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Abstract

In existing methods of video text detection, the detec-
tion and tracking branches are usually independent of each
other, and although they jointly optimize the backbone net-
work, the tracking-by-detection paradigm still needs to be
used during the inference stage. To address this issue, we
propose a novel video text detection framework based on
sequential transformer, which decodes detection and track-
ing tasks in parallel, without explicitly setting up a tracking
branch. To achieve this, we first introduce the concept of
instance query, which learns long-term context information
in the video sequence. Then, based on the instance query,
the transformer decoder is used to predict the entire box
and mask sequence of the text instance in one pass. As a
result, the tracking task is realized naturally. In addition,
the proposed method can be applied to the scene text detec-
tion task seamlessly, without modifying any modules. To the
best of our knowledge, this is the first framework to unify the
tasks of scene text detection and video text detection. Our
model achieves state-of-the-art performance on four video
text datasets (YVT, RT-1K, BOVText, and BiRViT-1K), and
competitive results on three scene text datasets (CTW1500,
MSRA-TD500, and Total-Text). The code is available at
https://github.com/zjb-1/SeqVideoText.

1. Introduction
Video text detection aims to localize the text instance

in the image frames of video and construct a trajectory for
each text instance. As a fundamental task in computer vi-
sion, it has been widely applied to video content analy-
sis, video retrieval, and scene understanding. Compared
to static scenes, video scenes contain temporal information
and richer content, making video text more complex. In ad-
dition to the problems of text in static scenes, video text also
faces problems such as motion blur, lighting changes, and
occlusions, which make video text processing more chal-
lenging.

Most early methods [36, 47, 56] treat video text detec-
tion as a two-stage task: first performing single-frame text
detection, and then applying tracking techniques [1, 15, 17]
to associate detection results. However, these methods ig-
nore the mutual supervision between detection and tracking
tasks as well as the temporal information in videos. Re-
cently, some methods [10, 11, 48, 49] takes a leap forward
towards a unified end-to-end architecture by sharing a con-
volutional neural network (CNN) backbone and employing
a feature cropping mechanism to extract the relevant area
of interest for the tracking head. Although these methods
have the advantage of task collaboration and improve the
performance of the model, the detection and tracking tasks
in the framework are still independent except for jointly
training the backbone network. Specifically, the tracking
head is usually trained using the detection ground-truth, and
thus it is not optimized for the prediction of the detection
head. Furthermore, the tracking-by-detection paradigm is
still employed in the inference stage, which might lead to
error accumulation. Recently, Wu et al. [45] try to sim-
plify the video detection process by using a transformer [39]
based framework, which only utilizes temporal information
from adjacent two frames, and the tracking task still relies
on IoU-based matching rules, however. Thus, construct-
ing a concise and effective end-to-end video text detection
framework remains a challenge.

Here, we conduct an in-depth analysis of the video text
detection task. Videos contain richer temporal information
than single frame image, and are highly context-dependent,
which could provide useful cues for text detection and
tracking. Essentially, both text detection and text track-
ing are about similarity learning between samples: the for-
mer focuses on learning similarity between pixels in the
image, while the latter learns similarity of text instances
between adjacent frames. Therefore, combining these two
tasks into one framework is desired. Recently, transformer
based models have made significant progress in computer
vision tasks due to their ability to model long-term depen-
dencies, with their core mechanism, self-attention, learning
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Figure 1. The tracking performance comparisons of video text
detection methods on YVT dataset. Our method significantly out-
performs the previous methods with the same clip length. After
using longer video clips, the tracking performance is further im-
proved. This is not possible with the other methods, because they
only support two input frames at a time.

similarity between global features. Therefore, we suggest
that it can be applied to video text detection for handling
temporal information in multiple frames.

In this paper, we propose a video text detection frame-
work based on sequential transformer, which decodes de-
tection and tracking tasks in parallel via sequence predic-
tion. To achieve this, we introduce the concept of instance
query to represent the sequence feature of each text in-
stance. In the iteration process of the transformer decoder,
the shared instance query is decomposed into object queries
at the frame level, which are used to continuously refine the
specific information of the same text instance in different
frames. These object queries are kept on each frame and
used to predict the bounding box sequence. At the same
time, the instance query aggregates the temporal informa-
tion of the text instance from object queries and predicts
the mask sequence of each text instance. Since the text se-
quences are directly generated from the decoder, it naturally
realizes text matching across frames, eliminating the need
for post-processing operations.

In experiments on four video text datasets (YVT [30],
RT-1K [32], BOVText [45], and BiRViT-1K), the proposed
method has achieved state-of-the-art performance. Fig. 1
compares the tracking performance of our method on the
YVT dataset with previous methods. With the same input
sequence length, our method achieves the best performance,
outperforming the previous methods by 3.9%. By increas-
ing the length of the input sequence, the performance can
be been further improved.

Our framework can be seamlessly applied to scene text
detection task without modifying any modules, as there is
no explicit tracking process. We also demonstrate its per-

formance on scene text datasets.
In summary, our contributions are in three folds:
(1) We propose a novel end-to-end video text detection

framework based on sequential transformer. The model can
effectively capture the temporal contextual information of
video sequence, and decodes the text detection and track-
ing tasks in parallel. It eliminates the dependency on sepa-
rate tracking branch and other manual components (such as
NMS) and is therefore more concise than previous methods.

(2) Benefiting from the implicit tracking process, the
proposed method can accomplish both scene text detection
and video text detection tasks without modifying any com-
ponents, unifying the two tasks for the first time.

(3) The proposed method is demonstrated effective for
both detection and tracking, yielding state-of-the-art per-
formance on four video text datasets and competitive per-
formance on three scene text datasets.

2. Related Work

Video text detection task is an extension of scene text de-
tection task, requiring not only single frame text detection,
but also text tracking. Therefore, we review related works
of scene text detection and video text detection.

2.1. Scene Text Detection

Scene text detection methods based on deep neural net-
works can be divided into two categories: regression-
based methods and segmentation-based methods. Regres-
sion based methods [14, 20, 27, 37, 54] adopt similar ideas
to generic object detection with some text-specific modi-
fications. For example, RRPN [27] detects multi-oriented
text by using rotated anchors. EAST [54] applies pixel-
level regression with angle prediction for multi-oriented text
instances. The detected results of such methods are gen-
erally quadrilaterals or rotated rectangles. To detect arbi-
trarily shaped texts, segmentation-based methods have been
proposed [4, 5, 8, 22, 40, 41]. As examples, PixelLink [8]
classifies text at the pixel-level and predicts the connec-
tion relationship between pixels to aggregate text regions,
PSENet [40] proposed a new post-processing algorithm to
segment text instances which are close to each other.

Recently, transformer [39] based models have made
great achievements in computer vision tasks. For example,
DETR [6] presents a novel transformer-based framework
for object detection. It eliminates hand-designed compo-
nents such as the proposal anchors and NMS, making the
pipeline very succinct. Transformer-based scene text de-
tection and recognition methods [16, 35, 53] have been pro-
posed. Our model is proposed for video text detection, and
can directly degenerate into a transformer-based scene text
detector.
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Figure 2. An overview of the proposed framework. Given a video clip, the model decodes the text detection and tracking tasks in parallel
through sequence prediction, simultaneously predicting the box sequence and mask sequence of a text instance in one pass. “Dynamic
Mask”, “Class”, “Box”, and “Obj” denote the dynamic convolution mask head, class head, box head, and object head, respectively.

2.2. Video Text Detection

Early video text detectors adopted a two-stage approach
separating detection and tracking. The method of Tian et
al. [36] first detects scene texts in individual frames, then
integrates the detection results into the tracking trajectory
by dynamic programming. The method of Yang et al. [47]
tracks proposals in adjacent frames with a motion-based
method. However, these methods ignore the temporal con-
texts of video and the supervision information between de-
tection and tracking.

Recently, some methods based on tracking-by-detection
paradigm have been proposed, which integrate detection
and tracking into a unified framework. Yu et al. [48] pro-
posed the first end-to-end video text detection model with
online tracking, in which the detection and tracking tasks
are bridged together by feature descriptor. Feng et al. [10]
proposed a semantic feature descriptor to improve the ro-
bustness of detection and tracking. Gao et al. [11] leverage a
spatiotemporal Siamese complementary module to suppress
the missed detection of text instances and use a text simi-
larity learning network to integrate the visual and semantic
cues of the text instance into a unified representation. The
method of Wu et al. [45] builds a transformer based text de-
tector, adds a tracking decoder to predict text positions, and
then obtain tracking results through IoU match. Although
these methods have made great progress, they only utilize
the context information from the adjacent two frames, ig-
noring the long-term temporal information in video, and the
pipelines are complex, requiring multiple processing steps
to complete tracking. The proposed method models multi-
frame information at one time, and adopts sequence predic-
tion to decode detection and tracking results in parallel, thus
greatly simplifies the process.

3. Methodology
The proposed sequential transformer based method

treats video text detection as a direct sequence prediction
problem. It takes a video clip as input, and outputs the
masks and bounding boxes sequence of each text instance
in the video in order.

3.1. Network Architecture

As shown in Fig. 2, the proposed video text detection
framework contains four main components: a backbone net-
work for feature extraction, a transformer encoder to ex-
tract feature representations of each frame independently, a
transformer decoder to model frame-level text features and
sequence-level instance features, and four output heads to
predict text instance sequence masks, sequence categories,
text bounding boxes and confidence scores, respectively.

Backbone Network. We adopt a CNN based backbone for
visual feature extraction. It takes T frames or images of
H0 × W0 as input, denoted as xc ∈ RT×3×H0×W0 . The
output features are denoted as {ft}Tt=1 (ft ∈ Rd×H×W ).

Transformer Encoder. First, a 1 × 1 convolution is used
on the feature maps to reduce the channels of the ft to
C = 256. After adding the positional encoding [6], we
adopt deformable transformer encoder [55] to model the
similarity among pixels in each frame, and get the output
feature maps {Ft}Tt=1.

Transformer Decoder. Considering the rich temporal in-
formation and strong correlation between adjacent frames
in video, the same text instance in different frames can
be considered as a whole. Motivated by SeqFormer [43],
we introduce Instance Query Iq ∈ RC to represent each
text instance sequence, which is the learnable embedding.
Since the appearance and position of the same text instance
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may change in different frames, we decompose the in-
stance query into T frame-level object queries O = {Ot}Tt=1

(Ot ∈ RC), which correspond to each frame to learn accu-
rate text feature representation.

During the iteration process of the decoder layers, the
object query Ot continuously perceives text features from
the frame feature map Ft in a coarse-to-fine manner:

Ol
t =

{
Iq, l = 0

DeformAtten(Ol−1
t ,Ft), l ≥ 1

(1)

where Ol
t is the object query on frame t from the l-th de-

coder layer, and DeformAtten represents the deformable at-
tention module, which reduces computational complexity
by assigning a small fixed number of key points for each
query. At the same time, the instance query weights the ob-
ject queries in the time dimension to aggregate the temporal
features of text instance:

Ilq = Il−1
q +

T∑
t=1

Softmax
(
W · Ol

t

)
Ol

t, (2)

where W ∈ RC is the learnable weights. Set the num-
ber of predicted targets in each frame to N , after Nd de-
coder layers, we will get N instance embeddings with text
sequence information and T object embeddings {OEt}Tt=1

(OE ∈ RN×C) with specific text position information for
each frame.

Output Heads. We add mask head, class head, box head
and object head on the top of the decoder outputs. Class
head is a linear mapping layer used to predict the category
of each instance query. Given an instance embedding with
index σ(i), class head predicts that it is class ci with proba-
bility p̂σ(i)(ci).

Box head is a 3-layer perceptron with ReLU activa-
tion function. For each object query, the box head pre-
dicts the box center coordinates and its height and width
relative to the image size. For the instance with index
σ(i), we denote the predicted boxes sequence as b̂σ(i) =
{b̂(σ(i),1), . . . , b̂(σ(i),T )}.

Object head is a linear mapping layer used to predict
the confidence score of each object query, which is a fine-
grained target discrimination operation compared with the
class head. In cases of text occlusion, the object head can
assist in identifying the text that disappears in the text se-
quence. For the instance with index σ(i), we denote the pre-
dicted object sequence as ôσ(i) = {ô(σ(i),1), . . . , ô(σ(i),T )}.

Mask head is a dynamic convolution network used to
predict the text masks sequence. Considering the instance
embedding aggregates the long-temporal information of
text instance, which is richer representation of text fea-
ture, we use it to generate the masks sequence. Follow-
ing [38], a 3-layer feed forward network encodes the in-
stance embedding into parameters ωi of mask head, which

has three 8-channel 1×1 convolution layers. And an FPN-
like module is used to fuse multi-scale feature maps from
transformer encoder and generate feature maps sequence
{F̂ 1

mask, . . . , F̂
T
mask}, where F̂ t

mask ∈ R(8×H
8 ×W

8 ). More-
over, F̂ t

mask is combined with a map of the relative coordi-
nates from the center of b̂(σ(i),t) to provide a strong location
hint for predicting the text mask. The new feature maps se-
quence {F̃ t

mask}Tt=1, F̃ t
mask ∈ R(10×H

8 ×W
8 ), is sent to the

mask head to predict the masks sequence:

{m̂i,t}Tt=1 = {MaskHead(F̃ t
mask, ωi)}Tt=1. (3)

3.2. Text Sequence Matching

Our model infers N fixed-size prediction sequences
in a single pass through the decoder, where each se-
quence contains T objects. Let us denote by ŷi =
{ŷi}Ni=1 the predicted text instance sequences, and y
the ground truth of text instance sequences. Each el-
ement i of the ground truth set is denoted as yi =
{ci, (bi,1, . . . , bi,T ), (oi,1, . . . , oi,T )}, where ci is the target
class label including ϕ, bi,t ∈ [0, 1]4 is a vector that defines
ground truth box center coordinates and its relative height
and width in the frame t, and oi,t is the object indication
in the frame t, 1 if there is a text instance, 0 otherwise. In
the training process, bipartite matching between the ground
truth and the prediction is conducted in the sequence-level,
by searching for a permutation of N elements σ ∈ SN with
the lowest cost by Hungarian algorithm [18]:

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)), (4)

where Lmatch is a pair-wise matching cost between ground
truth sequence yi and text prediction sequence with index
σ(i):

Lmatch(yi, ŷσ(i)) = −p̂σ(i)(ci) + Lbox(bi, b̂σ(i))

+ Lobject(oi, ôσ(i)),
(5)

where ci ̸= ϕ.
Given the optimal assignment σ̂, we use the Hungarian

loss to compute the loss for all matched pairs:

LHung(y, ŷ) =

N∑
i=1

[
− logp̂σ̂(i)(ci) + Lobject(oi, ôσ̂(i))

+ 1{ci ̸=ϕ}Lbox(bi, b̂σ̂(i))

+ 1{ci ̸=ϕ}Lmask(mi, m̂σ̂(i))
]
.

(6)
The object loss Lobject is defined as Focal loss. The box
loss Lbox is defined as a combination of the L1 loss and
the generalized IoU loss [33]. And the Lmask is a linear
combination of the Dice [28] and Focal loss. These losses
are normalized by the length of the input video clip.
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3.3. Inference

Our method detects text instances by sequence predic-
tion, which can directly obtain the text trajectory from
the output of the model, without using a separate tracking
branch for processing. However, the long time duration in
video complicates the computation. To overcome this, we
process a video clip containing T frames each time. In or-
der to get the complete text trajectory on the whole video,
the results of adjacent video clips need to be integrated. The
process is as follows:

(1) Intra-Clip: After filtering out the sequences with
text class probability less than θ1, which do not contain text,
we can get M text sequences. Further, we use the object
confidence to perform fine discrimination in each frame,
and text objects with confidence less than θ2 will be ig-
nored. Finally, the quadrilateral boxes of text can be ob-
tained from the box sequences, and the polygon boxes can
be generated from the mask sequences. In our experiments,
θ1 and θ2 are set to 0.5.

(2) Inter-Clip: To correlate text instances in adjacent
video clips, we overlap them by n frames. Assuming that
the j-th video clip has M text sequences, and the (j + 1)-
th video clip has L text sequences, we calculate the pair-
wise mask matching cost between them, and use Hungarian
algorithm to obtain the optimal matching results:

σ̃ = argmin
σ∈δM

M∑
i

n∑
t

L′
mask

(
m̂j

i,t, m̂
j+1
(σ(i),T−n+t)

)
, (7)

where L′
mask is defined as Dice loss. For the matched text

sequence in the (j + 1)-th video clip, we keep its trajectory
ID in the previous video clip, otherwise we create a new ID
for it.

3.4. Application to Scene Text Detection

Our model can be seamlessly applied to the scene text
detection on single frame images. To do this, it only needs
to modify the length of the input sequence to 1. In the in-
ference process, we only need to keep the objects whose
predicted text category probability greater than θ, which is
set as 0.5 in all experiments.

Post Process F1↑ IDsw↓ MOTA↑ MOTP↑
w/o CA 79.3 1386 46.8 79.4
w/ CA 79.3 52 64.9 79.4

Table 1. Ablation studies for clip association (CA) in post process-
ing. “IDsw” denotes the number of ID Switches.

4. Experiments
4.1. Datasets and Metrics

We evaluate the text detection and tracking performance
on four video text datasets, and three scene image datasets.
Video Text Datasets: YVT is harvested from YouTube,
consists of 15 training videos and 15 testing videos. It
contains web videos besides scene videos. RT-1K con-
tains 1,000 English videos of road scenes, including 700
for training and 300 for testing. The text instances are
annotated with rectangular boxes at line-level. BOVText
is a large-scale, bilingual, open world video text dataset,
which was collected from worldwide users of YouTube and
KuaiShou. It contains 2,000+ videos, including 1,750,000
frames and 30+ open scenarios. BiRViT-1K is a large bilin-
gual road scene video text dataset collected by ourselves. It
includes 1000 videos, consisting of 300 Chinese videos, 300
English videos and 400 bilingual videos. These videos are
split into training set and test set at 7:3 ratio. The text in-
stances are annotated at line-level with quadrilateral boxes.
The dataset is available at http://www.nlpr.ia.ac.
cn/databases/CASIA-BiRViT1K/.
Scene Text Datasets: SynthText-150K [24] is a synthe-
sized dataset for arbitrarily shaped scene text, which con-
tains 94,723 images with multi-oriented texts and 54,327
images with curved texts. CTW1500 is a line-level arbi-
trarily shaped scene text dataset, containing 1,000 training
images and 500 testing images. MSRA-TD500 is a multi-
lingual text dataset in Chinese and English, containing 300
training images and 200 testing images. The text instances
are annotated at line-level. Total-Text is a arbitrarily shaped
scene text dataset, containing 1,255 training images and 300
testing images, annotated as polygon boxes at word-level.

Text detection task is evaluated by the metrics of pre-
cision (P), recall (R) and F1-score (F1), which follow the
ICDAR competition. Text tracking task is evaluated by the
metrics of the CLEAR-MOT [3], including multiple ob-
ject tracking accuracy (MOTA) and multiple object tracking
precision (MOTP). MOTA comprehensively evaluates the
detection error and tracking error of the tracker, and MOTP
evaluates the positioning ability of the tracker.

4.2. Implementation Details

Model settings. We use the ResNet-50 [12] pretrained on
ImageNet dataset [9] as the backbone. The encoder and
decoder of transformer follow DeformableDETR [55] and
both contain 6 layers with a hidden dimension of 256. We
set sampled key numbers K=4 and 8 attention heads for at-
tention modules. And the number of instance queries N is
set to 300.
Training. The model is implemented with PyTorch and op-
timized by AdamW [26] with an initial learning rate of 1e-
4, the learning rates of the backbone and linear projections
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#Clip Length #Overlap Frames Text Detection (%) Text Tracking (%) FPSP R F1 MOTA MOTP
3 2 77.6 74.9 76.2 60.4 78.4 5.9
5 2 78.9 77.0 77.9 63.4 79.1 8.4
7 2 80.4 78.3 79.3 64.9 79.4 10.1
7 4 80.4 78.1 79.2 65.2 79.2 5.4
7 6 80.4 78.3 79.3 65.1 79.3 2.5
9 2 79.7 77.9 78.8 64.3 79.3 10.7

Table 2. Ablation studies for input video clip length and overlapping frames length. Note that “FPS” is the average processing speed of
each video in the dataset.

Method P R F1 MOTA MOTP
w/o object head 77.9 78.5 78.2 63.5 79.1
w/ object head 80.4 78.3 79.3 64.9 79.4

Table 3. Ablation studies for object head.

used for deformable attention modules are multiplied by a
factor of 0.1. All experiments were run on a workstation
with NVIDIA RTX A6000.

For scene text detection, following SwinTextSpot-
ter [16], the model is first pretrained on a unified set of
SynthText-150K, ICDAR 2013, ICDAR 2015 and Total-
Text for 12 epochs, and the learning rate is decayed at the
6-th epoch by a factor of 0.1. Then we fine-tune the model
on the corresponding datasets for 40 epochs. All the models
were run on 4 GPUs with a batch size of 8.

For video text detection, we first re-train the pretrained
model of scene text datasets for 12 epochs on a unified set
of YVT, RT-1K, BOVText and BiRViT-1K. Then the model
is fine-tuned on the corresponding video datasets for 12
epochs. The learning rates are both decayed at the 6-th
epoch by a factor of 0.1. The input sequence length T is
set to 7 by default. All models were run on 4 GPUs with a
batch size of 4.

In the training process, the images are randomly
rescaled, by resizing the shorter side to 608-800 pixels and
the longer side to at most 1333 pixels.
Inference. We re-scale the shorter side of the images to
800 pixels while maintaining the aspect ratio. For video text
detection task, we set the number of overlapping frames n
of adjacent video clips as 2 by default.

4.3. Ablation Studies

We performed extensive experiments on the YVT dataset
for analyzing the impact of different settings. Unless men-
tioned, the default sequence length and the number of over-
lapping frames are set as 7 and 2, respectively.
Clip Association. Because of the long duration of the video
data, we adopted the segmented approach as described in
Sec. 3.3. Therefore, we first analyze the impact of associ-
ation between clips. As shown in Tab. 1, when clip asso-

ciation is used, the tracking metric MOTA is significantly
improved, which is 18% (64.9% vs 46.8%) higher than
that without association. This is because the association
operation effectively matches the text trajectories between
adjacent clips, thereby greatly reducing the number of ID
Switches (1386 vs 52), improving the tracking stability.
Overlapping Frames Length. The impacts of video clip
length and overlapping length are shown in Tab. 2. The re-
sults show that with a fixed input sequence length 7, the
detection and tracking performance is hardly affected as the
number of overlapping frames increases. However, the in-
ference speed drops significantly with increasing overlap-
ping length, because the number of clips that need to be
calculated also increases, leading to a large number of re-
peated calculations.
Video Clip Length. To evaluate the importance of the long-
term temporal information to our method, we experiment
with models trained with different input video clip length.
As shown in Tab. 2, with a fixed overlapping frames length
2, the detection and tracking performance gradually im-
proves as the length of video clip increases, and the optimal
performance is achieved when the length is 7. Compared
with the length of 3, the F1-score increases by 3.1% and
the MOTA increases by 4.5%. This indicates that long-term
contextual information can help the model obtain stronger
feature representations, which leads to better discovery and
association of text instances.

In addition, as the length of the clip increases, the in-
ference speed of the model on the video also gradually in-
creases, reaching 10.1 fps at the length of 7, and then de-
grades. So we use the clip length of 7 and the number of
overlapping frames of 2 as the default values in the experi-
ments to tradeoff between the performance and speed.
Object Head. The object head can be used to accurately de-
termine where text instances appear in the video sequence.
To evaluate its effect, we trained two different models with
or without it. As shown in Tab. 3, when the object head
is added, the detection and tracking performance both im-
prove, with F1-score and MOTA increased by 1.1% and
1.4%, respectively. This is because the object head can filter
out false positives in the text instance sequence, improve the
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Dataset Method Text Detection (%) Text Tracking (%)
P R F1 MOTA MOTP

RT-1K

EAST [54] 42.0 30.0 35.0 – –
FOTS [23] 45.0 36.0 40.0 – –
CTPN [37] 44.0 41.0 42.0 -29.8 17.0

Reddy et al. [32] 44.0 41.0 42.0 -11.0 7.0
FREE [7] 63.0 43.4 51.4 3.0 71.0

Feng et al. [10] 76.0 43.0 54.9 – –
Ours 64.0 58.9 61.3 41.0 74.8

BOVText

EAST [54] 55.4 40.8 47.0 -21.6 75.8
PSENet [40] 78.3 75.7 77.0 52.1 77.5

DB [22] 84.3 77.6 80.8 53.2 78.3
TransVTSpotter [45] 86.2 77.4 81.7 68.2 82.1

Ours 90.2 76.5 82.8 75.9 84.4

BiRViT-1K

EAST* [54] 53.8 40.6 46.3 – –
PSENet* [40] 65.5 60.3 62.8 – –

TransVTSpotter* [45] 72.4 66.0 69.0 53.7 75.8
Ours 77.6 66.5 71.6 62.4 77.3

YVT

Mosleh et al. [29] 79.0 72.0 75.0 – –
Shivakumara et al. [34] 79.0 73.0 76.0 – –

Wu et al. [44] 81.0 73.0 77.0 – –
Yu et al. [48] 89.3 71.1 79.2 – –

FREE [7] 90.3 81.6 85.7 54.0 78.0
TransVTSpotter [45] – – – 53.9 75.9

SVRep [19] – – – 54.4 74.2
Ours 80.4 78.3 79.3 64.9 79.4

Table 4. Text detection and tracking results on four video text datasets. “*” denotes results produced by our implementation. The best
result of each dataset is in bold.

Method CTW1500 MSRA-TD500 Total-Text

P R F1 P R F1 P R F1
TextField [46] 83.0 79.8 81.4 87.4 75.9 81.3 84.3 83.9 84.1
PSENet [40] 84.8 79.7 82.2 – – – 84.0 78.0 80.9
LOMO [50] 89.2 69.6 78.4 – – – 88.6 75.7 81.6
CRAFT [2] 86.0 81.1 83.5 88.2 78.2 82.9 87.6 79.9 83.6
PAN [41] 86.4 81.2 83.7 84.4 83.8 84.1 89.3 81.0 85.0
DB [21] 86.9 80.2 83.4 91.5 79.2 84.9 87.1 82.5 84.7
ContourNet [42] 84.1 83.7 83.9 – – – 86.9 83.9 85.4
DRRG [51] 85.9 83.0 84.5 88.1 82.3 85.1 86.5 84.9 85.7
ABCNet V2 [25] 85.6 83.8 84.7 89.4 81.3 85.2 90.2 84.1 87.0
MOST [13] – – – 90.4 82.7 86.4 – – –
TextBPN [52] 86.5 83.6 85.0 86.6 84.5 85.6 90.7 85.2 87.9
Raisi et al. † [31] – – – 90.9 83.8 87.2 – – –
TESTR† [35] 92.0 82.6 87.1 – – – 93.4 81.4 86.9
Tian et al. † [35] 88.1 82.4 85.2 91.6 84.8 88.1 90.7 85.7 88.1
SwinTextSpotter† [16] – – 88.0 – – – – – 87.2
Ours† 89.0 85.8 87.4 93.3 81.8 87.2 88.4 85.1 86.7

Table 5. Text detection results on three scene text datasets. “†” indicates that the method is based on transformer.

precision and enhance the stability of the tracking process.

4.4. Comparison with the State of the Art

4.4.1 Video Text Detection and Tracking

We conducted experiments on four video text datasets RT-
1K, BOVText, BiRViT-1K and YVT, and the text detec-

tion and tracking results are shown in Tab. 4. Our method
achieves the best detection performance on RT-1K, BOV-
Text and BiRViT-1K with F1-score of 61.3%, 82.8% and
71.6%, respectively, which are 6.4%, 1.1% and 2.6% higher
than the previous state-of-the-art methods. These results
validate the effectiveness of the transformer-based architec-
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Figure 3. Examples of text detection and tracking results. First three rows: video text detection. Boxes with the same color belong to the
same trajectory. Last row: scene text detection.

ture for text detection. In addition, our method achieves
optimal tracking performance on all four datasets, signifi-
cantly improving the MOTA and MOTP metrics. Specifi-
cally, the MOTA on four datasets are 41.0%, 75.9%, 62.4%
and 64.9% respectively. These results verify the effective-
ness of the proposed method based on sequence predic-
tion in text tracking task, which does not require a sepa-
rate tracking branch and is more concise than the previous
methods. Fig. 3 shows some detection and tracking results
on different datasets.

4.4.2 Scene Text Detection

Our model does not have an explicit tracking branch, mak-
ing it easily to transfer to scene text detection task by sim-
ply setting the video clip length as 1. Therefore, we eval-
uate the single frame detection performance of the model
on three scene text datasets CTW1500, MSRA-TD500 and
Total-Text. As shown in Tab. 5, our detection model out-
performs most previous CNN-based methods and achieves
competitive performance compared with the recent scene
text detectors based on transformer. Our model achieves
F1-score of 87.4%, 87.2% and 86.7% on the three datasets,
respectively. Some qualitative examples are shown in the
last row of Fig. 3.

The above results demonstrate that our model can effec-
tively unify scene text detection task and video text detec-
tion task in the same framework. We believe that our con-

cise, elegant and effective framework will serve as a strong
baseline to promote research in related fields such as video
text detection, tracking and recognition.

5. Conclusion

In this paper, we proposed a novel end-to-end video
text detection framework based on sequential transformer,
which leverages the instance query to aggregate the long-
term contextual information from the input video sequence
and directly generates the entire masks sequence and boxes
sequence of each text instance in one pass. Compared
with the previous methods, the proposed method does not
need to set explicit tracking branch, making the framework
more concise. Notably, our method can be applied to scene
text detection (from single frame images) without modify-
ing any modules, thus unify scene text detection and video
text detection tasks in the same framework. Our method
achieves state-of-the-art results on four video text datasets
and competitive results on three scene text datasets. We
hope that our simple and effective framework can promote
the research and applications in related fields in the future.
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