finally, our procedure can interact
well with other control-based methods to further enhance
the controllability of diffusion-based methods.

1. Introduction

Stable Diffusion [9] can generate high-quality, lifelike
images, and has opened up numerous innovative applica-
tions. Examples include creating new art, style transfer be-
tween pictures, and generating high-resolution images from
text. However many real applications require images to
meet specific design requirements. For example, product
images need consistent photographic standards so that re-
tail websites maintain uniform aesthetic appeal and are “on-
brand”. Even minor deviations can make images unusable.

The essential requirements for our application mirror
those of many other applications. Our application requires

a text-to-image generator where: (1) outputs reflect a gar-
ment description text accurately; (2) outputs are either a
garment image or a human model wearing the described
garment; (3) garments are not cropped, are centered,
and appear on a white background; (4) human models
are always depicted from foot to neck, stand in similar
poses, and appear on a neutral background; (5) out-
puts have consistent professional lighting and shading;
and (6) one text-to-image model can produce all desired
images and does not produce others. The first five re-
quirements ensure images are “on-brand” and the last is for
efficiency. Remarkably, Stable Diffusion [9] as currently
practiced cannot meet these requirements, but quite simple
changes result in a model that does.

We start from the observation that fine-tuning Stable Dif-
fusion [9] with product images on neutral backgrounds does
not produce a method that can generate product images on
neutral backgrounds (Fig. 1). This unexpected effect is
caused by a hiccup in the structure of the method. Current
training methods [5, 11] form a weighted sum of noise and
a base image (using a weight α), and a model is trained to
denoise the noisy image. At inference, one assumes that
a sufficiently noisy base image is indistinguishable from
noise and that the denoising process can be started with
pure noise. We show the assumption is true only for α much
smaller than those used in current practice, meaning that the
denoiser sees noticeably different distributions at train and
test times. Training Stable Diffusion [9] for very small α is
also challenging (see Supplementary).

A simple alternative is to initialize with a draw from a
distribution that represents the training distribution reason-
ably well and is easily sampled. While training, some in-
formation about the original image can be recovered from
the initial noisy sample, which at best is a blurry version of
the original image. This means that a heavily noised sam-
ple from a mixture of principal components model is an
acceptable approximation of the training distribution. We
show significant improvement results from using this as an
initial distribution without retraining Stable Diffusion [9]
– for instance, erratic backgrounds are replaced by neutral
backgrounds (see Supplementary). But these improvements
highlight another initialization problem: the joint distribu-
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tion between text and noisy image at training is misrepre-
sented by both standard noise initialization and our initial-
ization. We show that because our initialization is easily
sampled, it can be used in fine-tuning the denoiser, leading
to notable improvements in text-based control. Finally, we
show that our initialization techniques are easily integrated
with other controllability methods (e.g. ControlNet [14])
to provide more effective control for diffusion-based meth-
ods.

2. Related work
There is considerable research available on generating

specific concepts or subjects using diffusion-based meth-
ods. However, to the best of our knowledge, we believe
that we are the first to concentrate on creating specific im-
age distributions for images.

2.1. Object preservation and harmonization

There are works that learn specific objects and gener-
ate variations of those objects faithfully. Dreambooth [10]
fine-tunes a pretrained diffusion model to accurately gen-
erate new variations of a particular subject. Gal et al. [4]
invert objects into pseudo-words to attain personalized text
embeddings to create images of those objects. Other works
have enabled editing in the forward pass of diffusion models
without image-specific fine-tuning or inversion. Instruct-
Pix2Pix [2] takes an input image and generates a new im-
age based on text instructions. Yang et al. [13] proposes an
exemplar-based image editing model where the reference
image is semantically transformed and harmonized into an-
other image. Finally, Edward et al. [6] adapts the language
models to generate specific objects by adding trainable pa-
rameters of the language embeddings to learn new concepts
from a dataset. This allows the adaptation of new words and
concepts by fine-tuning the newly added parameters instead
of the entire generation model.

These studies primarily focus on preserving target ob-
jects and generally struggle to control non-target areas if no
conditions exist in those areas. Unlike these approaches,
our paper emphasizes stabilizing the image distributions
throughout the diffusion process. Our proposed method can
effectively preserve the properties of the entire image, not
just the target objects.

2.2. User-defined controllablility

Many of the works mentioned above are text-guided, in
which users provide a text prompt to control and edit im-
ages. However, language-guided manipulations often do
not generate images satisfying users’ requirements. CLIP
features [8] leverage the representations of user-provided
images to improve the diversity of the output results.
Region-based image editing methods [1, 3] treat the task as
a conditional inpainting task with a mask highlighting the

regions of the images that needed to be edited while pre-
serving non-target areas. To enhance task-specific control
of diffusion models, ControlNet [14] adds an additional in-
put condition (e.g. edge maps, segmentation masks, key-
points, etc.) alongside text prompts to manipulate image
generation.

While these methods allow users to control target areas
in the images by adding additional conditions, they still of-
ten fail to maintain image distributions. This failure is due
to inconsistencies in the initialization process during train-
ing and inference. In Sec. 4.4, we show that combining
our method with ControlNet [14] can strengthen the con-
trol abilities of diffusion models and stabilize the output
(Fig. 5).

2.3. Image-to-Image Translation

Finally, Stable Diffusion [9] is often applied to image-to-
image translation applications by choosing a starting image
and generating variations from the image initialization. The
resulting images have significant similarities to the initial
image’s colors and contours. On the other hand, other meth-
ods use DDIM Inversion [11] to find initial noise vectors to
restore the original image during diffusion to apply image-
to-image translation. In Tune-A-Video [12], the authors use
DDIM Inversion to control the consistency of frames and
the contours of objects. In Null-text Inversion [7], DDIM
Inversion is used to create images similar in appearance
to the original input, enabling users to edit specific words
while preserving the objects of the original image.

In these works, reference images are used to generate
variations of that reference image. In contrast, we demon-
strate a sample from an approximate noisy image distribu-
tion significantly changes the behavior of diffusion-based
methods because the method experiences similar samples
from the training distribution at inference time. Further-
more, we show that using the right starting initialization
during both training and inference is essential for consis-
tently generating entire image distributions, not just for
maintaining the features of a specific reference image.

3. Method
Current literature on Stable Diffusion [9] has assump-

tions at inference time that appear inconsequential, but we
show these assumptions have significant consequences. We
demonstrate substantial improvements in resolving these er-
rors at inference time.

3.1. Background

Stable Diffusion [9] is trained to recover an image x0 by
denoising a noisy image xt at timestep t ∈ [0, T ]. At the
t’th timestep, the denoiser is presented with

xt =
√
αtx0 +

√
(1− αt)ϵt (1)
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where ϵt ∼ N (0, I) and αt is the cumulative product of
scaling at each timestep t (refer to DDIM [11]). Following
the training procedure from [11], a denoiser f predicts the
added noise ϵ̂t = f(xt, t, e; Θ), where f is parameterized
by Θ and takes in noisy image xt, timestep t, and condi-
tional encoding e. We write x̂0 for the predicted ground
truth image derived from removing the predicted noise ϵ̂t
from xt. Our loss is

L = E[||ϵt − ϵ̂t||22] (2)

From Eq. 1, if we have the predicted ϵ̂t and the noisy
image xt, we can derive the predicted ground truth image
x̂0 with

x̂0 = (xt −
√
(1− αt)ϵt)/

√
αt (3)

3.2. Inference Assumption

During training, we have ground truth image x0 ∼
P (images) and initial noisy image xT ∼ PT (from Eq. 1).
However, at inference time, we do not have the ground truth
image x0 and must supply an alternative initialization xinit.
Following [11], it is usual to argue that for sufficiently small
αT , xT should be very similar to N (0, I). Hence, during in-
ference, a common approach is to sample our initialization
xinit ∼ N (0, I).

However, if αT is not small enough, then xT has infor-
mation about x0 that the network could recover and utilize
for denoising. Pure noise as initialization may not behave
as expected for two reasons: (1) denoising networks are
trained on noticeably different data distributions than what
they see at inference time and (2) denoising networks may
extract information about x0 from xT to denoise xT . If this
is true, reliable inference procedures might use something
other than N (0, I).

We show values of αT in many pretrained models may
indeed be too large. In Fig. 1, we compare the perfor-
mance of a Stable Diffusion [9] fine-tuned to make images
of models and garments on two different initializations. In
Fig. 1b, we initialize xinit ∼ N (0, I) during inference,
and in Fig. 1c, we initialize with xinit = xT during infer-
ence using Eq. 1, where x0 is the ground truth image from
Fig. 1a. Different initializations have significantly differ-
ent results, but more importantly, notice the network takes
obvious hints from the ground truth image x0 (in Fig. 1c).

For values of αT that are not small enough, it is pos-
sible to reliably distinguish between samples from PT and
N (0, I) using elementary methods. For xinit ∼ N (0, I) to
be hard to distinguishable from xT ∼ PT , we must have

αT < O(
1

d
), (4)

where d = H × W × C is the dimension of the sampled
image. Meeting this constraint is difficult as 1/d is signifi-
cantly smaller than current values of αT . The key point is

"dresses, day dresses, allbody, blue 
cotton embellished strapless denim 
dress from area featuring crystal 

embellishment, strapless, concealed 
front fastening, rear patch pocket 

and frayed edge, cotton"

"coats, single breasted coats, 
outerwear, try out a captivating look 
with this pale pink coat from roberto 

cavalli of course, in the brand's 
signature style, ......"

"tops & tees, tops, tops, crepe, no 
appliqués, floral design, round collar, 

sleeveless, no pockets, 100% silk"

"tops & tees, sweatshirts, tops, 
sweatshirt fleece, brand logo, 

contrasting applications, solid colour 
with appliqués, hooded collar, long 
sleeves, single pocket, french terry 

lining, large sized, ......"

F* F* F* M*

F† F† F† M†

(a) Garment + Model + Text Dataset

F* F* F* M*

F† F† F† M†

(b) DDIM Training + Inference

F* F* F* M*

F† F† F† M†

(c) DDIM Training + Control Inference (xstart = x0)

Figure 1. Despite training on images with properties (1)-(5), nor-
mal diffusion-based training and inference lead to unexpected re-
sults. (a) shows sample sequences from our garment dataset. (b)
shows standard fine-tuning and inference results with Stable Dif-
fusion [9] do not generate the same distribution of images despite
being trained on images from (a). The prompts are taken from
training data, where we expect the best results. To show that this
is not a training error, in (c), we set a control experiment by chang-
ing xstart (Eq. 10) to the training image shown in (a). The gen-
erated images match the training distribution, indicating that ini-
tialization information strongly influences results. (F*: ”female
garment, no person, white background”; M*: ”male garment, no
person, white background”; F†: ”female person wearing garment”;
M†: ”male person wearing garment”)

that spatial averages of images have strong properties and
will be perceptible even at small αT .

Set a = 1
d1 where 1 is the 1-vector of size d. Then, we

can write

EPT
[a · xT ] =

√
αTEP (images)[a · x0] =

√
αTµ ̸= 0, (5)

where µ = EP (images)[a · x0] is the average of images.
Simple experiments show that µ is non-zero, and different
sets of images can have different values of µ (e.g., white
background, people in similar poses, etc.). From Eq. 5, a ·
xT has mean µT =

√
αTµ and variance σ2

T = αTσ
2 +
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(1−αT )
d . But for xinit ∼ N (0, I), a · xinit has mean 0 and

σ2 = 1/d.
Hence, the network is presented with samples from two

distributions, N (µT , σ
2
T ) during training and N (0, σ2) dur-

ing inference. For the distributions to be difficult to distin-
guish, we want µT /σ and µT /σT to be small. We have

(
µT

σ
)2 = dαT (µ)

2, (6)

and

(
µT

σT
)2 =

(
√
αTµ)

2

αTσ2 + (1− αT )
1
d

=
dαTµ

2

αT (σ2d− 1) + 1
(7)

Consequently, both Eq. 6 and 7 are small if αT is less
than 1/d or smaller, giving us Eq. 4.

Practical numbers are d = 64 × 64 × 4 = 16384 and
αT = 0.0047; but 0.0047 ≮ 0.000061, hence αT is not in
the right range (Eq. 4). This indicates that a denoiser net-
work f could tell the difference between the initialization
samples used in training and those used at inference. If it
can tell the difference, different behaviors between training
and inference are possible. Fig. 1 demonstrates the network
actually behaves differently for samples with these different
distributions.

One solution is to train with a smaller αT . However,
training with smaller αT requires scaling down αt for many
timesteps, which leads to more difficult training as more
noise is added (see Supplementary). We show that approx-
imating P (images) offers a more efficient and reliable so-
lution.

3.3. PCA-K Offset Inference

Our procedure “PCA-K Offset Inference” initializes in-
ference with:

xinit =
√
αTxstart +

√
1− αT ϵT , (8)

where xstart is sampled from a distribution Q that approx-
imates P (images). Q does not need to be a particularly
strong approximation of P (images) because a large mag-
nitude of noise is added in xT . Because this noise is i.i.d.
Gaussian noise, we expect that the information the network
can extract about xstart from xinit is a heavily smoothed
version of xstart. Hence, we need a distribution model that
is easy to sample, reasonably approximates blurry images,
and can handle multiple classes.

PCA-K Offset Inference uses a mixture of normals for
Q, where each normal is derived from Principal Component
Analysis (PCA) of images of its class c. PCA is known to
be an effective description of blurred images. K represents
the number of principal components. For each class c in our
dataset, we model an image as

xc
R = µc +

K∑
i=1

ξipi (9)

where ξi ∼ N(0, λi), pi are orthonormal principal com-
ponents, and µc is the mean image of class c. Write xR

for a random image drawn from an R principal component
model. Then setting xstart = xc

R, our initialization be-
comes:

xinit =
√
αTx

c
R +

√
1− αT ϵT (10)

We call this very useful case where R = 0, xstart is the
class mean µc, “Mean Offset Inference”.

3.4. PCA-K Offset Training

While PCA-K Offset Inference allows the inference pro-
cedure to mimic the training procedure much more closely,
we still expect operating conditions to differ. Our approxi-
mation may not exactly match the distribution used in train-
ing. In particular, our approximation may not preserve the
delicate relationship between the ground truth image x0 and
the text encoding e supplied during training. Fig. 1 shows
improvements by using an approximate distribution during
inference time that was trained as usual, but further im-
provements are available. At training, the network sees a
noisy version of an image and models a complex relation-
ship between image and text encoding. But at inference, our
network will be presented with a text encoding e and a sam-
ple xstart from the initial distribution, which has not been
conditioned on e. We cannot guarantee an approximate dis-
tribution can preserve those relationships. We can, however,
use the same approximate distribution during training so
that the network experiences the same distribution at train
time and test time. This is a significant advantage of a Q
that is easy to sample.

We use xinit from Eq. 8 in place of the initialization xT

in Eq. 1 to resemble the desired start point for image x0.
This allows the network to train and infer from the same
distribution for the first step of the diffusion process:

xnew
T =

√
αTxstart +

√
1− αT ϵT (11)

First, we want the denoiser to recover the ground truth im-
age x0 from xnew

T . So, we alter the noise objective to

ϵnewT = (xnew
T − x0

√
αT )/(

√
1− αT ) (12)

Second, we want to skip timesteps (for computation effi-
ciency, as in DDIM’s [11]), so this change must be applied
to multiple timesteps. Let S be the number of skips per
timestep. Then, we apply the mean offset training to all
timesteps within the first skip step to guarantee the first skip
step is trained with the mean offset initialization. Hence, we
alter Eq. 1 and Eq. 12 for t ≥ T − S to

xnew
t =

√
αtxstart +

√
1− αtϵt (13)

and
ϵnewt = (xnew

t − x0
√
αt)/(

√
1− αt) (14)
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Thus, our final loss is a combination of Eq. 2 and the new
noise objective from Eq. 14:

Lnew =

{
E[||ϵt − ϵ̂t||22] if t < T − S

E[||ϵnewt − ϵ̂t||22] if t ≥ T − S
(15)

During training, we project a ground truth image x0 with
class c into xc

K and set xstart = xc
K from Eq. 9, giving

our proposed “PCA-K Offset Training” procedure. Set-
ting K = 0 gives us xK = µc, which is simply just initial-
izing xstart = µc and is our “Mean Offset Training” pro-
cedure. We find Mean Offset Training works best compared
to higher K values and is much simpler in practice (see Sup-
plementary). As a result, we use Mean Offset Training for
results in the main text for the sake of simplicity.

4. Experiments and Results

In these experiments, we use data collected from re-
tailers that follow properties specified in Sec. 1 (details in
Sec. 4.1). We show PCA-K Offset Inference behaves bet-
ter because the initialization is similar to the training dis-
tribution in the initial denoising timesteps (Sec. 4.2). We
show sampling a bad initialization from PCA-K can dam-
age the relationship between text and initialization during
inference because the operating conditions are still differ-
ent (Sec. 4.2 and Fig. 3). We show that incorporating our
PCA-K Offset Training procedure fixes this issue (Sec. 4.3
and Fig. 4). Finally, we show other control methods expe-
rience the same initialization problem, and our procedures
can be easily combined with other methods to provide fur-
ther control in generation (Sec. 4.4).

4.1. Dataset

We collect over a million image pairs of retailer garment,
garment on model, and garment text description triplets
(Fig. 1a). We are given one text prompt corresponding to
a garment image and a model wearing that garment. All
training data triplets satisfy properties (1)-(5) described in
Sec. 1. Our task is to generate images of garments and
fashion models wearing garments that satisfy all proper-
ties (1)-(6). To distinguish between generating garments
and models wearing garments, we prepend the caption with
”male/female garment, no person, white background” (de-
noted with M* and F*, respectively) for generating gar-
ments and ”male/female person wearing garment” for gen-
erating human models (denoted with M† and F†, respec-
tively).

For inference, we collect 24 different freeform text de-
scriptions of garments by asking fashion designers to de-
scribe diverse garment descriptions (see Supplementary).
These are fictional garment descriptions used to test the gen-
eralizability of our text-to-image model.

t = 950 t = 750 t = 550 t = 350 t = 150 t = 0

DDIM training + inference

DDIM training + PCA-3 offset inference (ours)

Text prompt: "sheer pale pink organza bow collar bomber- style jacket with lace detailed 
edges, oversized puff sleeves, bow accent pockets, and a lace sailor collar"

Initialization

Figure 2. Intermediate outputs for a S = 20 DDIM training pro-
cess are visualized to show the first step of the diffusion process
is out of distribution for standard DDIM training + inference. The
top two rows show the intermediate outputs when initializing with
noise (DDIM inference). The bottom two rows show the interme-
diate outputs when projecting a gray sweater with PCA-3 Offset
Inference. Rows 1 and 3 show the noisy image xt and rows 2 and
4 show the predicted x̂0t at each time step t. We can see from
row 2 that the first predicted x̂0 introduces a dark, non-uniform
background that is propagated throughout the process, whereas in
row 4, the predicted x̂0 is already close to the desired distribution,
making the diffusion process is much more stable.

4.2. DDIM Finetuning with PCA-K Offset Inference

To set a baseline, we fine-tune sd-v1.5 [9] on our dataset
and show results from different initializations in Fig. 1. We
fine-tune for 50,000 steps on a batch size 16 and learning
rate 1e-5. We use a set total number of timesteps T = 1000
for training and skip timesteps S = 50 for inference (i.e.,
20 total timesteps for inference). We indicate the standard
training and inference procedure from [11] as DDIM train-
ing and DDIM inference, respectively.

Different inference initializations have qualitatively
different effects. Fig. 1b shows that if we initialize with
noise (DDIM inference), none of the generated images re-
spect properties (1)-(6) despite being fine-tuned on images
with those properties. These images are not curated; gen-
erated images hardly ever show isolated garments or mod-
els. Furthermore, the text prompts used for inference were
taken from the training data, where we expect the best be-
havior. To show that this is not a training bug, we set xstart

in Eq. 8 to the ground truth dataset images shown in Fig. 1a.
The fine-tuned network can now generate images that sat-
isfy all our desired image properties (Fig. 1c). This indi-
cates that xstart in the initialization heavily impacts the de-
noising process, and the assumption that N (0, I) is close
enough to PT has clear implications during inference (us-
ing the actual ground truth is not the issue here; below and
Fig. 3).
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"blue shirt with white stripes gold 
buttons and mao collar"

"black cotton flared pants with sheer 
dark grey layer"

"low waisted dark wash jeans with 
distressed knees and flared bottoms"

"sage green corset top with silk 
ribbon and no sleeves with a cropped 

length"

"silk long tailored straight leg 
trousers in dark pink with matching 

ostrich feathers at the hem"

"lilac ostrich leather pleated micro 
mini skirt with a matte finish and 

beaded silver details"
Initialization

M*

M*

M† F† F† F† F† F†

F* F* F* F* F*

F* F* F* F* F*

M* F* F* F* F* F*

M† F† F† F† F† F†

M† F† F† F† F† F†

PCA-0 (Mean) 
Offset

PCA-3 
Offset

Figure 3. We show applying our PCA-0 and PCA-3 Offset Inference on DDIM Training can significantly improve generating desired image
properties but is strongly biased by the sampled initialization xstart. This leads to some undesirable artifacts. Rows 1 and 2 show PCA-0
occasionally generates non-white backgrounds for garments due to faint sleeves in the mean image - violating property (3). In rows 3-6,
generated images are strongly influenced by the color and shape of xstart and “...black cotton flared pants...” are generated to be white,
“...tailored straight leg trousers...” are generated as shorts, etc. This violates (property (1)) as the generated images do not respect the text
and further indicate that xstart strongly influences the denoiser. Descriptions are freeform text from fashion designers.

Visualizing the mechanism by displaying intermedi-
ate time steps in generation helps to understand the im-
pact of different initializations better. In Fig. 2, we com-
pare the results between random noise initialization (DDIM
training + inference) and initializing with a gray garment
from our dataset projected to 3 PCA components (PCA-3
Offset Training + Inference) on freeform text from fashion
designers. We see that during the first few steps of the dif-
fusion process, a random noise input will predict a x0 that
is very different from our desired image distribution. This
mistake is not corrected in later timesteps and is accumu-
lated throughout the denoising process. This is because the
denoiser is not trained to denoise an image from a non-white
background. If we initialize with a PCA-projected garment
image with a white background, then the training data dis-
tribution is maintained in all intermediate steps.

PCA-K Inference fixes distribution issues, but initial-
izations strongly affect text control in generations. We
apply PCA-K Inference on the fine-tuned model and show

image distribution problems are mitigated in Fig. 3, but the
starting point can bias the type of images generated. Notice
the initialization alters the shape and color of the garment
generated because the network f is trained to take hints
from this initialization. The lighter initialization in row 3
generates more light colors, while row 4 shows much darker
and boxier generations that adhere to the color and shape of
the initialization. Notice that the generated garments do not
respect the text (”black cotton flared pants...” are generated
as white in the third column, ”...straight leg trousers...” are
generated as shorts in the sixth column, etc.), thus not sat-
isfying property (1). We try to apply a more neutral ini-
tialization by setting xstart to garment and model means.
However, Fig. 3 row 1 shows artifacts in the background
due to the faint sleeve of the mean garment image.

The denoiser clearly takes hints from the initialization
when generating images. This further substantiates that
x0 has a tremendous weight during training. The denoiser
heavily relies on cues from x0 to denoise the image because
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"sage green corset top with 
silk ribbon and no sleeves 

with a cropped length"

"bright red silk corset mini 
dress that is sleeveless"

"black ruffled midi skirt 
with black lace trim along 

the seam"

"lilac ostrich leather 
pleated micro mini skirt 
with a matte finish and 
beaded silver details"

F* F* F* F*

F† F† F† F†

F* F* F* F*

F† F† F† F†

Initialization

F*

F†

"black cotton flared pants 
with sheer dark grey layer"

F*

F†

(a) DDIM Training + Mean Offset Inference

F* F* F*

F† F† F† F†

F* F* F* F*

F† F† F† F†

F* F*

F†

F*

F†

(b) Mean Offset Training + Inference

Figure 4. Using Mean Offset Training and Mean Offset Inference
provides better text control because the relationship between ini-
tialization and text is preserved during training and inference. We
apply two class mean initialization for garments and models and
intentionally swap the means to test the effect of different initial-
izations during inference. Figure (a) shows garment and model
results DDIM Training + Mean Offset Inference that violate vari-
ous properties. Figure (b) shows Mean Offset Training + Inference
results satisfy all desired properties. Red boxes highlight genera-
tion errors in (a) and green boxes show they are fixed in (b). Red
solid borders show artifacts that shouldn’t exist and don’t fully re-
spect the text ((a) fails property (1)). Red dashed borders show
generated models instead of garments, as specified by the text, and
the person is not in the proper pose ((a) fails properties (1) and
(4)). Red dotted borders show non-white backgrounds or cropped
garments/models ((a) fails property (3)).

x0 strongly correlates with the encoding text e. Unfortu-
nately, xstart is sampled from a distribution Q that is inde-
pendent of the text prompt. As a result, the word control for
denoising worsens when we sample from Q.

Method CLIP similarity(↑) Score scaled by GT(↑)
Ground Truth Garments 0.294 1.0

DDIM Training + DDIM Inference 0.2542 0.865
DDIM Training + Mean Offset Inference (Ours) 0.2761 0.939

Mean offset Training + Inference (Ours) 0.2812 0.956

Table 1. We use CLIP similarity [8] (higher is better) between im-
ages and text to show our methods generate images that respect
text better (property (1)). We compare with the ground truth im-
age from our dataset to set a baseline. Notice our Mean Offset In-
ference easily outperforms standard DDIM training and inference.
Furthermore, incorporating DDIM Training + Inference further
improves performance, indicating that a better text-to-generation
relationship is preserved (for property (1)).

4.3. PCA-K Offset Training

By incorporating PCA-K Offset Training, we alter the
training procedure to have consistent initialization and text
pairings during training. We test Mean Offset Training
(PCA-0) with average garment and average model initial-
izations. Training hyperparameters are identical to the fine-
tuned model in Sec. 4.2. Results for PCA-K (K > 0) are
shown in Supplementary.

Qualitatively, Mean Offset Training generates images
that respect the text better than standard training and
satisfies all desired properties (1)-(6). Fig. 4 shows the
difference between using DDIM training + Mean Offset
Inference (Fig. 4a) and Mean Offset Training + Inference
(Fig. 4b). While only Mean Offset Inference significantly
helps generate our desired image properties, it occasion-
ally produces artifacts (not pure white backgrounds), does
not accurately follow the text (generates sleeves when there
shouldn’t be sleeves), and crops the garments and models.
Incorporating mean offset initialization in training resolves
these issues and generates our desired image distribution
(see results with all 24 text prompts in the Supplementary).

Quantitatively, Mean Offset Training + Inference
generates more accurate images as demonstrated by run-
ning CLIP similarities [8] between generated garments and
text prompts in Table 1. Notice the 10.6% improvement
from DDIM Training + DDIM Inference to Mean Offset
Training + Inference. While CLIP similarity is not a perfect
representation of similarity, the improvement is significant.
The learned text-to-initialization relationship is better pre-
served because the same initialization distribution is used
during training and inference.

4.4. Application to ControlNet

We apply our method to ControlNet [14] for a different
task of virtual try-on using our dataset. We show image dis-
tribution issues persist in this new task due to noise initial-
ization during inference, but can be fixed with our PCA-K
Offset Training + Inference. For this task, we are given a
garment as control and train a denoiser to generate a real-
istic person wearing that garment. To train, we mask the
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ControlNet DDIM Training + Inference ControlNet Mean Offset Training + Inference (Ours)

Ground truth

Garment condition

Figure 5. We adapt ControlNet [14] to take a garment condition to generate models wearing garments. We display three seeds for the same
control to show that vanilla ControlNet (DDIM Training + Inference) consistently produces out-of-distribution results (violating properties
(4) and (5)), whereas ControlNet with Mean Offset Training + Inference (Ours) perfectly preserves the desired training distribution.

region of a garment from a person in our dataset and adapt
ControlNet [14] to take the masked garment image as the
condition to generate the remaining image. The left col-
umn of Fig. 5 shows the effect of training and running Con-
trolNet without any modification to the initialization proce-
dure, and background and lighting properties are not pre-
served (properties (4) and (5)). The right column of Fig. 5
shows that applying our Mean Offset Training + Inference
preserves desired generated image properties.

5. Discussion

We believe our approximate initialization distribution
has broad applications, not just limited to fashion retail im-
ages. Situations where images follow structural require-
ments could benefit from our training and inference proce-
dure. Additionally, because sampling initialization can bias
the inference (Fig. 3), we intend to investigate using CCA to
build relationships between PCA-K initializations and text

features.

6. Conclusion
Our research indicates that existing training and infer-

ence procedures for diffusion-based methods are problem-
atic and cannot preserve certain image distributions. We
uncover that the assumption of employing random noise as
the starting point may significantly affect the way images
are generated. More importantly, we show the current train-
ing procedure is largely biased by its initialization, but can
be mitigated by adopting our PCA-K Offset Training + In-
ference. Finally, we demonstrate that our work is orthogo-
nal to other manipulation methods, such as ControlNet [14],
and can be combined to enable greater control of diffusion-
based image generation.
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