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Abstract

Unsupervised domain adaptation (UDA), which aims to
transfer knowledge learned from a labeled source domain
to an unlabeled target domain, is useful for various cross-
domain image classification scenarios. A commonly used
approach for UDA is to minimize the distribution differ-
ences between two domains, and subdomain alignment is
found to be an effective method. However, most of the exist-
ing subdomain alignment methods are based on adversar-
ial learning and focus on subdomain alignment procedures
without considering the discriminability among individual
subdomains, resulting in slow convergence and unsatisfac-
tory adaptation results. To address these issues, we pro-
pose a novel deep subdomain alignment method for UDA
in image classification, which consists of a Union Subdo-
main Contrastive Learning (USCL) module and a Multi-
view Subdomain Alignment (MvSA) strategy. USCL can
create discriminative and dispersed subdomains by bring-
ing samples from the same subdomain closer while push-
ing away samples from different subdomains. MvSA makes
use of labeled source domain data and easy target do-
main data to perform target-to-source and target-to-target
alignment. Experimental results on three image classifi-
cation datasets (Office-31, Office-Home, Visda-17) demon-
strate that our proposed method is effective for UDA and
achieves promising results in several cross-domain image
classification tasks. Our code will be available: https:
//github.com/zhaoyewei/DSACDIC.

1. Introduction

Deep learning-based image classification methods have
demonstrated remarkable performance when the training
and testing data share a similar distribution [15]. However,
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their generalization ability declines significantly on the out-
of-distribution data due to domain shift [31]. Additionally,
these methods typically require a large amount of labeled
data for training, which can be both laborious and costly
to collect and annotate in practical scenarios. Hence, there
is a strong incentive to develop image classification meth-
ods that can effectively make use of the useful information
learned in the source domain. Unsupervised Domain Adap-
tation (UDA) can address this challenge by transferring the
knowledge acquired from a labeled source domain to a tar-
get domain without requiring any labeled data in the tar-
get domain. Thus, UDA-based image classification has at-
tracted increasing attention.

As shown in Figure 1a, there exists a notable distinc-
tion between the distribution of the labeled source domain
and the unlabeled target domain. A key point in UDA is
to formulate an appropriate metric for quantifying the di-
vergence between two different distributions. The aim is to
narrow down the distributional differences in order to facil-
itate the knowledge transfer from the source to the target
domain. We denote those methods as statistic matching-
based methods [17]. One particularly favored approach is
Maximum Mean Discrepancy (MMD), a global distribution
metric based on embedding distribution measures in Repro-
ducing Kernel Hilbert Space (RKHS). Figure 1b shows an
intuitive example of global distribution alignment. Due to
its simplicity and solid theoretical foundation, MMD has
been applied successfully in various problems.

Based on MMD, many methods [3, 23, 25, 34, 42] are
proposed to align the global distribution of different dis-
tributions, but without considering the relationship of sub-
domains. An inevitable situation with global distribution
alignment methods is that the samples from different sub-
domains will become intermingled. To address this issue,
recent works [21, 24, 40, 41, 46, 49] focus on aligning the
distributions of relevant subdomains within both the source
and target domains. As shown in Figure 1c, such a sub-
domain alignment strategy promotes the similarity of dis-
tributions within the same subdomain, thereby enhancing
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(a) Distributions of domains
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(b) Global alignment
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(c) Subdomain alignment

Figure 1. Schematic representation of the distribution of source domain and target domains and the different domain adaptation methods.
We use blue and red ellipses to represent the source and target domains, respectively, and use solid and dashed lines to distinguish between
the different categories. In addition, the black lines indicate the decision boundary.

the discriminability of individual categories. Notably, most
of the subdomain alignment methods are adversarial-based
and slow to coverage. DSAN [49], a statistic matching-
based subdomain adaption method, learns a deep trans-
fer network by aligning the relevant subdomain distribu-
tions of domain-specific layer activations across differ-
ent domains based on local maximum mean discrepancy
(LMMD). DSAN achieves remarkable performance in do-
main adaption. Nevertheless, it still has some limitations: 1)
DSAN uses LMMD to align the subdomain distributions so
that samples of the same subdomain can be pushed closer in
RKHS. However, it overlooks the strengthening of decision
boundaries among subdomains, leading to inter-subdomain
overlap. 2) All the samples, regardless of source domain
or target domain, are assigned equal importance in calcu-
lating the weight, causing hard samples with much noise in
target domain to have a dominant influence on the domain
adaptation process and harm the final performance.

As analyzed above, we should not only focus on aligning
subdomains but also build firm decision boundary among
subdomains to make deep network works better in classi-
fication. Furthermore, a new strategy is needed to make
source domain samples with ground truths and easy tar-
get domain samples play a prior role in LMMD. Motivated
by this, we propose our methods: Motivated by the analy-
sis above, we propose a novel deep subdomain alignment-
based UDA method. Drawing inspiration from supervised
contrastive learning [19], we pull closer the samples within
the same subdomain and simultaneously push away samples
from different subdomains in the RKHS, leading to more
discriminative and dispersed source subdomains. In addi-
tion, we design a new subdomain alignment strategy, which
considers not only the alignment between the source and
target subdomains but also the alignment between hard and
easy samples in target domains based on a dynamic thresh-

olding scheme. Such a multi-view subdomain alignment
strategy can reduce the bias of distinct target domain sam-
ples to the domain adaptation process. We evaluate the pro-
posed approach on three datasets, which shows the effec-
tiveness of our methods for cross-domain image classifica-
tion. We also provide ablation studies to validate the effec-
tiveness of the key components of our method. The pipeline
of our method is Figure 2. Our method follows the setting of
DSAN, and compared to the origin DSAN as well as other
baselines, our method achieves a remarkable performance
in three primary domain adaption datasets. Ablation studies
demonstrate the effectiveness of individual components of
our pipeline in adapting the model from source domain to
target domain. We also show that our method is more robust
to noise caused by target samples and, as a result, more sta-
ble than the origin baseline method. The main contributions
of our work are as follows.

• We propose a novel deep subdomain alignment-based
method for cross-domain image classification, which
considers not only the subdomain alignment but also
the discriminability and dispersity of subdomains used
for alignment.

• We design a multi-view subdomain alignment strat-
egy that considers both target-to-source and target-to-
target subdomain alignment to avoid distracter samples
in target domain causing bias during adaptation.

2. Relate Works

2.1. Deep Learning Based Domain Adaption

Deep domain adaption methods [4, 20, 44] aim to trans-
fer knowledge from labeled source domain to unlabeled tar-
get domain. Typically, those methods belong to two ap-
proaches [17]: 1) adversarial-based methods, those methods
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are mainly inspired by Generative Adversarial Net(GAN)
[8]. E.g. Domain Adversarial Neural Network (DANN) [7]
integrates a domain discriminator to distinguish source fea-
tures from target features and a feature generator to con-
fuse the domain discriminator. 2) Statistics matching-based
methods provide interpretable and complementary proper-
ties to hypothesis-induced distributed distance. E.g. Maxi-
mum Mean Discrepancy (MMD) [9,10,23] measures source
and target distribution distances in the probability space.
Contrastive Adaptation Network (CAN) [18] modeled and
optimized intra-class and inter-class domain discrepancy by
alternatively estimating the target domain labels through
clustering. Generally, adversarial-based methods achieve
better performance than statistic matching-based methods
[49], but properly designed statistic matching-based meth-
ods can also achieve remarkable performance and are solid
in the theoretical foundation.

Maximum Mean Discrepancy. MMD and its variants
are the most favored methods in statistic matching. Deep
Domain Confusion (DDC) [38] directly applies MMD with
a linear kernel to a feature layer. Gretton et al. proposes
multiple-kernel MMD (MK-MMD) with multiple kernels
to make feature space more distinguishable [11], and Deep
Adaption Network (DAN) [23] introduces MK-MMD to
measure the domain distances. Long et al. proposed Joint
Adaptation Network (JAN) [25] with Joint Maximum Mean
Discrepancy (JMMD) to measure the shift in joint distri-
butions. Center moment discrepancy (CMD) [47] further
matches the higher-order central moments of probability
distribution using order-wise moment differences. Coutry
et al. proposed Joint Distribution Optimal Transport (JDOT)
[3] and Deep JDOT applied it to deep network. [42] prove
that intra-class and inter-class distances are one fall and an-
other rise, thus proposing a novel discriminable MMD to
omit redundant parameters.

Subdomain Adaption. Subdomain adaption focuses
on accurately aligning the distribution of relevant subdo-
mains in both source and target domains [49]. Multi-
Adversarial Domain Adaptation (MADA) [29] captures
multimode structures to enable fine-grained alignment of
different data distributions based on multiple domain dis-
criminators. [21] proposed co-regularized domain align-
ment to construct multiple diverse feature spaces and align
source and target distributions in each of them individu-
ally. Zhu et al. proposed Deep Subdomain Adaptation Net-
work (DSAN) [49], which learns a deep transfer network
by aligning the relevant subdomain distributions of domain-
specific layer activations across different domains based on
the local maximum mean discrepancy (LMMD).

2.2. Contrastive Learning

Contrastive learning [14] learns representations by con-
trasting positive pairs against negative paris. Typically, con-

trastive learning methods learn representations by pushing
apart dissimilar data pairs while pulling together similar
pairs [36], and the standard approach for generating posi-
tive pairs without additional annotations is to create mul-
tiple views of each datapoint [19]. Noise contrastive es-
timation (NCE) [13] learns to distinguish data from noise.
[28] proposes InfoNCE estimate the mutual information be-
tween positive and associated negative pairs. [45] proposes
to use a memory bank to store instance class representa-
tion vector. When labels are accessible, leveraging labeled
data in contrastive representation learning improves perfor-
mance by guiding representations towards task-relevant fea-
tures [16, 19, 48]. Further, [19] extends the self-supervised
batch contrastive approach to the fully supervised setting
and proposes supervised contrastive learning to effectively
leverage label information by clusters of points belong-
ing to the same class being pulled together in embedding
space while simultaneously pushing apart clusters of sam-
ples from different categories.

3. Proposed Method

3.1. Overview

Pipeline of our method is illustrated in Figure 2. f is the
domain-specific feature representation and g is the classifier
prediction. Memory bank with size Ns+Nt stores features
and labels of source domain samples as well as features and
corresponding pseudo labels of easy samples from target
domain. When the size of memory bank reaches Ns +Nt,
we drop the oldest items and only keep the newest ones.
Easy samples of target domain are screened out by a filter
with a dynamic threshold decreasing along with iterations.
The source domain branch (Red) is optimized with classifi-
cation loss Lcls and source subdomain contrastive learning
loss Luscl. The target domain branch (Blue) is optimized
with alignment loss Lalign.

There are two key components proposed: union subdo-
main contrastive learning (USCL) and multi-view subdo-
main alignment (MvSA). USCL can create discriminative
and dispersed source subdomains by bringing samples from
the same subdomain closer while pushing away samples
from different subdomains (see Figure 3a). MvSA makes
use of labeled source domain data and easy target domain
data filtered by a threshold to perform target-to-source and
target-to-target alignment (see Figure 3b).

Preliminary. For a UDA task, we denote the source do-
main as Ds = {(xs

i , y
s
i )}

ns
i=1, which contains ns labeled

samples of C categories, where ysi ∈ RK is the label of
xs
i , and denote the target domain as Dt = {(xt

i)}
nt
i=1 which

contains nt unlabeled samples but shares the same classes
with Ds. Ds and Dt are sampled from different data distri-
butions p and q respectively, where p ̸= q. We aim to learn
a neural network y = f(x) that reduces the shifts of distri-
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Figure 2. Pipeline of the proposed method. The source domain branch (Red) is optimized with classification loss Lcls and source subdo-
main contrastive learning loss Luscl. The target domain branch (Blue) is optimized with alignment loss Lalign. Both source and target
domain branches share the same network. Meanwhile, we use a memory bank to restore the source domain data, and the easy sample from
the target domain.

butions in different domains and learns transferable repre-
sentations. We split Ds and Dt into C subdomains Dc

s and
Dc

t respectively, where c ∈ {1, 2, ..., C} denotes category
label, and the distributions of Dc

s and Dc
t are pc and qc.

3.2. Union Subdomain Contrastive Learning

MMD assumes that if the generating distributions are
identical, the statics of the two distributions should also be
the same. It has been widely used to measure the distance
between two distributions. However, MMD-based methods
do not take into account the alignment of subdomains within
the same categories. DSAN considers the relationships of
relevant subdomains by proposing a new metric known as
Local Maximum Mean Discrepancy (LMMD):

dH(p, q) ≜ Ec||Ep(c) [ϕ(xs)]−Eq(c) [ϕ(x
t)]||2H (1)

where xs and xt are instances from Ds and Dt, and p(c),
q(c) are the distributions of D(c)

s and D
(c)
t . Ec is the math-

ematical expectation of the class. H is the RKHS endowed
with a characteristic kernel k. ϕ(·) denotes feature mappers
that map the original samples to RKHS, the kernel k means
k(xs, xt) = ⟨ϕ(xs), ϕ(xt)⟩ where ⟨·, ·⟩ represents the inner
product of vectors.

However, DSAN overlooks the optimization of decision
boundaries between subdomains. In scenarios where we
have access to the labels of source domain samples and
highly confident pseudo labels of easy target domain sam-
ples, we propose a union subdomain contrastive learning
module that uses the labels and pseudo labels to pull closer
the samples in the same subdomains and pushes away sam-
ples in different subdomains in RKHS (see Figure 3a): fs

n,
f t
n′ and f t

n are the feature of source, easy target and other
target domain instances, and color denotes subdomains they
belong to. The brightness of the color indicates confidence

level, with higher brightness meaning lower confidence, and
vice versa. We formulate the distance estimator of two sam-
ples in RKHS as:

d̂′H(xs
i , x

s
j) ≜ ||ϕ(xs

i )− ϕ(xs
j)||2H (2)

where xs
i and xs

j are the i-th and j-th instance from the
union of source domain samples and easy target domain
samples. And inspired by supervised contrastive learning,
we proposed the uscl loss:

Luscl =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(

d̂′H(xs
i ,x

s
p)

τ )∑
a∈A(i)

exp(
d̂′H(xs

i ,x
s
a)

τ )
(3)

where i ∈ I ≡ {1, ..., nu} is the index of the union of
source and easy target domain samples, A(i) ≡ I\{i}.
P (i) ≡ {p ∈ A(i) : yp = yi} is the set of indices of sam-
ples that share the same category with xi, and |P (i)| is its
corresponding cardinality. τ is the temperature parameter.

3.3. Multi-view Subdomain Alignment

Multi-view subdomain alignment consists of two mod-
ules: target-to-source alignment and target-to-target align-
ment. Target-to-source and target-to-target align target do-
main samples to source domain samples and easy target do-
main samples in subdomains respectively.

3.3.1 Target-to-source Alignment

As discussed in 3.2, we have built source subdomains with
firm decision boundaries. It is intuitive to align samples
from target domain to those subdomains while keeping sub-
domains unchanged. To suppress the noise, LMMD uses a
weight wc to measure how a target domain sample xi be-
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Figure 3. Schematic diagram of the proposed (a) Union Subdomain Contrastive Learning (USCL), and (b) Multi-view Subdomain Align-
ment (MvSA). Features are represented by shapes, with circles indicating source domain and rectangles indicating target domain. Different
subdomains are shown by different colored ellipses. The brightness of the color indicates confidence level, with higher brightness meaning
lower confidence, and vice versa.

longs to each class:

wc
i = yic/

∑
(xj ,yj)∈D

yjc (4)

where yic is the c-th entry of vector yi. We follow this set-
ting and adopt a strategy for aligning source and target sub-
domains. We create a memory bank M to store features of
source samples with their labels at a maximum size Ns. Ev-
ery mini-batch, source and target samples first go through
the network to get their features and prediction. Then we
store features of source domain samples with their labels at
a maximum number of Ns and drop the oldest ones. Target
domain samples align with source features in the memory
bank. We formulate the source to target loss as follows:

Lt2s =
1

C

C∑
c=1

||
∑

xs
i∈Dc

s

ϕ(xs
i )

|Dc
s|

−
∑

xt
i∈Dt

wtc
i ϕ(xt

i)||2H (5)

here, Dc
s is the indices of c-th category in source domain

features in M , and |Dc
s| is corresponding cardinality. And

wc
i is calculated following Equation 4.

3.3.2 Target-to-target Alignment

Target samples from the overlap of source and target distri-
bution may be easily aligned for the reason that they are also
from source distribution. But some target samples may be
hard to align to their corresponding subdomains due to the
large distribution difference from source distribution. Be-
cause all the target samples share the same distribution, in-
tuitively, aligning target samples to easy samples already
aligned in target domains may help samples far away from
source domain samples but near easy target domain samples
to be correctly aligned.

According to [1], deep networks prioritize learning sim-
ple patterns. So at the early stage of training, easy samples
in target domain are more likely to be learned with high

confidence. Therefore, we filter out easy samples and align
target samples to those samples. We set a dynamic thresh-
old ht to filter out the highly confident target domain sam-
ples and store those samples in memory bank M . Similarly,
we store only at most Nt easy target domain features and
pseudo labels and drop the oldest ones. With training going
on, some samples might be classified but with low confi-
dence, so we decrease the threshold from high to low with
the iteration grows to contain those samples:

ht = hhigh − (hhigh − hlow) ∗ iiter/niter (6)

where hhigh and hlow are the high and low threshold, iiter
and niter are current iterations and total iterations threshold
decrease rounds. At training, target features in the current
mini-batch also align to the easy target features stored in M .
Target samples whose confidence exceeds ht are denoted as
easy samples and will be added into M for the subsequent
target-to-target alignment. Refer to Equation 5, we formu-
late target to target alignment loss as:

Lt2t =
1

C

C∑
c=1

||
∑

xt
j∈Dc

t′

ϕ(xt
j)

|Dc
t′ |

−
∑

xt
i∈Dt

wtc
i ϕ(xt

i)||2H (7)

where, Dc
t′ is the indices of c-th category of target samples

stored in the Mt, |Dc
t′ | is corresponding cardinality. wc

i is
calculated following Equation 4.

3.3.3 Alignment Loss

According to 3.3.1 and 3.3.2, we combine all the samples
in memory bank M and formulate the overall multi-view
subdomain alignment loss as:
Lmvsa = Lt2s + Lt2t

=
1

C

C∑
c=1

||
∑

xt
j∈Du

ϕ(xt
j)

|Du|
−

∑
xt
i∈Dt

wtc
i ϕ(xt

i)||2H
(8)
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where Du = Dc
s∪Dc

t′ . For classification on source domain,
we introduce label smoothing [26] as Lcls into our method.
Thus, the overall loss of our methods is

L = Lcls + λ1Lmvsa + λ2Luscl (9)

We set λ1 = 1.0, λ2 = 0.5 through experiments. The influ-
ence of different λ1 and λ2 will be explored in experiments.

4. Experiments

4.1. Datasets and Settings

Dataset Office-31 [32] is a domain adaption benchmark
dataset containing 4,110 images in 31 classes from three
distinct domains: Amazon (A), Webcam (W), and DSLR
(D). Domain Amazon is collected from amazon.com, the
web camera collects a webcam, and DSLR is taken by dig-
ital SLR camera with different photographic settings. We
evaluate on all 6 transfer tasks A −→ W, D −→ W, W −→ D,
A −→ D, D −→ A, W −→ A to avoid biases evaluations.

Office-Home [39] is a widely used benchmark dataset
for domain adaptation comprising 15,500 images. It con-
tains four domains: Art, Clipart, Product, and Real-World.
Art consists of artistic images in the form of sketches, paint-
ings, ornamentation, etc. Clipart is a collection of clipart
images. Product is collected with the images without back-
ground and Real-World is a set of images of objects cap-
tured with a regular camera. Each domain contains 65 cat-
egories, with an average of around 70 images per class and
a maximum of 99 images in a class. We test on all the 12
transfer tasks of A −→ C, A −→ P, A −→ R, C −→ A, C −→ P,
C −→ P, P −→ A, P −→ C, P −→ R, R −→ A, R −→ C, R −→ P.

VisDA-17 [30] is a challenging domain adaption classi-
fication dataset with two distinct domains: Real, consisting
of natural images, and Synthetic, consisting of 3D mod-
els from different angles and under different lighting condi-
tions. VisDA-17 contains 280K images of 12 categories dis-
tributed across the training, validation, and testing domains.
Our assessment primarily focuses on the synthetic-to-real
image classification transfer task.

Implementation Details. For all experiments, we use
the same settings. We linearly decrease the confidence
threshold from 0.9 to 0.0 through half the epochs. The
optimizer and learning rate annealing strategy follow [49]:
mini-batch stochastic gradient descent (SGD) with the mo-
mentum of 0.9 is used, and SGD adjusts the learning rate us-
ing the formula: ηθ = η0/(1+αθ)β , where θ is the training
progress linearly changing from 0 to 1, η0 = 0.01,α = 10
and β = 0.75. To avoid noisy activations at the early stages
of training, we also followed the adaption factor scheduler
from 0 to 1 by the formula: λθ = 2

exp(−γθ) − 1, and γ=10
is fixed throughout all the experiments [6]. In practice, λ
scales both Luscl and Lalign:

L = Lcls + λ1λLmvsa + λ2λLuscl (10)

We report our method’s average accuracy over 3 random
trials on Office-31. We store at most 5% of the source and
target domain features in all the datasets. For Office-31,
we compare our methods with several deep learning meth-
ods and deep transfer learning methods: Deep Convolu-
tional Neural Network (ResNet) [15], Deep Adaptation Net-
work (DAN) [23], Domain Adversarial Neural Networks
(DANN) [7], Adversarial Discriminative Domain Adap-
tation (ADDA) [37], Joint Adaptation Networks (JAN)
[25], Multi-Adversarial Domain Adaptation (MADA) [29],
Conditional Adversarial Domain Adaptation (CDAN and
CDAN+E) [24] and Rethink MMD I and II [42], SRDC
[35], RSDA-MSTN [12], FixBi [27]. For Office-Home, we
compare methods with ResNet [15], DAN [23], DANN [7],
JAN [25], CDAN [24], CDAN+E [24], DSAN [49], and
Rethink MMD I and II [42], SRDC [35], BIWAA [43],
FixBi [27]. For VisDA-17, we compare our method with
ResNet [15], DANN [7], DAN [23], JAN [25], MCD [33],
DSAN [49], SHOT [22], MCC+NWD [2] and FixBi [27].
All the results of baselines mentioned above are extracted
from either [49] or original papers.

4.2. Results

4.2.1 Classification Results

The classification results on Office-31, Office-Home, and
VisDA-17 are shown in Table 4, 1, and 2. From those ex-
periment result tables, we can see:

1) Compared with global statistic matching-based meth-
ods (E.g. DAN [23], DANN [7], Rethink MMD [42]), sub-
domain alignment methods (E.g. CDAN [24], DSAN [49],
ours) achieve better performance in general. We can see that
aligning the global distributions of different domains only
without considering the relations in subdomains does not
perform well, while accurately aligning subdomains will
largely improve the transfer ability of the deep network.
This phenomenon reveals that aligning subdomains accu-
rately is crucial for domain adaption.

2) Compared with other subdomain alignment methods
(E.g. CDAN [24], DSAN [49]), our method outperform
other methods as well. This result verifies the effectiveness
of our proposed method.

3) Compared with non-adversarial methods (E.g. DAN
[23], JAN [25], DSAN [49], Rethink MMD [42]), ours pro-
motes the average performance in classification tasks.

4) Compared with the origin DASN, our method
achieves better performance, which implies that our pro-
posed USCL and MvSA do well in exactly alignment source
and target subdomains.

4.2.2 Ablation Study

Proposed Modules. We conduct an ablation study to
evaluate the effectiveness of the proposed components, in-
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Method SMB A−→C A−→P A−→R C−→A C−→P C−→R P−→A P−→C P−→R R−→A R−→C R−→P Avg
ResNet [15] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [23] ✓ 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [7] ✓ 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [25] ✓ 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [24] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E [24] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
DSAN [49] ✓ 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5 73.8 60.6 83.1 67.6
Rethink MMD-I [42] ✓ 58.4 77.8 79.3 61.6 72.8 73.0 62.7 55.3 78.9 70.4 60.1 83.2 69.5
Rethink MMD-II [42] ✓ 57.2 76.9 78.9 61.2 72.4 72.6 62.3 54.2 79.4 70.6 60.1 83.2 69.1
RSDA-MSTN [12] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
Ours ✓ 59.4 76.0 77.4 64.4 73.2 73.0 66.9 58.8 79.1 75.2 61.7 84.8 70.9
SRDC [35] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
BIWAA [43] 56.3 78.4 81.2 68.0 74.5 75.7 67.9 56.1 81.2 75.2 60.1 83.8 71.5
FixBi [27] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

Table 1. Classification accuracy (%) on Office-Home (ResNet-50). SMB denotes Statics-Matching Based.

Method SMB airplane bicycle bus car horse knife motorcycle person plant skateboard train truck Avg
ResNet [15] 72.3 6.1 63.4 91.7 52.7 7.9 80.1 5.6 90.1 18.5 78.1 25.9 49.4
DANN [7] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [23] 68.1 15.4 76.5 87.0 71.1 48.9 82.3 51.5 88.7 33.2 88.9 42.2 62.8
JAN [25] ✓ 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7
MCD [33] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
DSAN [49] ✓ 90.9 66.9 75.7 62.4 88.9 77.0 93.7 75.1 92.8 67.6 89.1 39.4 75.1
Ours ✓ 93.3 70.2 76.4 75.5 93.6 86.5 90.9 73.2 91.9 67.8 87.9 31.7 78.2
SHOT [22] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
MCC+NWD [2] - - - - - - - - - - - - 83.7
FixBi [27] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

Table 2. Classification accuracy (%) on VisDA-17 (ResNet101). SMB denotes Statics-Matching Based.

cluding USCL and MvSA on Office-Home by discarding
one component from our method each time, see Table 5.
From the result, we can see that after discarding USCL and
MvSA, respectively, the accuracy of our method drops from
70.9% to 70.2% and 68.6%, respectively, but still outper-
forming the baseline method over 2.6% and 1.0%, showing
the effectiveness of all the proposed modules in our method.

Memory Bank Size. Storage capacity can be a critical
consideration in memory-sensitive systems, so it is essential
to observe the relationship between performance and mem-
ory bank sizes. We evaluate our method with various mem-
ory bank sizes of different proportions of source and target
domain samples. The results are shown in Table 6. Under
diverse memory bank sizes, the performance doesn’t make
many changes. Even in a small memory bank size, E.g.
take a number of only 5% source domain samples and 5%
target domain samples, the performance outperforms others
with a larger memory bank size. This phenomenon shows
that our method is not memory-sensitive, contributing to the
practicality and applicability of the proposed approach.

Hyper Parameters. The total loss of our proposed
method is Equation 10. The influence of hyperparameters
λ1 and λ2 is also a key factor that makes an impact on the
classification performance. So we evaluate different combi-
nations of λ1 and λ2 to explore the influence of those hyper-

parameters. Results are shown in Table 4. When λ2 = 0.0,
our method only works with MvSA, equally to the item
which discards USCL module in the ablation study. With λ2

increasing from 0.0 to 0.5, there is a performance improve-
ment. But when λ2 increases from 0.5 to 2.0, the perfor-
mance decreases generally, so we use λ1 = 1 and λ2 = 0.5
through our experiments.

4.2.3 Visualization

Figure 5 visualizes the network activations of three tasks
on Office-Home by DSAN and our method using t-SNE
embeddings [5]. Although DSAN aligns subdomains and
captures some fine-grained information for each category,
many points are still scattered everywhere, making those
samples hard to classify. Thanks to the USCL and the
MvSA, our method promotes the similarity of distributions
within the same subdomain and enhances the discriminabil-
ity of individual categories. And source and target subdo-
mains are better aligned than the baseline method DSAN,
enhancing the classification performance.

4.2.4 Stability

Many domain adaption methods, including DSAN, suffer
from a significant performance drop at the late stage of
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Method A−→C A−→P A−→R C−→A C−→P C−→R P−→A P−→C P−→R R−→A R−→C R−→P Avg
DSAN [49] 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5 73.8 60.6 83.1 67.6
DSAN*(best) 54.0 70.0 75.3 59.5 69.0 66.7 61.4 56.0 77.7 73.1 60.4 82.4 67.2
DSAN*(stop) 40.8 52.3 69.3 54.8 63.9 62.2 57.7 52.6 76.2 72.7 57.8 81.6 61.8
DSAN*(change) -13.2 -17.7 -6.0 -4.7 -5.1 -4.5 -3.7 -3.4 -1.5 -0.4 -2.6 -0.8 -5.4
Ours(best) 59.4 76.0 77.4 64.4 73.2 73.0 66.9 58.8 79.1 75.2 61.7 84.8 70.9
Ours(stop) 57.4 72.9 76.5 63.7 72.9 71.8 66.3 58.3 78.6 74.9 59.8 84.8 69.8
Ours(change) -2.0 -3.1 -0.9 -0.7 -0.3 -1.2 -0.6 -0.5 -0.5 -0.3 -1.9 -0.0 -1.1

Table 3. Classification accuracy (%) on Office-Home at the same early stop epoch. Methods marked with * are reproduced by us. (best)
shows the highest test accuracy, (stop) shows accuracy at the early stop, and (change) shows their difference.

Method SMB A−→W D−→W W−→D A−→D D−→A W−→A Avg
ResNet [15] 68.4±0.5 96.7±0.5 99.3±0.1 68.9±0.2 62.5 0.3 60.7±0.3 76.1
DAN [23] ✓ 83.8±0.4 96.8±0.2 99.5±0.1 78.4±0.2 66.7±0.3 62.7±0.2 81.3
DANN [7] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA [37] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN [25] ✓ 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
MADA [29] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
CDAN [24] 93.1±0.2 98.2±0.2 100.0±0.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
CDAN+E [24] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
Rethink MMD-I [42] ✓ 88.4 98.7 99.8 90.4 74.1 74.8 88.4
Rethink MMD-II [42] ✓ 88.9 98.5 99.8 90.8 75.4 75.2 88.1
DSAN [49] ✓ 93.6±0.2 98.3±0.1 100.0±0.0 90.2±0.7 73.5±0.5 74.8±0.4 88.4
Ours ✓ 95.1±0.2 98.6±0.1 100.0±0.0 91.8±0.5 76.2±0.3 75.5±0.4 89.5
SRDC [35] 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8
RSDA-MSTN [12] 96.1±0.2 99.3±0.2 100.0±0.0 95.8±0.3 77.4±0.8 78.9±0.3 91.1
FixBi [27] 96.1±0.2 99.3±0.2 100.0±0.0 95.0±0.4 78.7±0.5 79.4±0.3 91.4

Figure 4. Classification accuracy (%) on Office-31 (ResNet-50). SMB denotes Statics-
Matching Based.

A−→C A−→P A−→R

Figure 5. t-SNE of DSAN (first row) and
ours (second row) on Office-Home. Red/Blue:
source/target domain samples.

λ1 λ2 Accuracy
1.0 2.0 69.5%
1.0 1.0 70.8%
1.0 0.5 70.9%
1.0 0.0 70.2%

Table 4. Classification ac-
curacy under different λ1

and λ2 on Office-Home.

Method MvSA USCL Accuracy
DSAN w/o w/o 67.6%
Ours w/o w 68.6%
Ours w w/o 70.2%
Ours w w 70.9%

Table 5. Ablation studies of proposed
modules on Office-Home. w indicates
with while w/o without.

Ns/ns Nt/nt Accuracy
100% 100% 70.8%
50% 50% 70.8%
25% 50% 70.8%
10% 10% 70.8%
5% 5% 70.9%
1% 1% 67.8%

Table 6. Accuracy under different sizes of memory bank (propor-
tion of total samples) on Office-Home.

training. To address this issue, our method incorporates
USCL and MvDA modules. We compare the stability of
our method and DASN by recording the results at the best
performance epoch and the corresponding early stopping
epoch on Office-Home (see Table 3): DSAN exhibits a sub-
stantial average performance decrease of 5.4% on average
and a maximum decrease of 17.7%. In contrast, our method
demonstrates a much smaller average decrease of only 1.1%

and a maximum decrease of 2.0%. We attribute this im-
provement to the fact that in DSAN, once it reaches its op-
timal performance, hard samples from the target domain in-
troduce significant noise and adversely impact the domain
adaptation process, resulting in poor performance.

5. Conclusion

In this paper, we present a novel deep subdomain
alignment method for unsupervised domain adaptation
(UDA) in image classification. Our approach includes a
source subdomain contrastive learning (USCL) module,
which brings samples within the same subdomain closer
together while pushing samples from different subdomains
apart in the Reproducing Kernel Hilbert Space (RKHS).
We also introduce a multi-view subdomain alignment
(MvSA) strategy to reduce bias in the domain adapta-
tion process by aligning target domain samples to both
source domain samples and easy target domain samples
using a dynamic thresholding scheme. Our method is
evaluated on three major domain adaptation datasets
and shows improved accuracy and stability. However,
our method does not outperform the newest non-statistic
matching-based methods, E.g. FixBi [27], SRDC [35]
and BIWAA [43]. Further research on this phenomenon
will be conducted in our future work to release this issue.
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