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Abstract

Diffusion models have demonstrated impressive perfor-
mance in text-guided image generation. Current meth-
ods that leverage the knowledge of these models for im-
age editing either fine-tune them using the input image (e.g.,
Imagic) or incorporate structure information as additional
constraints (e.g., ControlNet). However, fine-tuning large-
scale diffusion models on a single image can lead to se-
vere overfitting issues and lengthy inference time. Informa-
tion leakage from pretrained models also make it challeng-
ing to preserve image content not related to the text input.
Additionally, methods that incorporate structural guidance
(e.g., edge maps, semantic maps, keypoints) find retaining
attributes like colors and textures difficult. Using the in-
put image as a control could mitigate these issues, but since
these models are trained via reconstruction, a model can
simply hide information about the original image when en-
coding it to perfectly reconstruct the image without learning
the editing task. To address these challenges, we propose
a text-to-image editing model with an Image Information
Removal module (IIR) that selectively erases color-related
and texture-related information from the original image, al-
lowing us to better preserve the text-irrelevant content and
avoid issues arising from information hiding. Our experi-
ments on CUB, Outdoor Scenes, and COCO reports our ap-
proach achieves the best editability-fidelity trade-off results.
In addition, a user study on COCO shows that our edited
images are preferred 35% more often than prior work.

1. Introduction
Text-driven image editing aims to modify the specific

content of an image based on its textual descriptions. In-
spired by the powerful capability of large-scale text-to-
image generation models [16,26,28,30], recent approaches
have leveraged the prior knowledge of these pretrained
models for image editing [1, 2, 9, 29, 40, 42]. The major-
ity of existing editing approaches follow two strategies: 1)
Optimization-based methods: updating network parameters
or feature embeddings for each input image, as shown in
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Figure 1. We aim to edit the specific content of the input im-
age according to text descriptions while preserving text-irrelevant
image content. Prior work based on large-scale diffusion models
has followed two major approaches for image editing: (A), fine-
tuning the pretrained models or text embeddings (e.g., Imagic [9]
or Dreambooth [29]), or (B), introducing structural guidance as ad-
ditional constraint to control the spatial information of the gener-
ated image (e.g., ControlNet [40] or MaskSketch [2]). In our work,
shown in (C), our approach conditions on both the original image
and the structural guidance, to better preserve the text-irrelevant
content of the image. E.g., our model successfully preserves the
original attributes of the airplane (outlined by the green bounding
box) in the generated image. In contast, previous methods such
as Imagic (A) and ControlNet (B) not only alter the sky and back-
ground but also modify the attributes of the airplane (outlined by
the red bounding boxes), which is unwanted in this example.

Figure 1 (A); or 2) introducing the structural guidance (e.g.,
edge map, user scribble, segmentation map, or pose esti-
mation) as additional constraints for image generation, as
shown in Figure 1 (B). The effectiveness of these models
have been demonstrated on tasks like style transfer [42],
texture editing [1], shape editing [9], appearance modifi-
cation [29], color editing [40], among others. However, for
optimization-based methods, fine-tuning large-scale mod-
els on single or few images results in severe over-fitting
issues and prolongs inference time [42]. Images gener-
ated by finetuned models and embeddings may contain un-
expected visual artifacts due to the information leakage
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and fail to preserve the text-irrelevant content of original
image [42]. Structure-guided methods also meet pitfalls:
structural guidance usually contains no information about
colors or textures, these frameworks have difficulty preserv-
ing the text-irrelevant content of the original image. As out-
lined by red bounding boxes in Figure 1 (A) and (B), we ob-
serve both Imagic [9] and ControlNet [40] fail to preserve
the text-irrelevant content of the original image: Imagic
modifies the shape of the airplane while ControlNet changes
the color and textures of airplane.

To address the aforementioned issues, we introduce the
original image as an additional control for image editing.
In this way the model can fully incorporate the content of
the input image, allowing it to effectively preserve the text-
irrelevant content. However, this results in an identity map-
ping issue [12], where the model can simply map the input
directly to the output. This is primarily caused by the image
reconstruction objective in editing task, which is perfectly
optimized using an identity mapping. Prior works attempt
to alleviate such issue by either learning disentangled fea-
tures [19, 37, 38], or uses attribute classifier to remove the
target attribute [14, 15]. Both these approaches unavoid-
ably introduce additional computational overhead that also
greatly limits their application scenarios. For example, in
Figure 1, the input image only has text annotations and does
not has scene attribute labels such as “daylight” or “sunset.”
Therefore, these methods cannot be applied to convert the
input image from “daylight” to “sunset.”

We propose an Image Information Removal module
(IIR-Net) to partially remove the image information from
the input image, as illustrated in Figure 1 (C). Specifically,
this erasure of image information arises from two com-
ponents. First, we localize the Region of Interest (RoI1)
and erase the color-related information. Second, we apply
Gaussian noise on the input image which randomly elimi-
nates the texture-related information. By tweaking the noise
intensity, the model is capable of adapting to various tasks
accordingly. For example, in color editing tasks, we de-
crease the noise intensity to zero to preserve most infor-
mation from the input image except the color. In the tex-
ture editing task, a higher value of noise intensity is used
to eliminate most information from the target region, leav-
ing only the structural prior. Given the original image, we
then concatenate the structure map with attribute-excluded
features as additional controls to editing model. With our
simple while effective image information removal module,
we avoid the identical mapping issue as now the model is
forced to not only reconstruct the original, but also predict
the noised image regions.

1We refer to the modified regions of the target image as RoI. In our
work, RoI is localized by Grounded-SAM [10,18]. For tasks that the entire
image is subject to modification such as scene attribute transfer or style
transfer, we simply define the entire image as the RoI.

We summarize the contribution of our work as follows:
• We introduce the original image as an additional guidance

to pretrained generative diffusion models for image edit-
ing tasks. Compared with existing image editing meth-
ods [9, 40], IIR-Net more effectively preserves the text-
irrelevant content of the input image while also generat-
ing new features according to the language descriptions.

• We propose an image information removal module to
counter the identical mapping issue [12]. IIR-Net par-
tially erases the image information such as colors or tex-
tures from the input, and reconstruct the original image
according to text descriptions and attribute-excluded fea-
tures. Compared with prior work for solving this is-
sue [14, 37, 38], IIR-Net does not require attribute labels
to learn disentangled features or attribute classifiers, and,
thus, can be applied to images without attribute labels.

• We conduct extensive quantitative and qualitative exper-
iments on three public datasets CUB [35], COCO [17],
and Outdoor Scenes [11]. Our results demonstrate that
our model improves the fedility-editability trade-off over
the state-of-the-art with obvious inference speed advan-
tages. E.g., compared to Imagic [9], IIR-Net improves
the LPIPS score from 0.57 to 0.30 on COCO, with an in-
ference speed improvement of two orders of magnitude.

2. Related Work
Feed-forward transformation image generation and
editing. Early work in text-to-image generation and edit-
ing often used text-to-image generator based on conditional
GANs [3, 12, 13, 21, 27, 33, 36, 39]. Limited by the scala-
bility of Conditional GAN and size of image datasets, these
methods only supported specific image domains and lan-
guage descriptions. More recent methods typically trained
conditional diffusion models [25, 26, 28, 30] on massive
datasets (e.g., LAION-400M [31]). Due to the difficulty to
obtain image pairs before and after editing, current image
editing frameworks [2, 9, 22, 29, 40, 42] are mostly devel-
oped based on pretrained text-to-generation models [28,30].
However, among these methods, methods that leverage the
feed-forward transformation mechanism mostly focus on
structural guidance. E.g., ControlNet [40] leverages struc-
ture maps like edge map, semantic map, or pose estima-
tion to control the spatial structure of generated images, and
MaskSketch [2] uses sketch as additional control to gener-
ate images. Thus, these methods cannot preserve the other
attributes of the image such as colors or textures well, and
may result in significant deviation from the input image. To
solve this issue, we incorporate the original image as input
to our model and propose an image information removal to
solve the identical mapping issue [12].
Optimization-based Methods Prior work has demon-
strated that optimization-based methods, which update net-
work parameters on each image input, work well for im-
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age generation [32, 34, 43]. Several methods use CLIP [23]
as a constraint to guide the embedding features of pre-
dicted images [1, 5, 8, 20]. Inspired by the success of
pretrained text-to-image generation frameworks [25, 26,
30], researchers have also proposed methods to finetune
these models for image editing (e.g., Imagic [9], Dream-
booth [29], SINE [42], Textual Inversion [6]). Compared
to feed-forward transformation methods [2, 40], these mod-
els retain more information from the original image since
they take the whole image instead of just a structure map as
additional guidance. However, as we will show in Section
4.2, some image content such as background or irrelevant
attributes of target objects may still be changed in this pro-
cess. In addition, the inference time of these optimization-
based methods is much longer than feed-forward transfor-
mation methods due to image-specific finetuning.

3. IIR-Net: Text-to-Image Editing by Image
Information Removal

Given an input image x and its corresponding text
prompt S, our task aims to create the desired content ac-
cording to S while preserving the text-irrelevant content of
x. To achieve this, we incorporate the original image x as
an additional control to pretrained text-to-image generation
model, which is discussed in Section 3.1. However, since
the model is trained on the image reconstruction task, the
incorporation of the original image can lead to the identical
mapping issue, in which the model simply maps the input
image as the output. To address this challenge, we propose
our image information removal module in Section 3.2. Fig-
ure 2 provides an overview of our approach.

3.1. Conditional Latent Diffusion Model

As discussed in the Introduction, preserving the text-
irrelevant content of the original image is critical for text-
to-image editing. Leveraging the structural guidance as an
additional hint (e.g., ControlNet [40], MaskSketch [2]) can
lead to significant information loss from the original image.
To address this, we introduce the original image as addi-
tional control to our model, which preserves all information
from the input image. In this section, we first introduce
the pretrained text-to-image generation model, Stable Dif-
fusion [28], as preliminaries to our method, and discuss our
IIR component in Section 3.2.

Given an input image x0 and its corresponding noisy im-
age xT , Stable Diffusion [28] consists of a series of equally
weighted denoising autoencoders ϵθ(xt, t), where t ranges
from 1 ∼ T . The deonising autoencoders are trained to
predict the noise ϵ in xT according to time step t and noisy
input xt. The objective function of Stable Diffusion is

LLDM := EE(x),ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t)||22

]
, (1)

where E is the pretrained encoder of VQGAN [4] to en-
code image xt to latent features zt, and vice versa. For
conditional generation, the denoising autoencoders ϵ take
τθ(y) as additional input, where τθ(y) represents a domain-
specific encoder to extract feature embeddings from the
condition y. This condition y represents elements like text
prompts and semantic maps, among others. Given image-
condition pairs, the Conditional Latent Diffusion Model
(CLDM) is optimized by

LCLDM := EE(x),y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, τθ(y))||22

]
,
(2)

where τθ, ϵθ are jointly optimized. In our model, the condi-
tion y consist of text descriptions S and the original image
x0 and is defined as

τθ(y) := {τθ1(S), τθ2(R(x0))}, (3)

where we use the CLIP model [24] as τθ1(·) to encode the
text descriptions S and use ControlNet [40] as τθ2(·) to en-
code the feature R(x0). R(·) denotes our image information
removal module, which we discuss in the next section.

3.2. Image Information Removal

As discussed in the Introduction, training solely on im-
age reconstruction can lead to the identical mapping issue.
Previous approaches address this issue by learning disen-
tangled features [7] or attribute classifiers [14]. However,
these methods require annotated attributes, restricting their
application scenarios. To overcome this challenge, we pro-
pose our image information removal module, which incor-
porates color and texture removal operations. Our removal
operations effectively mitigates the identical mapping issue
without the requirement for additional annotated labels.
Color-related Information Removal. In Figure 2 (B), we
present our color information removal operation. Given the
input image x0 and its corresponding text prompt S, we
employ Grounded-SAM [10, 18] to localize the RoI. The
color information of x0 is then erased by

x′
0 = rgb2gray(x⊙mRoI) + x⊙ (1−mRoI), (4)

where mRoI is the Grounded-SAM segmentation mask.
Through the application of color-related information re-

moval to the input image x0, our model demonstrates pro-
ficiency in color-related editing tasks, such as transforming
a ”white airplane” into a ”green airplane.” However, as de-
picted in Figure 5, the model encounters challenges when
attempting to modify texture-related information, such as
changing ”lawn” to ”sand.” To address this limitation, we
introduce our texture-related information removal module.
Texture-related Information Removal. We eliminate the
texture-related information by adding noise to the image
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Figure 2. IIR-Net Overview. Our model mainly consists of two modules: (A) Conditional Latent Diffusion Model: We introduce the
original image x as additional control to our model to preserve the text-irrelevant features of x. See Section 3.1 for detailed discussion; (B)
Image Information Removal Module: We erase the image information mainly by two operations. First, we convert RGB values to the gray
values in the RoI to exclude the color information. Second, we add Gaussian noise to the input image to partially erase the texture-related
information. This module is applied to address the identical mapping issue. See Section 3.2 for detailed discussion.

condition x′
0 of our model, denoted by

q(x′
K |x′

0) =

K∏
k=1

q(x′
k|x′

k−1); (5)

q(x′
k|x′

k−1) = N (x′
k;
√

1− βkx
′
k−1;βkI), (6)

where k denotes the time step applied to x′
k, which is dif-

ferent from the time step t applied to xt. Note that xt is
obtained by adding noise to the original image x0 in diffu-
sion models, whereas x′

k is obtained by adding noise to the
image condition x′

0 in diffusion models. During training we
randomly sample x′

k from {x′
0, . . . , x

′
K}.

While x′
k inherently preserves the structure information

of x0, we find that explicitly incorporating additional struc-
tural guidance, such as edges, helps the model better cap-
ture structural information. Thus, we concatenate x′

k with
the predictions of a Canny Edge detector C(x0). Thus, the
output of our image information removal module is:

R(x0) = [x′
k,C(x0)] . (7)

Given the output of our image information removal mod-
ule R(x0), the final objective of IIR-Net is defined as:

LIIR−Net := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ1(S),

τθ2(R(x0)))∥22
]
.

(8)

4. Experiments
4.1. Datasets and Experiment Settings

Datasets. We evaluate the performance of our model on
three standard datasets, CUB [35], Outdoor Scenes [11],

and COCO [17]. CUB [35] is contains 200 bird species
that we split into 8,855 training images and 2,933 test im-
ages. Ourdoor Scenes [11] contains 8,571 images captured
from 101 webcams, with each webcam collecting 60∼120
images showcasing different attributes like weather, season,
or time of day. COCO [17] contains 82,783 training images
and 40,504 validation images. Following [9], we randomly
select 150 test images from each dataset to evaluate the per-
formance of each method.

Metrics. Following [9], we adopt the perceptual metric
LPIPS [41] and CLIP score [23] as our quantitative metrics.
LPIPS measures the image fidelity and CLIP evaluates the
model’s editability. Additionally, we perform quantitative
experiments by user study and inference time to evaluate
the effectiveness and efficiency of our model.

Baselines. We compare IIR-Net with three state-of-the-
art approaches: Text2LIVE [1], Imagic [9], and Control-
Net [40]. For Text2LIVE, we set the optimization steps
to 600. For Imagic, both the text embedding optimization
steps and model fine-tuning steps are set to 500. We sample
the interpolation hyperparameter η from 0.1 to 1 with a 0.1
interval, and the guidance scale is set to 3. For ControlNet
and IIR-Net, we generate images with a CFG-scale of 9.0,
and DDIM steps of 20 by default.

Implementation Details. We initialized our model weights
from Stable Diffusion 1.5 [28] and ControlNet [40]. Dur-
ing training, we applied a batch size of 8 and a maxi-
mum learning rate of 1 × 10−6. We finetuned our mod-
els approximately 100 epochs on the CUB [35] dataset,
and around 5 epochs on the Outdoor Scenes [11] and
COCO [17] datasets. The training process was parallelized
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Figure 3. Qualitative comparison on CUB and Ourdoor Scenes. From top to bottom: input image, Text2LIVE [1], Imagic [9], Control-
Net [40], and ours. Generated images have 512 pixels on their shorter side. See Section 4.2 for discussion.

on 2 NVIDIA RTX-A6000s. To adapt the image conditions
in our model, we configured the channel of the image en-
coder block to 4, with 3 channels for RGB images and 1
channel for the edge map. We finetuned the Stable Diffu-
sion decoder for experiments on CUB, as these images pri-
marily focus on various birds with a consistent style. We
froze the Stable Diffusion Decoder for the Ourdoor Scenes
and COCO datasets, since these datasets comprising natural
images with diverse objects and varying styles.

4.2. Qualitative Results

Entire-image Editing on the CUB and Outdoor Scenes
Datasets. Figure 3 presents a qualitative comparison of the
edited images generated by our model and the baselines. In
Figure 3 (A), we present a comparison on the CUB [35]
dataset. We observe that our model can accurately manip-
ulate parts of the bird while preserving the text-irrelevant
content of the original image. For example, in the first col-
umn of Figure 3 (A), while baselines such as ControlNet
and Imagic can recognize “yellow” and “blue” from the text

prompt, they both fail to effectively apply them to the cor-
rect corresponding parts of the bird. Imagic generates a bird
with a blue crown and yellow wings, while ControlNet gen-
erates a blue head and a red breast. In constrast, our model
accurately edits the bird by parts according to the prompt
and produce a bird with blue wings, yellow body, and red
crown. In addition, we observe that the background of im-
ages generated by Imagic and ControlNet has been changed.
This is due to the fact that Imagic and ControlNet do not di-
rectly use the original image as their input. E.g., Imagic
optimizes the text embeddings to get features that reflect
the attributes of the original image, and ControlNet uses the
Canny Edge map as input. Thus, it is challenging for these
method to preserve the text-irrelevant content of the origi-
nal image. In contrast, our model takes the original image
as input and only erases the text-relevant content, thus pre-
serving the text-irrelevant content effectively.

In Figure 3 (B), we present a comparison on the Out-
door Scenes [11] dataset. Consistent with our findings on
the CUB dataset, we observe that baselines like Imagic and
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Figure 4. Qualitative comparison for various editing tasks on the COCO dataset. From top to bottom: color editing, scene attribute transfer,
texture editing, and style transfer. Generated images have 512 pixels on their shorter side. Objects that are the target of modification are in
red bounding boxes and whereas objects that should be preserved are in green bounding boxes. See Section 4.2 for discussion.

ControlNet tend to modify the text-irrelevant contents of
the original image, such as the textures and background,
while Text2LIVE only introduces limited visual effects to
the original image and may fail to generate images aligned
with the text descriptions. For example, in the second col-
umn of Figure 3 (B), images produced by Imagic and Con-
trolNet are well aligned with text descriptions (“summer,”
“daylight”), but they introduce unexpected objects such as
trees or a lake to the image. In contrast, Text2LIVE pre-
serves the original image well, but fails to align with text
descriptions, as seen with the snow-covered field in sum-
mer. However, our method effectively modifies the desired
content, such as changing “winter” to “summer,” while pre-
serving the original content of the image.

Region-based Image Editing on COCO. Unlike object-
centric datasets such as CUB and Outdoor Scenes, COCO
images can contain complex scenes with many objects, yet
only parts of the input image may require modification.
Thus, we apply Grounding-DINO [18] and SAM [10] to
localize the Region of Interest (RoI) that requires editing2.

Figure 4 presents a qualitative comparison of our method
and prior work on various image editing tasks. We find that

2Since Text2LIVE and Imagic automatically localize the RoI, we apply
Grounding-DINO and SAM to ControlNet and our method.

our method produces images that are well-aligned with the
text descriptions while non-edited components better repre-
sent the original images. E.g., in the color editing task, al-
though Imagic and ControlNet generate a blue bus accord-
ing to the text prompt, Imagic changes the original shape
of the bus and ControlNet modifies the bus’ texture. In con-
trast, our method only modifies the color attribute while pre-
serving irrelevant attributes. Furthermore, our model gener-
ates images that appear more natural and visually appealing.
E.g., in the scene attribute transfer task, the visual effect of
“sunset” brought by our model is naturally aligned with the
original image, whereas Text2LIVE introduces obvious ar-
tificial effects to the airplane.

Finally, we evaluate our model on tasks where the orig-
inal ControlNet performs well, such as texture editing and
style transfer. Our results show that adapting text-to-image
generation models to image editing tasks does not notably
compromise their capabilities. For example, in the style
transfer examples on COCO images our method still retains
the ability to transfer a photorealistic image to an artistic
style. See the supplementary for additional examples.

Ablation Study. In Figure 5, we provide ablation study
of IIR-Net. We find that without our unsupervised image
content removal mechanism, the model always outputs the
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decreasing noise

Target Text: “Tree on sand”

Full Image as input

Figure 5. Ablation Study. We perform experiments to evaluate the effectiveness of our color removal and texture removal operations.
Images generated without our image information removal module are outlined by the blue bounding box. See Section 4.2 for discussion.

input image as the predicted image, i.e., the identical map-
ping issue [12]. E.g., the images in the blue bounding box
remain white airplane and green grass, showing a lack of
alignment with the text descriptions. By incorporating the
color removal mechanism (see images with low noise level),
our model performs well on tasks such as color editing. For
example, when changing the airplane’s color from white
to green, our model preserves the most of the airplane’s
attributes, only modifying the color. We observe that the
color removal mechanism can find texture editing challeng-
ing. For example, as seen in the second row of the figure,
the images generated with low noise level still exhibit the
grass texture instead of the intended “sand” texture. There-
fore, we incorporate noise augmentation to the input images
to better handle such editing tasks. As shown in the second
row, our model successfully modifies the grass texture to
sand under high-level noise conditions. In practical applica-
tions, users can adjust the noise level according to different
editing tasks to achieve optimal performance.

4.3. Quantitative Results

Editability-fidelity Tradeoff. Table 1 reports our quantita-
tive results on CUB, Outdoor Scenes, and COCO. As ob-
served in our qualitative experiments, our model achieves a
better tradeoff between image fidelity and editability com-
pared to other state-of-the-art methods. E.g., our model
achieves the best LPIPS scores (0.138 and 0.301) and com-
parable CLIP scores (29.57 and 24.30) on CUB and COCO.
In Outdoor Scenes, our model achieves the highest CLIP
score and the second best LPIPS score. Text2LIVE achieves
better LPIPS score than our method on Outdoor Scenes.
However, it may due to the fact that Text2LIVE mainly aug-
ment the scenes with new visual effects, rather than directly
modifying the attributes of the scenes. E.g., Text2LIVE
fails to change the grassland to a snowy landscape or con-
vert lush trees to bare ones in the scenes.

User Study. We conducted a user study to quantitatively
evaluate the performance of IIR-Net, as shown in Table 2.
We randomly selected 30 images from COCO and applied
each model to generate the modified images, resulting in a
total of 120 generated images. Each image was annotated
three times by users and we asked our annotators to judge
whether the image is correctly manipulated based on the
text guidance while preserving the text-irrelevant content of
the original image. In the table, we report that IIR-Net sig-
nificantly outperforms baselines. See the supplementary for
additional details on our user study.
Inference Time Table 2 presents a comparison of the in-
ference time and their standard error using the same Stable
Diffusion v1.5 [28] backbone for Imagic, ControlNet, and
our method. All methods are benchmarked on a NVIDIA
RTX A6000 GPU. We find our method has significantly
faster inference times compared to Imagic, boosting infer-
ence speed by two orders of magnitude when processing
512×512 images. In addition, our method is approximately
50x faster than Text2LIVE. We note both ControlNet and
our method have around 5s inference time, demonstrating
that approach introduces negligible overhead to ControlNet.

5. Limitations & Broader Impacts.
Limitations. We identify three failure cases of our methods
in this section: First, the attributes of the original image are
likely to be modified in non-rigid image editing tasks. Sec-
ond, it is challenging for our method to change the bright-
ness of the input image drastically. Third, the target object
may be localized and segmented inaccurately. We present
examples of these three failure cases in Figure 6. As shown
in the top row, though our method can achieve non-rigid
image editing according to the input image and a modified
structural guidance, we observe that the model fails to map
some attributes to the correct parts. E.g., the bird of the
input image has a grey crown while the edited image gen-
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CUB Outdoor Scenes COCO
LPIPS ↓ CLIP ↑ LPIPS ↓ CLIP ↑ LPIPS ↓ CLIP ↑

Imagic [9] 0.406 27.03 0.551 22.85 0.567 21.53
Text2live [1] 0.162 30.37 0.218 22.64 0.495 25.11
ControlNet [40] 0.528 29.49 0.618 23.89 0.606 23.57
ours 0.138 29.57 0.479 25.45 0.301 24.30

Table 1. Quantitative experiments of image manipulation on CUB [35], Outdoor Scenes [11], and COCO [17] datasets. CLIP [23] is used
to evaluate the image editing performance and LPIPS is applied to evaluate image fidelity. Generated images have been resized to 224×224
resolution for CLIP score. We use the “ViT-B/32” version of CLIP. See Section 4.3 for discussion.

Input Image Structure Guidance Edited Image Structure Guidance Edited Image

Daylight, sunny

A bird with a short 
beak.

A green chair on the 
right.

Prompt

Figure 6. Failure cases include inconsistencies with the original
image in non-rigid image editing task (top); challenges in notably
modifying the brightness of the image (middle), and inaccurate lo-
calization or segmentation (bottom). See Section 5 for discussion.

Method User Preference Inference Time

Text2LIVE [1] 30.0% 281.6±1.72s
Imagic [9] 23.3% 483.4±1.31s
ControlNet [40] 33.3% 5.0±0.04s
IIR-Net (ours) 68.3% 5.0±0.03s

Table 2. We randomly select 30 images from COCO for user
study and speed evaluation. Top row reports user judgments on
the correctness of the image manipulation. Bottom row reports
speed for our method v.s. the baselines. Our method has negligi-
ble overhead compared to ControlNet, and is significantly faster
than Text2LIVE and Imagic. See Section 4.3 for discussion.

erate a bird whose head is gray. The color of wings is also
slightly different from the input bird. In the middle row,
we find that our model fails to change the brightness of the
image in some cases. E.g., the input image is a night view.
Therefore, the brightness of the image is low in this im-
age and the model tend to reconstruct an image with a low
brightness even if the target text is “daylight,” “sunny.” In

the bottom row, we observe that our segmentation module
fails to accurately localize the target object according to the
prompt due to text ambiguity. While the prompt specifies
the chair on the right-hand side, our model modifies the at-
tributes of the chair on the left-hand side.

Broader Impacts. Our model is designed to perform im-
age editing according to user-provided language descrip-
tions. Thus, it enables modification of attributes such as
colors, textures, or styles in the original images. As other
image generation and editing approaches, our model may
be used to synthesize images that contains misinformation.
Therefore, it is important for practitioners to review and
control how images are manipulated to avoid misinforma-
tion. Further research on detecting machine-generated im-
ages is needed to mitigate this potential issue.

6. Conclusion

In this paper, we propose IIR-Net, a text-to-image edit-
ing model that incorporates the original image by selec-
tively erasing the image information. IIR-Net mainly con-
sists of two stages: an conditional diffusion model that takes
the original image as additional control, and an image in-
formation removal module to address the identical map-
ping issue. We demonstrate that IIR-Net outperforms the
state-of-the-art in both qualitative and quantitative evalua-
tions on CUB, Outdoor Scenes, and COCO datasets. For
example, compared to Imagic, IIR-Net improves the LPIPS
score from 0.57 to 0.30 and the CLIP score from 21.53 to
24.30 on COCO, with a speed improvement of two orders
of magnitude. We also use qualitative examples to demon-
strate the effectiveness of our model on various image edit-
ing tasks, validating that our model can modify the target
attribute according to language descriptions while preserv-
ing the text-irrelevant content of the original image well.
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