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Abstract

Point clouds are often sparse and incomplete in real-
world scenarios. The prevailing methods for point cloud
completion typically rely on encoding the partial points and
then decoding complete points from a global feature vector,
which might lose the existing patterns and elaborate struc-
tures. To address these issues, we propose WalkFormer, a
novel approach to predict complete point clouds through
a partial deformation process. Concretely, our method
samples locally dominant points based on feature similar-
ity and moves the points to form the missing part. Since
these points maintain representative information of the sur-
rounding structures, they are appropriately selected as the
starting points for multiple guided walks. Furthermore, we
design a Route Transformer module to exploit and aggre-
gate the walk information with topological relations. These
guided walks facilitate the learning of long-range depen-
dencies for predicting shape deformation. Qualitative and
quantitative evaluations demonstrate that our proposed ap-
proach achieves superior performance compared to state-
of-the-art methods in the 3D point cloud completion task.

1. Introduction
The advancement of laser scanners and depth cameras

has led to the widespread of 3D point cloud data, to describe
real-world objects flexibly and conveniently. However, oc-
clusion, transparency, and limitation in sensor resolution of-
ten result in the acquisition of incomplete point clouds [4].
The completed shapes have significant values that are es-
sential for downstream tasks [6, 7, 13, 21, 22], and thus re-
covering complete 3D models from partial shapes remains
an issue.

To predict complete shapes, PCN [48] is the first method
that directly operates on the raw point clouds. Building
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Figure 1. Illustration of the completion process. Our WalkFormer
can adaptively sample the points from partial input to complete the
point cloud. Meanwhile, a set of walks (blue points) on the point
cloud provides rich information to guide the sampled points (red
points) moving towards the missing regions (yellow points).

upon PCN, some efforts [25,32,34,39,47] were focused on
the encoder-decoder architecture in a coarse-to-fine man-
ner. These methods encode incomplete input into a global
feature vector and subsequently decode it to a coarse point
cloud that represents the overall structure for further refine-
ment. However, the challenge lies in effectively decod-
ing the holistic shape along with fine-grained details, as
the information loss during the max-pooling operation used
for feature extraction. SoftPoolNet [31] introduced a soft-
pooling operation to mitigate this issue by selecting mul-
tiple values instead of solely dependent on the maximum
value. More recent work, such as FBNet [42], takes feed-
back features from high-level stages to refine the output re-
currently. These generative models neglect the transforma-
tion in 3D space, which are deficient in detail generation
and inevitably suffer from the aforementioned problems.

Some deformation-based methods [35, 36, 46] propose a
different approach to overcome this difficulty. Rather than
transforming 2D grids into 3D point clouds, these meth-
ods focus on a deformation process that occurs between 3D
shapes. PMP-Net [35] and PMP-Net++ [36] predict a set
of displacement vectors that describe the movement from
an incomplete point cloud to the target one. Nevertheless,
they move every point in the source input during each defor-
mation step and thus often fail to preserve known structures.
Additionally, the popular feature learning schemes for point
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clouds are based on local spatial relationships, points in
a local region will share similar features. Although P2P-
NET [46] introduces noise augmentation for a richer variety
of transformations to make the points leave their original
positions, the uncertainty in noise and lack of long-range
dependencies also limit their ability to predict accurate long
displacements. Consequently, this results in sparse points
in the missing regions and uneven distribution.

In this paper, we present a novel deformation-based ar-
chitecture for point cloud completion, namely WalkFormer,
which moves only the partial points in each deformation
step. Specifically, our proposed method first adopts a
Neighbour Similarity Sampling module to down-sample the
points gathered in a local region based on their feature sim-
ilarity as shown in Figure 1. These sampled points will be
moved in the subsequent deformation step without losing
the initial structures. Motivated by the success of nonlocal
mechanism [29,40,43], WalkFormer conducts guided walks
that contain sequences of points initiated from the sampled
points to enrich feature diversity by long-range topology
correlations, enabling the model to predict point displace-
ments at longer distances. In addition, we propose a Route
Transformer module, which takes topology-aware walk fea-
tures into consideration to get a precise and consistent mov-
ing path. With this deformation approach and learned walk
features, WalkFormer is capable of uniformly recovering
the missing parts and preserving the existing structures. The
main contributions of our work can be summarized as fol-
lows:

• We propose WalkFormer, an end-to-end model that
improves the performance of point cloud completion
through a multi-step partial deformation process.

• We introduce a new sampling method that ensures de-
tail preservation in the original point cloud. With this
strategy, our model is encouraged to focus on the rep-
resentative structure information.

• We design the Route Transformer, which effectively
aggregates long-range walk features across deforma-
tion steps to guide the points moving. In this module,
we take previous displacements into current step and
relate them via a topology-aware transformer module.

2. Related Work
Point Cloud Learning. Learning-based point cloud

analysis has been widely studied in recent years, many ap-
plications successfully take 3D coordinates as inputs for a
wide range of tasks such as shape classification [7], seman-
tic segmentation [13], and point cloud registration [6].

PointNet [21] and PointNet++ [22] first use symmetrical
operations to extract features on point clouds without vox-
elization. Later, a number of approaches take advantage of

the 3D convolutions for feature learning. PointCNN [12]
uses a χ-conv that automatically adapts the convolution ker-
nel to 3D point clouds. RS-CNN [15] defines a continuous
convolution to process point clouds. ConvPoint [1] learns
the convolutional function by processing partial structures
selected from a spatial sphere. As the graph is a natural
way to represent the neighbourhood of each point, Wang
et al. [30] propose DGCNN that dynamically updates the
graph with local points. In addition, [10, 11] associate
spectral-based GCN with GAN for accurate point cloud
generation.

Unlike the convolution-based or graph-based methods
that are proposed for local feature learning, PointASNL
[43] exploits the point nonlocal cell to query nonlocal points
in the entire point cloud. Moreover, CurveNet [40] groups
sequences of points on the point cloud for long-range de-
pendencies learning. GraphWalks [20] proposes an autore-
gressive model aimed at selecting vertices to approximate
the shortest path on both mesh and point cloud. In our work,
long-range features are aggregated by guided walks to facil-
itate the point completion task.

Point Cloud Completion. Early attempts [3, 23, 37] in
shape completion simply migrated mature 2D completion
methods (voxelization and convolution) to 3D space, result-
ing in time-consuming computation and high memory us-
age. Therefore, some methods [17, 24, 26, 49] exploit point
representation learning and directly take raw point clouds
as inputs to generate complete shapes. For instance, Fold-
ingNet [45] performs the folding operation to deform a 2D
grid lattice onto a 3D surface in an auto-encoder architec-
ture. SA-Net [34] proposes hierarchical folding to generate
point clouds with regional structure details progressively.
On the other hand, PMP-Net [35] and PMP-Net++ [36] con-
sider the deformation that occurs between 3D point clouds,
from the partial input to the complete one. Besides, gen-
erative models such as GAN and VAE, are also adopted in
point generation. PF-Net [8] produces the missing struc-
tures by integrating multi-stage completion with adversar-
ial loss. Wang et al. [27, 28] design a generator with cas-
caded refinement to synthesize high fidelity objects. Au-
toSDF [18] relies on Vector-Quantized VAE to model 3D
shape as a non-sequential autoregressive distribution.

With the transformer architecture becoming successful
in point cloud learning [7, 38, 50], Yu et al. [47] formu-
late the completion task as a set-to-set translation problem.
Similarly, SnowflakeNet [39] employs a skip-transformer
to decode the growth procedure of point clouds. Based on
upsample transformer, SeedFormer [51] stores regional fea-
tures into patch seed for detailed shape recovery. Different
from the methods that directly reconstruct a set of points,
our proposed WalkFormer integrates the transformer struc-
ture into the partial deformation approach, specifically fo-
cusing on predicting the point displacements in 3D space.
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Figure 2. The overall architecture of our WalkFormer framework. (a) In each deformation step, the Encoder extracts point-wise features
from the partial input point cloud. Subsequently, walk features from the Point Walk are applied to predict a set of displacement vectors
from the original input to a complete point cloud. (b) The Point Walk module initiates by sampling several points as starting points to
construct walks in the feature space. The walk features are then refined by Route Transformer, which leverages information from both the
current and previous steps.

3. Method

3.1. Overview

The pipeline of WalkFomer is illustrated in Figure 2(a).
In this section, we introduce the proposed WalkFomer for
point cloud completion in detail.

Encoder. Given a partial point cloud set P , denoted as
P = {pi}Ni=1 ∈ RN×3, where each point is represented
by its 3D coordinate, the WalkFormer stacks several set ab-
straction and feature propagation layers from [22] to extract
per-point features. Moreover, point transformer blocks [50]
are employed to exchange information within localized fea-
tures. Consequently, a set of per-point features is obtained,
denoted as F = {fi}Ni=1 ∈ RN×C , where C is the feature
dimension.

Deformation-based Architecture. We implement the
proposed WalkFormer in a deformation-based approach in-
spired by PMP-Net [35, 36]. It aims to complete the par-
tial point cloud through a multi-step point moving pro-
cedure with a coarse-to-fine searching radius. The net-
work prediction is a set of displacement vectors ∆P t =
{∆pti}Ni=1 ∈ RN×3 for total T steps, such that the com-
plete point cloud P ′ = {p′j}Nj=1 ∈ RN×3 is produced
by {p′j} = {pi +

∑T
t=1 ∆pti}. Rather than moving all

points at each step, our WalkFormer only samples a sub-
set of Nm points for moving, also denoted as the starting
points P t

s = {pti}
Nm
i=1 ∈ RNm×3, to construct walks in

the point feature space F . These walks aid in inferring
the moving track of the starting points during the defor-
mation process. In each deformation step, the positions
of the starting points are updated by adding the coordinate
offsets obtained from the Displacement Prediction module
{pti} = {p

t−1
i + ∆pt−1

i }. This iterative update scheme al-
lows for the generation of a complete point cloud.

3.2. Point Walk

As shown in Figure 2(b), the point walk module is
devised to generate multiple walks that connect different
points with informative features. We ignore the superscript
t in the same step for convenience. Given the per-point fea-
tures F extracted from the Encoder layer, a directed graph
G = (F,E) is constructed, where F = {f1, f2, ..., fN} and
E ⊆ V × V denotes the set of edges. The edges are con-
structed using the k-nearest neighbours (K-NN) on coordi-
nates P . By leveraging extracted features, the point walk
module aims to discover walks on this graph that capture
the topology relationship and establish long-range depen-
dencies for larger receptive fields, facilitating our model to
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better predict the spatial deformation.
Neighbour Similarity Sampling. The initial step of

walk construction needs appropriate starting points. How-
ever, existing sampling algorithms such as farthest point
sampling [22] and minimum density sampling [14] are
prone to select points from the outer regions that pos-
sess distinctive geometric information, moving these points
may discard the existing structures and destroy the inher-
ent property of the source point cloud. To overcome these
challenges, we propose Neighbour Similarity Sampling to
downsample a set of Nm points as the starting points for
the walks. Given the input point cloud, we first employ
farthest point sampling (FPS) to obtain a relatively uni-
form set of sampled points {pi}Nm

i=1 ∈ RNm×3. Treating
these points as centroids, we group K points within a ra-
dius of the centroids by the ball query algorithm. For each
group of points {pi,1, ..., pi,k, ..., pi,K}, we query their re-
spective features {fi,1, ..., fi,k, ..., fi,K} to calculate pair-
wise affinities based on cosine similarity and take the point
with largest affinity:

pi,k = argmax
k

K∑
j=1

⟨fi,k, fi,j⟩
∥fi,k∥2∥fi,j∥2

. (1)

Here, ∥ · ∥2 denotes L2 norm, ⟨·, ·⟩ denotes inner product,
and pi,k is sampled as the starting point. Hence, points with
similar features to their neighbours will be sampled. These
points maintain the dominant information of local structures
which are suitable for the starting points.

Point Selector. A walk (of length l) in the graph G is
defined as a non-empty sequence of vertices, such that w =
{f1, ..., fl} ∈ Rl×C , where each vertex fi is connected to
its adjacent vertex fi+1. Following the practice of [20, 40],
we employ a policy π(·) that guides the selection of the next
point during the walk:

fi+1 = π(fi), 1 <= i <= l − 1. (2)

Specifically, the policy π(·) determines how to select the
next point based on a selection logits α. Take the current
point feature fi, we calculate the selection logits on neigh-
bouring point featuresfj by using the attention mechanism:

αi =
β(fi)

T γ(fj)√
dk

, j ∈ N (i). (3)

Here, N (i) denotes the k-nearest neighbours, β and γ are
linear mapping functions and dk is the dimension of the in-
put features. The policy will then select the highest score
φ(αi) among K neighbours:

π(fi) =

K∑
1

(φ(αi) · N (i)), (4)

where · denotes broadcast multiplication and φ is gumbel-
softmax [9, 16, 44] to replace the standard softmax which
activates effective gradient flow. Relying on the constructed
walks, our model is allowed to exploit the topology infor-
mation in long-range regions.

Figure 3. Detailed structure of the Route Transformer.

Route Transformer. Point cloud completion in a
coarse-to-fine manner commonly fuses features from dif-
ferent stages to refine the current features. Among these
methods [19, 39, 42], they often take the entire point cloud
into account and overlook the details. Differently, in our
method, the generated walk in each step contains a sequen-
tial arrangement of points. Furthermore, every moving path
counts throughout the whole route, previous moving infor-
mation is needed to decide the next move. Therefore, we
introduce the Route Transformer that incorporates walk fea-
tures from the previous step into the current step, which al-
lows for predicting a more consistent moving path.

Specifically, Route Transformer update the interme-
diate walk features ŵt

i = {x̂t
i, x̂

t
q,1, x̂

t
q,2, ..., x̂

t
q,l−1} ∈

Rl×C from Point Selector module to wt
i =

{xt
i, x

t
q,1, x

t
q,2, ..., x

t
q,l−1} ∈ Rl×C . We denote the

starting point features x̂t
i, x

t
i as ŝti, s

t
i. As described in

Figure 3, we first use the current starting point features ŝti
as queries and st−1

j from the previous step as keys for cross
attention, and then Route Transformer concatenates the
walk features ŵt

i with wt−1
j to generate the values vtij . To

better focus on the points with similar topology structures,
attention score aij is computed between each starting point
and its K-nearest starting points including self-loop:

aij =
exp(M(ŝti|θu)⊖M(st−1

j |θv))∑K
n=1 exp(M(ŝti|θu)⊖M(st−1

n |θv))
, (5)

where M denotes the MLPs with parameter θ, subscript u
and v indicate two MLPs with different parameters, and ⊖
denotes the relation function (i.e., subtraction). Finally, up-
dated walk features are obtained by the weighted sum of the
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corresponding values:

wt
i =

∑
j∈N (i)

aij ⊙M(vtij |θr). (6)

Here, ⊙ denotes Hadamard product. As a result, walk fea-
tures from the last step are preserved and aggregated, the
proposed Route Transformer can adaptively query the path
and topology information from previous states to refine the
current walk features, which enables more accurate guid-
ance of the moving to the final destination.

3.3. Displacement Prediction

The displacement prediction module aims to use the
walk features to predict a set of displacement vectors for
the deformation. The common nonlocal operation [29]
computes the response based on pairwise relationships.
To explicitly guide the movement with current walks, we
achieve this more efficiently by concatenating the inner
relative features with the local feature. Given a starting
point pi with its feature xt

i and the updated walk fea-
ture wt

i = {xt
i, x

t
q,1, x

t
q,2, ..., x

t
q,l−1} ∈ Rl×C from Route

Transformer, we define the input feature:

xt
i
′
= {[xt

q − xt
i, x

t
i]|q ∈ W(i)}, (7)

where [·, ·] is the concatenation operation and W(i) indi-
cates the other point indices in the walk wt

i originating from
the starting point xt

i. Finally, we apply a shared MLP fol-
lowed by a hyperbolic tangent activation function to pro-
duce the 3D coordinate displacement vector ∆pti:

∆pti = tanh(MLP (xt
i
′
)). (8)

3.4. Loss Function

In previous studies [26,48], Chamfer Distance (CD) and
Earth Mover’s Distance (EMD) are the most widely used
optimization loss. Initially, we exploit Chamfer Distance
as our primary loss function due to its lower computation
complexity which calculates the nearest distance between
the entire output point cloud P ′ and the completed ground
truth Pgt:

LCD(P ′, Pgt) =
∑
x∈P ′

min
y∈Pgt

∥x− y∥+
∑

y∈Pgt

min
x∈P ′

∥y − x∥.

(9)
Besides, our proposed WalkFormer only moves partial

points in each deformation step, in order to match these
points with the missing part, we use partial matching loss
LPM [33] which takes ground truth Pgt to supervise the
moved starting points Ps

′ in a single direction:

LPM (Ps
′, Pgt) =

∑
x∈Ps

′

min
y∈Pgt

∥x− y∥. (10)

Therefore, the total training loss can be formulated as:

L =
∑
t

LCD(P t′, Pgt) +
∑
t

LPM (P t
s
′
, Pgt), (11)

where t denotes the deformation step.

4. Experiment
4.1. Implementation and Evaluation Metrics

Implementation. The WalkFormer adopts set abstrac-
tion and feature propagation layers [22] combined with the
point transformer [50] to encode the source point cloud into
point-wise features F ∈ RN×C , where N = 2048 and
C = 128. Then, the point cloud is down-sampled using
Neighbour Similarity Sampling with Nm = 1024 points as
the starting points for walks W ∈ RNm×l×C , where l = 6
is the walk length. The number of deformation steps is set to
5, with a searching radius [35] of {1.0, 1.0, 0.1, 0.1, 0.01}.

Evaluation Metrics. In line with the existing works [26,
41, 48], we evaluate the model performance using Chamfer
distance (introduced in Eq. 9). In addition, Earth Mover’s
Distance (EMD) [14, 27] is adopted to further evaluate the
uniformity of the predicted point clouds:

EMD(P1, P2) = min
ϕ:P1→P2

1

|P1|
∑
x∈P1

∥x− ϕ(x)∥2, (12)

where ϕ is a bijection.

4.2. Evaluation on Completion3D Dataset

Dataset. Completion3D [26] dataset is a widely-used
point cloud completion benchmark, including 28974 train-
ing models, 800 validation models, and 1200 test mod-
els from 8 categories. Each partial point cloud is gen-
erated by back-projecting 2.5D depth images from the
complete shapes into 3D. Both the partial and complete
shapes consist of 2048 points. We follow the same train-
ing/validation/testing split in Completion3D for a fair com-
parison, where the L2 Chamfer Distance results are cited
from the corresponding papers and the Earth Mover’s Dis-
tance results are implemented using their open source code.

Results. We evaluate the performance of our Walk-
Former against other recent point cloud completion meth-
ods, the quantitative results for each category are summa-
rized in Table 1 and Table 2. As shown in the table, our
model outperforms all counterparts in most of the categories
on both CD and EMD metrics. Compared to the second-
best method SeedFormer [51], WalkFormer achieves better
results, reducing the average CD by 0.38 and average EMD
by 0.11. As one of the few models using a point-moving
strategy, our WalkFormer outperforms PMP-Net [35] and
its variants PMP-Net++ [36] on all categories of this dataset,
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Figure 4. Visual comparison of point cloud completion results on the Completion3D dataset.

Table 1. Quantitative comparison of Completion3D dataset in
terms of L2 Chamfer Distance ×104 (lower is better).

Methods
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TopNet [26] 14.25 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82
PMP-Net [35] 9.23 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77
CRN [28] 9.21 3.38 13.17 8.31 10.62 10.00 12.86 9.16 5.80
VRC [19] 8.12 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78
PMP-Net++ [36] 7.97 3.25 12.25 7.62 8.71 7.64 11.6 7.06 5.38
Snowflake [39] 7.60 3.48 11.09 6.90 8.75 8.42 10.15 6.46 5.32
SeedFormer [51] 6.97 2.81 10.87 5.54 7.90 7.18 10.46 6.75 4.32

Ours 6.59 2.63 9.51 6.03 7.33 6.56 9.48 7.01 4.17

Table 2. Quantitative comparison of Completion3D dataset in
terms of Earth Mover’s Distance ×102 (lower is better).

Methods
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TopNet [26] 4.00 2.34 4.47 5.10 4.25 4.33 4.35 4.19 3.02
PMP-Net [35] 3.50 1.85 4.73 4.24 3.63 2.86 4.24 3.77 2.69
CRN [28] 3.46 1.96 4.43 3.15 3.91 3.87 3.64 4.14 2.58
VRC [19] 3.24 1.79 4.39 3.26 3.33 3.25 3.52 3.94 2.44
PMP-Net++ [36] 3.32 1.83 4.78 3.84 3.38 2.74 3.81 3.60 2.59
Snowflake [39] 2.99 1.57 4.20 3.23 3.08 2.77 3.44 3.29 2.38
SeedFormer [51] 2.86 1.55 4.28 2.79 2.94 2.58 3.17 3.44 2.16

Ours 2.75 1.46 3.71 3.02 2.87 2.40 3.13 3.35 2.09

especially regarding EMD metrics. The results demonstrate
the effectiveness of our approach to producing more uni-
formly distributed points and motivating the points to form
the missing parts.

In addition, Figure 4 visualizes the qualitative compari-

son results between other methods and WalkFormer. Com-
pared with the generative-based methods like Snowflake
[39] and SeedFormer [51] that decode complete point
clouds from the extracted features, our deformation ap-
proach can produce more complicated topology structures
as shown in the lamp and watercraft category. Other
deformation-based methods like PMP-Net++ [36], take the
airplane for example, points are more likely to stay around
the original places. Consistent with the EMD result, our
method can generate better shape completeness that outputs
abundant points in the missing airplane wing.

4.3. Evaluation on PCN Dataset

Dataset. We further conduct experiments on the PCN
[48] dataset. PCN dataset is derived by back-projecting
ShapeNet [2] model into a 2.5D partial model from 8 view-
points to simulate real-world incomplete data. For each
shape, the complete point cloud contains 16384 points
evenly sampled from the CAD model and the partial
point cloud contains 2048 points as input. However, the
deformation-based method requires the same resolution in
both input and output point clouds. We follow [35] to solve
this problem. In each step t, the partial input is concatenated
with a noise vector to make the output a little different:

{pti} ← {[pti, n̂]}, n̂ ∼ N(0, 1). (13)

Here, N(0, 1) is a standard normal distribution. Therefore,
we train our model with 2048 points and the final result
consists of 8 repeated predictions for testing.

Result. Tabel 3 and Tabel 4 list the quantitative results
on the PCN dataset. It shows that our proposed Walk-
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Table 3. Quantitative comparison of PCN dataset in terms of L1
Chamfer Distance ×103 (lower is better).

Methods
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TopNet [26] 12.15 7.61 13.31 10.09 13.82 14.44 14.78 11.22 11.12
PCN [48] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
PMP-Net [35] 8.66 5.50 11.10 9.62 9.47 6.89 10.74 8.77 7.19
VRC [19] 8.17 4.78 9.96 8.52 9.14 7.42 10.82 7.24 7.49
PMP-Net++ [36] 7.56 4.39 9.96 8.53 8.09 6.06 9.82 7.17 6.52
Snowflake [39] 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40
SeedFormer [51] 6.74 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85

Ours 6.79 3.73 9.17 8.26 7.28 5.35 8.69 6.12 5.74

Table 4. Quantitative comparison of PCN dataset in terms of Earth
Mover’s Distance ×102 (lower is better).

Methods
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TopNet [26] 3.04 1.93 3.02 3.20 2.97 3.65 3.54 2.41 3.64
PCN [48] 2.99 2.36 2.98 3.17 3.19 3.78 3.06 2.11 3.34
PMP-Net [35] 2.77 1.74 2.31 3.13 3.42 3.44 3.22 1.89 3.02
VRC [19] 2.27 1.59 2.05 2.88 2.56 2.57 2.49 1.74 2.32
PMP-Net++ [36] 2.42 1.70 2.21 2.87 2.93 2.71 2.40 1.79 2.75
Snowflake [39] 2.20 1.79 2.04 2.67 2.40 1.98 2.86 1.86 2.01
SeedFormer [51] 2.14 1.40 2.70 2.64 2.08 1.50 3.19 1.64 1.98

Ours 2.12 1.64 2.26 2.93 2.02 2.24 2.30 1.75 1.89

Table 5. Quantitative comparison of KITTI dataset in terms of
Fidelity Distance ×103 (lower is better) and Minimal Matching
Distance ×103 (lower is better).

PCN [48] GRNet [41] PoinTr [47] SeedFormer [51] Ours

FD 2.235 0.816 0.000 0.151 0.094
MMD 1.366 0.568 0.526 0.516 0.503

Former achieves competitive results compared to state-of-
the-art methods. It is noteworthy that our model is trained
on low resolution (2048 points) while testing on high res-
olution (16384 points), and thus this generalization ability
is capable of directly applying to various resolutions. Be-
sides, we visualize one completion process (2048 points) in
Figure 5. Although our model is trained with fewer points,
it is still able to recover the complete holistic shapes. Dur-
ing each deformation step, our method only moves a part of
the points and successfully maintains the overall structure.
More completion results on the PCN dataset can be found
in the supplement materials.

4.4. Evaluation on KITTI Dataset

Dataset. Real-world point cloud is sparse by LiDAR
scans. We follow the previous works [41, 51] to test our
model on the real-scanned KITTI dataset [5]. Due to the ab-
sence of ground truth, Fidelity Distance (FD) and the Mini-

Figure 5. Visualization of the completion results in different de-
formation steps on PCN dataset. Blue points are moved in each
step while the other points stand still.

Figure 6. Visual comparison of point cloud completion results on
the KITTI dataset.

mal Match Distance (MMD) results are used to evaluate the
performance.

Result. We fine-tune our model on ShapeNetCars and
adopt the same strategy used in the PCN dataset to tackle
the problem of different resolutions. The quantitative eval-
uations are listed in Table 5, our WalkFormer achieves the
best results in MMD and has a substantial improvement in
FD without merging the input. We also visualize the quali-
tative comparison in Figure 6, illustrating that our method is
able to complete fine-grained objects on real-scanned point
clouds while preserving the existing structures.

4.5. Ablation Study

In this section, we conduct a series of ablation experi-
ments on the Completion3D dataset with 2048 points.

Neighbour Similarity Sampling. We investigate the
influence of the proposed Neighbour Similarity Sampling.
The quantitative results in Table 6 show a performance im-
provement by our sampling method. To gain further insight
into the sampling process, we visualize the sampled points
in Figure 7. Nm = 128 points are sampled for a clear com-
parison. Farthest point sampling (FPS) [22] is capable of se-
lecting distant points to cover the whole set, while minimum
density sampling (MDS) [14] presents an even density dis-
tribution. However, both of them tend to select the bound-
ary points that will break the existing structures. Similar
observations can be found by analysing the robustness with
different numbers of sampled points Nm. When Nm is set
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Table 6. Ablation study on different sampling methods.

Methods CD-Avg EMD-Avg

FPS 6.86 2.91
MDS 6.72 2.73
NSS (Ours) 6.59 2.75

Nm Points (NSS) CD-Avg EMD-Avg

Nm = 512 6.55 2.94
Nm = 1024 6.59 2.75
Nm = 2048 6.98 2.88

Figure 7. Qualitative comparison of the sampling results. We
visualize the sampled points with a different colour.

to 2048, it means that every point is moved in each defor-
mation step. Conversely, when Nm is reduced, the results
demonstrate higher performance. This could be attributed
to the fact that a subset of points is retained to preserve the
holistic shape which makes the deformation process stable.

Route Transformer and Loss Function. To verify the
performance of Route Transformer, we conducted experi-
ments with five different variants, as presented in Table 7.
The first variation, NoPath, removes the Route Transformer,
thereby eliminating the skip connection between steps.
Other variants, Con and Add, substitute the Route Trans-
former with concatenation and element-wise addition, alone
with GRU and RPA from [35]. We also examine the ef-
fectiveness of Partial Matching loss (LPM) [33] and Point
Moving Distance loss (LPMD) [35], while the Baseline is
equipped with Route Transformer and solely employs the
Chamfer Distance as loss function. It can be observed from
the table that the features from the previous step could be
useful, while simply concatenating or adding features to-
gether will lead to unsatisfactory results. Among the vari-
ations, our method demonstrates superior performance by
adopting PM loss. Albeit with minor improvements to use
the PMD loss, it is a strict constraint and may also limit the
points to be moved over long distances.

Input Features. We study the impact of different input
features in Eq. 7, including both local and long-range re-
gions, the Route Transformer is disabled in this ablated ver-
sion. For point pi, we denote {fj |j ∈ N (i)} as neighbour

Table 7. Ablation study on Route Transformer and Loss Function.

Module CD-Avg EMD-Avg

NoPath 6.84 2.83
Con 6.94 2.87
Add 7.05 2.92
GRU 6.79 2.85
RPA 6.73 2.79

Baseline 6.77 2.82
Baseline w/ LPM 6.59 2.75
Baseline w/ LPMD 6.72 2.82

Table 8. Performance comparisons among different input features
for displacement prediction.

Input CD-Avg EMD-Avg

fi 7.11 3.04
fj , fi 7.19 3.02
fq, fi 7.04 2.98
fj − fi, fi 7.16 3.10
fq − fi, fi 6.84 2.83
fj − fi, fq − fi, fi 6.97 2.95

features from the Encoder in Sec. 3.1 and {fq|q ∈ W(i)}
as walk features from the Point Selector in Sec. 3.2. We
set the dimension of fj equal to fq and remove the Point
Walk module if there are no walk features as input. The
experiment results are shown in Table 8, from which we
can see that the original pairwise features fi can achieve a
considerable performance. Furthermore, the results demon-
strate a clear improvement achieved by aggregating walk
features. However, no obvious gain is obtained by neigh-
bour features as these features have already been extracted
in the Encoder layer.

5. Conclusion

This paper presents WalkFormer which completes the
point cloud by a multi-step partial deformation approach.
Benefiting from a new sampling operation, our method can
selectively move the points while preserving the existing
structures. By taking guided walks on the point cloud,
WalkFormer is able to model long-range interactions with
topology information for predicting accurate point displace-
ments. Extensive experiments on various datasets indicate
that our model improves the point cloud completion perfor-
mance compared with previous state-of-the-art methods.
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