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Abstract

Due to long-distance correlation and powerful pre-
trained models, transformer-based methods have initiated a
breakthrough in visual object tracking performance. Previ-
ous works focus on designing effective architectures suited
for tracking, but ignore that data augmentation is equally
crucial for training a well-performing model. In this paper,
we first explore the impact of general data augmentations
on transformer-based trackers via systematic experiments,
and reveal the limited effectiveness of these common strate-
gies. Motivated by experimental observations, we then pro-
pose two data augmentation methods customized for track-
ing. First, we optimize existing random cropping via a dy-
namic search radius mechanism and simulation for bound-
ary samples. Second, we propose a token-level feature mix-
ing augmentation strategy, which enables the model against
challenges like background interference. Extensive exper-
iments on two transformer-based trackers and six bench-
marks demonstrate the effectiveness and data efficiency of
our methods, especially under challenging settings, like
one-shot tracking and small image resolutions. Code is
available at https://github.com/zj5559/DATr.

1. Introduction
With the development of deep models, many visual ob-

ject tracking (VOT) works [7, 10, 23, 36, 47] focus on de-
signing effective tracking frameworks with modern back-
bones. Some large-scale tracking datasets with high-quality
manual annotations [14, 19, 31] are also developed to sat-
isfy these data-driven models. However, a crucial issue is
long neglected, that is, appropriate data augmentation is
the cheapest strategy to further boost the tracking perfor-
mance. We notice that most trackers follow similar data
augmentation strategies, which are combinations of random
cropping and several image transformations, like flip and
blur. State-of-the-art (SOTA) transformer-based methods
also apply the same pattern as prior works based on con-
volutional neural networks (CNN). Bhat et al. [3] demon-
strated that these general data augmentations (GDA) play
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Figure 1. Data-efficiency comparison under different volumes
of training data. Results are averaged over 3 random seeds.

an important role on CNN-based trackers. However, con-
sidering the substantial difference between CNN and trans-
former models, and powerful capabilities of transformer
models themselves, what is the impact of GDAs on SOTA
transformer-based trackers? We think this is a question
worth exploring. While it has been demonstrated in several
works [8, 16, 26, 44, 46] that well-designed data augmenta-
tion is useful for multiple computer vision tasks, few works
apply the latest data augmentations or customize suitable
approaches for VOT.

In this paper, we perform comprehensive experiments to
explore the impact of GDAs on transformer-based trackers,
including the pure transformer tracker and the hybrid CNN-
Transformer tracker. Different from the conclusion in [3],
our experiments imply that most common GDAs have lim-
ited effectiveness for these SOTA trackers. We also gain the
insight that while models can benefit from increasing jitter
for random cropping, large jitters will degrade performance.
Moreover, as shown in Fig. 2, we find that in addition to the
sequence’s own challenges, previous inaccurate predictions
also cause difficult search patches with huge scale variations
(Left) and boundary targets (Middle). Background interfer-
ence is also challenging for SOTA trackers (Right).

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Qualitative comparison of score maps on hard cases. Left: Huge scale variations. Middle: Boundary samples caused by
previous inaccurate prediction or fast motion. Right: Interference from the background. Better viewed with zoom-in.

Motivated by these observations, we propose two data
augmentation approaches customized for VOT. First, we
propose an optimized random cropping (ORC) consisting
of a dynamic selection mechanism of search radius fac-
tor γ and simulation of boundary samples. The former
enriches samples from the perspective of context via two-
step randomness, which enables the model more robust to
scale variations (Fig. 2 (left)), and furthermore makes the
model flexible to different γ during inference. The latter
helps the model recover fast from failure cases and deal
with challenges like fast motion better (Fig. 2 (middle)).
Second, we propose a token-level feature mixing augmen-
tation (TFMix). Token features of another object are mixed
into the original search features as a distractor. This method
makes the model better able to cope with complex back-
ground interference (Fig. 2 (right)).

Experiments in Sec. 5 demonstrate that our methods not
only further boost modern trackers’ performance, especially
under challenging settings, but also unbind strong associa-
tion for specific value of γ between training and inference.
Furthermore, to explore the data efficiency benefit from our
methods, we use different volumes of data for model train-
ing, i.e. randomly choosing a fraction of sequences from
each training dataset. Since we find that reducing the num-
bers of training sample pairs for settings with small data
volumes has little effect on the performance, we follow
the same number of sample pairs as the baseline setting
(OSTrack256). As shown in Fig. 1, using only 6.25% of
the data, our methods achieve comparable result on La-
SOT EXT to the baseline trained with full data.

The main contributions of this work are as follows:

• We perform systematic experiments to explore the im-
pact of General Data Augmentations (GDA) on trans-
former trackers, including the pure transformer tracker
and the hybrid CNN-Transformer tracker. Results
show GDAs have limited effects on SOTA trackers.

• We propose two Data Augmentation methods based
on challenges faced by Transformer-based trackers,
DATr for short. They improve trackers from perspec-
tives of adaptability to different scales, flexibility to

boundary targets, and robustness to interference.

• We apply DATr to two transformer trackers on six
tracking benchmarks, demonstrating the effectiveness
and generalization of DATr, especially for sequences
with challenges and unseen classes. Experiments on
CNN backbones further show the significant general-
ization effect of our optimized random cropping.

2. Related Work
2.1. Visual Object Tracking

In terms of the types of backbones, tracking methods
have gone through three stages of evolution, i.e. traditional
approaches [5, 18, 20] using hand-crafted features, CNN-
based methods [1, 2, 23, 47], and transformer-based meth-
ods [7, 9, 27, 41, 43]. Among them, SiamRPN++ [23] and
SiamDW [47] analyzed the negative effect of large recep-
tive field and padding issue caused by the deep CNN, and
investigated proper architectures to make the tracking ben-
efit from very deep CNN. To make up for the locality of
CNN, Chen [7] et al. developed a transformer-based cor-
relation module, which can establish long-distance associ-
ations between the template and search region. Recently,
several works, e.g. OSTrack [43] and MixFormer [9], com-
bined the feature extraction and fusion modules into a whole
through a pure transformer architecture, boosting the track-
ing performance to a new level.

2.2. Data Augmentation in Tracking

Most previous works in tracking focus on designing ef-
fective model architectures, or integrating modern back-
bones into tracking framework. In contrast, despite data
augmentation playing a crucial role in the performance of
trackers, far less attention has been paid to this topic.
Augmentations for CNN-based trackers. Zhu et al. [50]
investigated the important role of diverse training samples.
Bhat et al. [3] compared performance gains from GDAs for
shallow and deep features and found that deep CNNs par-
ticularly benefit from augmentation. Motivated by model
robustness to rapid motion, several works [3, 38, 50] em-
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Figure 3. Systematic analysis of GDAs, and comparison with ours on LaSOT (blue) and LaSOT EXT (orange). (a.1) and (b)
compare the impact of GDA and ours on the pure transformer tracker and the CNN-Transformer tracker, respectively. Results imply a
limited effectiveness of GDAs for these SOTA trackers, while ours improve their performance significantly on each benchmark. (a.2)
shows the existing random cropping causes model degradation under small and large jitter, while ours are stable for different jitter settings.

phasized the impact of blur augmentation.
Augmentations for transformer-based trackers. Trans-
formers have been found to exhibit different properties [33]
and be more robust to perturbations [4,34] than CNNs. De-
spite this, previous transformer-based trackers [9, 28, 43]
still use similar data augmentation approaches as for CNNs,
and the impact of these augmentations has not been inves-
tigated. In contrast to previous works, we systematically
investigate the role of GDAs for modern transformer-based
trackers (see Sec. 3). Motivated by experimental observa-
tions, we further propose two data augmentation approaches
based on challenges faced by modern transformer-based
trackers (see Sec. 4).

2.3. Image Mixing Augmentation

In the context of computer vision, in addition to the
basic geometric transformations (e.g. rotation, scaling,
shear, flip), and photometric transformations (e.g. satura-
tion, grayscale, color-jittering), a multitude of augmenta-
tions obtain diverse data via mixing different images. For
example, MixUp [46] blends images pixel by pixel. Cut-
Mix [44] replaces contents of a random area with a patch
cropped from another image. Customized for transformer
models, TokenMix [26] mixes images in units of tokens.
The effectiveness of these mixing methods has been demon-
strated in many tasks, such as object detection [12, 37],
instance segmentation [16], and video classification [45],
but few works integrate this type of methods into VOT.
To the best of our knowledge, the only work to apply a
similar strategy to tracking is [24], which performs crop-
transform-paste operations on images for self-supervised
tracking. Unlike this, we propose a token-level feature mix-
ing strategy to simulate background interference.

3. Analysis of General Data Augmentation
General data augmentations (GDA) are ubiquitously

used in tracking. As shown in Tab. 1, we summarize
data augmentation strategies of 40 trackers published in the
past five years, and find that most trackers apply random

Table 1. Usage count of each data augmentation in trackers
published in five years. (“RC” indicates random cropping.)

Models Grayscale RC Flip Bright Blur Rotate

CNN (28) 10 28 4 23 13 1
Transformer (12) 11 12 8 11 0 0

cropping along with several similar combinations of image
transformations. Especially for recent transformer-based
trackers, all of them follow a similar augmentation pattern
as prior CNN-based works.

Although Bhat et al. [3] has shown the importance of
these GDAs on deep CNN models, the efficacy of GDAs
has as of yet not been investigated for modern transformer
trackers. Hence, we pose the following question: What
is the impact of GDAs on transformer-based trackers?
To explore the answer, we perform systematic experiments
described in Sec. 3.1, and analyze results in Sec. 3.2.

3.1. Experimental Settings

As shown in Fig. 3, we choose OSTrack [43] (see (a.1)
and (a.2)) and STARK [41] (see (b)) as baselines to rep-
resent the pure transformer tracker and the hybrid CNN-
Transformer tracker, respectively, and evaluate all models
on LaSOT [14] and LaSOT EXT [13]. Their official aug-
mentations are grayscale, random cropping, brightness jit-
ter, and horizontal flip, which are also most used for other
transformer-based trackers (see Tab. 1). Since grayscale is
required to make the model robust to grayscale sequences,
while random cropping prevents models from overfitting,
we consider the two approaches as necessary. The model
trained with only these two approaches is represented as
“No”, while the official setting is denoted as “Base”.

To explore the impact of the other methods, along with
blur and rotation which are applied by some CNN-based
trackers, we remove (horizontal flip or brightness jitter) or
add (blur or rotation) each augmentation on the basis of
“Base”, represented as “-Flip”, “-Br”, “+Blur”, and “+Rt”
in Fig. 3 (a.1) and (b), respectively. Considering stability,
we run each experiment three times with different random
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Figure 4. Illustration of our customized data augmentation strategies. Left: Optimized random cropping including (a) dynamic
selection mechanism for the search radius factor γ, and (b) simulation of boundary samples. It does not only enrich the diversity of
samples from two-step randomness, but renders also the model insensitive to the parameters. Numbers from 1. to 4. indicate the order of
cropping steps. Right: Classical image-level CutMix (top), and our token-level feature mixing augmentation (bottom).

seeds, and record their average performance with the stan-
dard deviation (STD), which is illustrated as error bars. Be-
sides, to avoid negative effects from inappropriately tuned
probability and magnitude, we test different settings for blur
and rotation, and use the best-performing parameters in our
systematic experiments.

In addition, we also investigate the impact of the jitter
degree of random cropping. In Fig. 3 (a.2), we set different
jitter degree of random cropping by adjusting the magnitude
of scale and shift. The size of circles represents the value of
scale1, and the black dotted line indicates the official setting
of the baseline (OSTrack).

3.2. Observations and Analysis

Different types of GDA. Experiments in Fig. 3 (a.1) and
(b) imply that these GDAs seem to have limited effective-
ness for the SOTA transformer-based tracker. Taking re-
sults on different benchmarks and error bars into account,
we can conclude that these GDAs do not provide substan-
tial improvement but only slight fluctuations up and down
the baseline models.

Different jitter degree of random cropping. From the
trend of dotted curves in Fig. 3 (a.2), we find that a proper
setting of random cropping can significantly improve the
tracking model. The model can benefit more from larger
jitter, e.g. Shift4 vs. Shift2. However, further increasing
the jitter degree will cause model degradation, e.g. Shift5.

Analysis. Due to global correlation and models [17] pre-
trained on large-scale datasets, transformer models trained
without GDA (see “No” in Fig. 3 (a.1) and (b)) can already
address most situations which are difficult for CNNs. How-
ever, we observe that challenges like background interfer-

1The scale value is traversed from 0.15 to 0.45

ence are still difficult for modern trackers (see Fig. 2), and
cannot be simulated by aforementioned GDAs. Therefore,
customized augmentations based on unsolved challenges
are needed to further improve SOTA transformer trackers.

As for random cropping, we can conclude from the dot-
ted curves in Fig. 3 (a.2) that various samples with different
target positions and scales are conducive to training mod-
els. However, in the existing random cropping strategy with
fixed search radius factor γfix, the shift parameter should not
be set larger than γfix to avoid uninformative samples, i.e.
the object is outside the patch. Otherwise, these uninforma-
tive samples would pollute the training set and cause model
degradation, e.g. results of Shift5 where γfix = 4. There-
fore, the existing random cropping strategy with a fixed con-
text scope, does not only limit the diversity of samples, but
also cause the parameter sensitivity.

4. Data Augmentation Customized for VOT
Motivated by the analysis in Sec. 3.2, we propose two

customized data augmentation approaches. First, optimized
random cropping (ORC) is proposed, including dynamic se-
lection for search radius factor, and simulation of boundary
samples, where the partial region of the object stays at the
boundary of the search patch. Second, we propose a token-
level feature mixing strategy (TFMix) to simulate unsolved
challenges, like background interference. We describe these
two augmentations in Sec. 4.1 and Sec. 4.2, respectively.

4.1. Optimized Random Cropping

Existing trackers essentially treat tracking as a local
matching problem between templates and search regions.
The local search region is decided by the predicted target
location of the previous frame, and a fixed search radius
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factor γ. To maintain the distribution consistency of sam-
ples, random cropping with the same value of γ as infer-
ence is applied in the training phase. Consider for instance
the cropping strategy in the transformer-based methods as
an example2, as shown in Fig. 4 (left), the existing random
cropping strategy has two steps, i.e., jitter the groundtruth
Bgt via random shifting and scaling (“1.” in Fig. 4), and
crop the search region Bold

crop based on the jittered bounding
box Bjit as well as a fixed γ (“2.” in Fig. 4).

There are several disadvantages to this strategy. First,
only one random step (“1.” in Fig. 4) is performed to sup-
port diversity of samples. Second, the degree of shift is con-
straint by γfix to avoid uninformative samples, which leads
the training process to be sensitive to parameters. In ad-
dition, training with a fixed γ makes the model inflexible,
i.e. forcing the model to be specific to the same γ in infer-
ence, shown as Tab. 4 (discussed in Sec. 5.2).

In this paper, we propose an optimized random cropping
strategy to address these issues. As shown in Fig. 4 (a), to
enrich the diversity of training samples, and also unbind the
model from the strong association with specific γ in infer-
ence, we first turn the fixed γ during training into a dynamic
selected value from γmin to γmax. The maximum and min-
imum values are used to limit the proportion of context in
search regions. Otherwise, the target will be very small or
large in the resized search patch. Furthermore, to avoid un-
informative samples, we calculate the practical minimum
search radius factor γp

min based on the distance between
center locations of Bgt and Bjit. If γp

min is larger than γmax,
we consider the current Bjit to be invalid, and retry to find
a proper one. Through this simple strategy, uninformative
samples can be avoided without sacrificing the diversity of
the training set. It is worth noting that although the original
random cropping strategy can achieve context variation im-
plicitly by Bjit, compared with this one-step randomness,
our method consists of two random steps, i.e. Bjit and dy-
namic γ, which are able to obtain samples with more diverse
scales and contexts.

Besides, considering that objects often appear at the
boundary or even partially outside search regions in some
failure cases and challenges like fast motion. we simulate
such boundary samples with probability Pb, shown as Fig. 4
(b). We first calculate the search region (blue dashed box)
based on Bgt, and then shift it to a random direction until
the target is partially at the boundary. It helps models cope
with boundary targets more accurately.

The procedure of our ORC is described as Algorithm 1.
Is denotes the processed search frame, Djit and Sjit repre-
sent the magnitude of random shifting and scaling, Pb iden-
tifies the probability of boundary samples, cts and ctjit rep-
resent center locations of Bgt and Bjit. Due to dynamic γ

2Prior Siamese-based trackers [1, 23, 48] apply similar parameter as γ
to fix the context scope.

Algorithm 1 Optimized Random Cropping

Input: Is, Bgt, γmin, γmax, Djit, Sjit, Pb

Output: Bcrop, γ
1: γ=Random(γmin,γmax);
2: if Random(0,1) < Pb then
3: Bcrop = CenterCrop(Bgt, γ); ▷ Fig. 4 (b) “3.”
4: direction = Random(top, bottom, left, right);
5: Bcrop = Move(Bcrop, direction); ▷ Fig. 4 (b) “4.”
6: else
7: while True do
8: Bjit = Jitter(Bgt, Djit, Sjit); ▷ Fig. 4 (a) “3.”
9: γp

min=MAX{ 2|cts−ctjit|max√
wjit×hjit

, γmin};

10: if γp
min ≤ γmax then

11: γ = Random(γp
min,γmax); ▷ Fig. 4 (a) “4.”

12: Bcrop = CenterCrop(Bjit,γ);
13: Break;
14: end if
15: end while
16: end if

and boundary samples, our ORC can enrich the diversity
of samples from different perspectives, such as the context
scope, target positions and scales, while avoiding uninfor-
mative samples. Experiments in Sec. 5 demonstrate ORC
improvements to performance and γ flexibility.

4.2. Token-level Feature Mixing

Background interference is one of the main challenges
for modern trackers, but such samples are not the focus of
GDAs, which might be a potential reason for their limited
effectiveness. Recent augmentations like CutMix [44] can
be an option to synthesize hard samples with background
interference, as shown in Fig. 4 (top-right). However, such
image mixing tends to trap the model in overfitting to sharp
border effect. To mitigate this issue and consider the to-
ken mechanism of transformer models, we propose a token-
level feature mixing method as shown in Fig. 4 (bottom-
right). A search patch with the object Os, and a distrac-
tor patch with another object Od are first cropped and pro-
cessed by a linear projection, we then transfer distractor to-
kens TOd

d belonging to Od and replace search tokens TOd
s

in corresponding positions, represented as

TOd
s =

TOd

d −meanOd

stdOd

stdOs +meanOs . (1)

Distractor tokens TOd

d will be normalized before transfer-
ring to alleviate huge discrepancy between Os and Od,
where meanOd/s

and stdOd/s
represent the global mean

and standard deviation of the object tokens. To increase
the difficulty of samples, we preferentially select Od from
the same category as Os. Besides, an occluded threshold is
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used to control the occluded degree of Os.

5. Experiments
To investigate the effectiveness of our augmentations

DATr, we apply them to two SOTA transformer track-
ers, MixFormer [9] and OSTrack [43]. Besides, we also
apply our ORC to a hybrid CNN-Transformer tracker
STARK [41], and a CNN-based tracker SiamFC++ [40] to
demonstrate its generalization ability to CNN backbones.

5.1. Implementation Details

We implement our data augmentations in Python with
PyTorch. All experiments are trained using four NVIDIA
A100 GPUs. For our data augmentations, we set the prob-
ability of boundary samples, Pb, to 0.05. To keep the dy-
namic selection range of the search radius factor γ symmet-
rical to the fixed value in inference, we set it as [2,6] when
γ = 4 in inference, and [4,6] when γ = 5. As for the mix-
ing, our TFMix augmentation is triggered every 11 epoches,
and the occluded threshold is set to 0.5. It is worth noting
that our DATr can augment both video and image datasets.
For a fair comparison, we adopt the same training settings
as for the baseline to retrain each tracking model with and
without our augmentations, where training datasets include
LaSOT, GOT-10k [19], TrackingNet [31], and COCO [25].

5.2. Ablation Study and Analysis

Using OSTrack with 256 image resolution as the base-
line tracker, we perform a series of ablation study on La-
SOT and LaSOT EXT to demonstrate the effectiveness of
our approaches from different aspects. LaSOT contains 280
sequences with 70 categories, which are the same as its
training subset. In contrast, LaSOT EXT is composed of
150 very challenging sequences with 15 unseen categories.
One-pass evaluation is performed on both benchmarks with
three metrics: the success rate (AUC), precision (Pre), and
normalized precision (Pnorm). AUC represents the ratio of
successfully tracked frames, while Pre and Pnorm represent
the distance of center points between the groundtruth and
the predicted result. Pnorm is normalized with the target
scale, which is stable to target size and image resolution.

Impact of each component. As shown in Tab. 2, our op-
timized random cropping can obtain 2.0% and 0.9% AUC
gains (Base vs. ②) on LaSOT EXT and LaSOT, respec-
tively. Among them, dynamic γ mechanism increases AUC
with 1.7% on LaSOT EXT, and simulating boundary sam-
ples can further improve AUC to 69.3% on LaSOT. Due to
generating challenging samples, our TFMix boosts the per-
formance to 49.7% on LaSOT EXT.

Different mixing strategies. To demonstrate the effec-
tiveness of the proposed TFMix, we compare it with dif-

3Reported results are averaged over 3 random seeds.

Table 2. Impact of each proposed component on AUC3.
Method Dynamic γ Boundary TFMix LaSOT LaSOT EXT

Base 68.4 47.0
① ✔ 68.9 48.7
② ✔ ✔ 69.3 49.0
③ ✔ ✔ ✔ 69.3 49.7

Table 3. Comparison of different mixing strategies3, including
different image-level mixing methods, and late feature mixing.

Mixing Strategy LaSOT LaSOT EXT
AUC Pnorm Pre AUC Pnorm Pre

Image
Bbox 69.0 79.0 75.2 48.6 59.3 55.5
Mask 69.4 79.7 75.8 48.3 58.9 55.1
Token 69.0 79.1 75.2 49.0 59.7 55.7

Feature Late 68.8 79.0 75.1 49.0 59.7 55.4
Early (Ours) 69.3 79.3 75.3 49.7 60.4 56.6

Search image
Score map 
(Baseline)

Score map 
(CutMix)

Score map 
(TFMix)Distractor image

Figure 5. Comparison of discriminative ability between image-
level CutMix and TFMix. Templates are framed by red boxes.

ferent mixing strategies, including several different image-
level mixing methods, and late feature-level mixing. The
same parameter settings are used for a fair comparison. For
the image mixing with bbox, we simply use bounding box
annotations to crop a rectangle area of the distractor, while
for the image mixing with mask, we first obtain mask anno-
tations of all training datasets from Alpha-Refine [42], and
paste the distractor itself without any context. The token
image mixing is similar to TokenMix [26], we set the same
token size as for the model, and randomly mix 30% to 50%
of them between search patches and distractor patches. As
for the late feature mixing, our TFMix can be considered
as an early-stage feature mixing, since the mixing is per-
formed before the feature extraction and fusion. In contrast,
the late mixing delays this operation until after the feature
fusing. In the feature extraction and fusion stage, token in-
teractions not only happen between the template and search
patch, but also occur between context tokens in the search
patch itself. Therefore, late feature mixing will miss the
core interaction between the original object and the extra
distractor. As shown in Tab. 3, our TFMix is superior to
other mixing strategies, especially on the most challenging
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Table 4. Adaptability comparison to different γ in inference.

γtrain → γtest
LaSOT LaSOT EXT

AUC Pnorm Pre STD AUC Pnorm Pre STD

4 → 3 58.9 67.5 64.9
5.02

40.1 49.4 46.1
5.124 → 4 68.6 78.1 74.4 47.3 57.4 53.1

4 → 5 61.5 68.7 63.8 37.4 44.2 38.7

3 → 3 67.5 76.3 72.9
0.64

43.6 52.2 47.8
2.404 → 4 68.6 78.1 74.4 47.3 57.4 53.1

5 → 5 67.5 77.4 72.7 48.1 58.5 54.4

Dyn.→ 3 67.1 76.7 72.6
1.11

44.2 54.0 50.0
2.52Dyn.→ 4 69.3 79.4 75.5 48.8 59.4 55.6

Dyn.→ 5 68.4 78.3 73.7 48.3 58.6 54.4

benchmark, LaSOT EXT.
Moreover, we compare the discriminative ability gained

from image mixing with bbox (CutMix), and our TFMix.
As shown in Fig. 5, when distractor tokens are mixed into
search patches via Eq. 1, the baseline tracker is prone to
being confused by distractors. CutMix improves this phe-
nomenon to some extent (see first row), while the last col-
umn shows that our TFMix promotes the model be more
discriminative to distractors.

Adaptability to different γ in inference. Different
from prior training, since the proposed dynamic γ mecha-
nism enriches training samples from the perspective of con-
textual information, the model should be more adaptive to
search patches cropped with different γ in inference. To in-
vestigate the validity of this conjecture, we conduct three
sets of experiments shown as Tab. 4, where “γtrain → γtest”
represents that the search radius factor is set to γtrain in the
training phase, and γtest in the inference. “Dyn.” represents
to train the model using our dynamic γ mechanism.

We can see that the model trained with a fixed γtrain per-
forms extremely poorly when faced with different γtest in
the inference (see results of “4 → i”). The AUC standard
deviation (STD) of the first set is higher than 5 on both two
benchmarks. While in the second set (“i → i”), well perfor-
mance with lower STD under different γtest can be obtained
when we keep the consistency of γ in the training and infer-
ence. This phenomenon shows that the original cropping
strategy using fixed γtrain establishes a strong association
of γ between the training and inference, which hinders the
adaptability of models to scale variations, especially caused
by previous inaccurate prediction (see Fig. 2 (left)).

In contrast, our model effectively unbinds this kind of
association due to the proposed dynamic γ in the training
phase. Our model (“Dyn. → i”) performs well on all differ-
ent γtest, and has a comparable low STD with the second set.
We think this characteristic of our approach not only helps
the model to be more robust to scale variations, but also
provides a new insight for future works related to dynamic
search in the inference, like [49].

Stability to different magnitudes of jitter. As con-
cluded in Sec. 3.2, tracking models cannot perform well un-
der small and very large jitter settings in the training phase.

Table 5. Generalization of our methods to CNN backbones.
AUC STARK +ORC +TFMix SiamFC++ +ORC

LaSOT 66.4 67.7 66.2 60.4 61.1
LaSOT EXT 46.5 48.1 46.9 37.7 38.9

Table 6. Performance comparison on VOT2022 benchmark.
EAO A R

MixFormer-22k 0.538 0.776 0.838
+DATr (Ours) 0.531 0.7% ↓ 0.743 0.840
OSTrack256 0.497 0.783 0.788

+DATr (Ours) 0.525 2.8% ↑ 0.771 0.820
OSTrack384 0.522 0.788 0.799

+DATr (Ours) 0.525 0.3% ↑ 0.777 0.807

Average gain +0.8% -1.9% +1.4%

To demonstrate that our ORC is more stable to different jit-
ter degrees, we train our model under different jitter set-
tings, as shown in Fig. 3 (a.2). Compared with the orig-
inal cropping method (light dashed lines), our ORC (dark
solid lines) enables the tracking model adapt to varying de-
grees of jitter. In addition to dynamic γ mechanism, which
enriches samples’ diversity, simulating boundary cases can
feed models such samples under a small jitter setting. Be-
sides, there is also a check and filter step for uninformative
samples in our ORC. Therefore, we can still obtain well-
performed model stably even under very small (e.g. Shift2)
or very large (e.g. Shift5) jitter. We think this characteristic
brings convenience for future works, which prevents mod-
els from being too sensitive to jitter parameters.

Generalization capability of our methods. As shown
in Tab. 5, in addition to the pure Transformer trackers, our
ORC also boosts hybrid CNN-Transformer trackers (e.g.
STARK) and CNN-based trackers (e.g. SiamFC++). How-
ever, since our TFMix relies on characteristics of trans-
former models, i.e. global correlation between independent
tokens, it shows to be less effective for CNN backbones,
causing an average 1.4% AUC decline for STARK. The po-
tential reason might be the strong inductive bias in CNN
networks.

5.3. State-of-the-art comparison

We apply our augmentations on two SOTA transformer
trackers, MixFormer and OSTrack, and evaluate them on
six tracking benchmarks. For the OSTrack, we evaluate its
two variants with different image resolutions, represented
as OSTrack256 and OSTrack384, respectively.

VOT2022 (STB) [22]. This challenge contains 50 chal-
lenging short-term sequences with multiple initial anchor
points. The primary measure is the expected average over-
lap (EAO), which is a principled combination of tracking
accuracy (A) and robustness (R). As shown in Tab. 6, our
DATr improves three baseline models by 0.8% on average
in terms of EAO, especially for OSTrack256, boosting by
2.8% EAO. We can see that our DATr mainly improves
models from the perspective of tracking robustness.
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Table 7. State-of-the-art comparisons on five tracking benchmarks. The top two results are highlighted with red and blue, respectively.

Method LaSOT LaSOT EXT GOT-10k UAV123 NFS
AUC Pnorm Pre AUC Pnorm Pre AO SR0.5 SR0.75 AUC Pre AUC Pre

ECO [11] 32.4 33.8 30.1 22.0 25.2 24.0 31.6 30.9 11.1 53.5 76.9 52.2 63.4
SiamFC [1] 33.6 42.0 33.9 23.0 31.1 26.9 34.8 35.3 9.8 46.8 69.4 37.7 44.5
MDNet [32] 39.7 46.0 37.3 27.9 34.9 31.8 29.9 30.3 9.9 52.8 - 42.2 -

SiamRPN++ [23] 49.6 56.9 49.1 34.0 41.6 39.6 51.7 61.6 32.5 59.3 78.2 57.1 69.3
Ocean [48] 56.0 65.1 56.6 - - - 61.1 72.1 47.3 57.4 77.8 49.4 61.2
DiMP [2] 56.9 65.0 56.7 39.2 47.6 45.1 61.1 71.7 49.2 64.3 85.1 61.8 73.8

TrDiMP [36] 63.9 - 61.4 - - - 67.1 77.7 58.3 66.4 86.9 66.2 79.1
SiamRCNN [35] 64.8 72.2 - - - - 64.9 - - 64.9 83.4 63.9 -

TransT [7] 64.9 73.8 69.0 - - - 67.1 76.8 60.9 68.1 87.6 65.3 78.8
SBT-L [39] 66.7 - 71.1 - - - 70.4 80.8 64.7 - - - -

KeepTrack [29] 67.1 77.2 70.2 48.2 - - - - - 69.7 - 66.4 -
ToMP-101 [28] 68.5 79.2 73.5 45.9 - - - - - 66.9 - 66.7 -
AiATrack [15] 69.0 79.4 73.8 46.8 54.4 54.2 69.6 80.0 63.2 70.6 - 67.9 -

Sim-L [6] 70.5 79.7 - - - - 69.8 78.8 66.0 71.2 91.6 - -

MixFormer-22k [9] 68.9 78.5 74.3 49.1 59.6 55.3 70.3 80.0 66.2 69.7 91.0 65.0 79.1
+DATr (Ours) 68.8 0.1 ↓ 78.9 0.4 ↑ 74.6 51.0 1.9 ↑ 61.8 2.2 ↑ 57.3 71.4 1.1 ↑ 81.0 1.0 ↑ 67.6 69.6 0.1 ↓ 90.9 0.1 ↓ 65.8 0.8 ↑ 79.7 0.6 ↑

OSTrack256 [43] 68.6 78.1 74.4 47.3 57.4 53.1 71.4 81.4 67.5 68.2 88.6 65.4 79.6
+DATr (Ours) 69.1 0.5 ↑ 79.1 1.0 ↑ 75.2 49.9 2.6 ↑ 60.6 3.2 ↑ 57.0 72.5 1.1 ↑ 82.3 0.9 ↑ 69.2 70.8 2.6 ↑ 92.4 3.8 ↑ 66.0 0.6 ↑ 81.1 1.5 ↑

OSTrack384 [43] 70.7 80.4 77.0 50.5 61.2 57.4 73.5 83.0 70.6 69.7 90.6 66.3 80.8
+DATr (Ours) 71.0 0.3 ↑ 80.7 0.3 ↑ 77.5 51.8 1.3 ↑ 62.7 1.5 ↑ 59.0 74.2 0.7 ↑ 84.1 1.1 ↑ 71.1 69.7 0.0 ↑ 90.7 0.1 ↑ 65.5 0.8 ↓ 79.9 0.9 ↓

Average gain +0.2% +0.6% +0.5% +1.9% +2.3% +2.6% +1.0% +1.0% +1.2% +0.8% +1.3% +0.2% +0.4%

LaSOT and LaSOT EXT. Compared with LaSOT, its
extended dataset LaSOT EXT is more challenging, and all
its categories are unseen from the training set. As shown
in Tab. 7, the superiority of our augmentations can be fully
reflected on the very challenging benchmark LaSOT EXT.
All of three baseline trackers are improved by 1.9% AUC
and 2.3% Pnorm on average. Our augmentations also bring
an average of 0.6 Pnorm gain on LaSOT.

GOT-10k. GOT-10k is composed of 180 test sequences
of which classes are zero-overlapped with its training set.
We follow the official one-shot protocol to train all models,
where only its training subset is allowed to be used for train-
ing. Performance is evaluated by three metrics: average
overlap (AO), and success rates with two different thresh-
olds (SR0.5 and SR0.75). As shown in Tab. 7, all of our
models achieve significant promotion, surpassing baseline
trackers by 1.0% AO and 1.2% SR0.75 on average.

UAV123 [30] and NFS [21]. These two benchmarks
contain 123 sequences captured from the aerial perspective,
and 100 sequences, respectively. Results in Tab. 7 show that
our DATr obtains 1.3% improvement in terms of precision
on UAV123, and also minor increase on NFS.

Discussion and Limitation. In terms of the above ex-
periments, the superiority of our DATr is most evident un-
der challenging settings, like dealing with unseen classes
(GOT-10k) or very challenging sequences (LaSOT EXT),
and handling images with small resolution (OSTrack256).
Since our augmentations are motivated by unsolved chal-
lenges and failure cases, our DATr tends to improve models
in terms of tracking robustness, instead of accuracy, i.e. we
aim to locate the target successfully under challenging sit-

uations. This is the potential reason for the slight accuracy
decline in Tab. 6, and minor performance gains on some
benchmarks, like LaSOT and NFS.

6. Conclusion
In this paper, we systematically analyze the impact of

GDAs on modern transformer trackers and propose two cus-
tomized data augmentations for VOT. First, to improve the
adaptability of models to scale variations and boundary tar-
gets, we design an optimized random cropping, contain-
ing dynamic selection for search radius factor, and simu-
lation of boundary samples. Second, we synthesize hard
samples with background interference by a token-level fea-
ture mixing strategy. Extensive experiments on two SOTA
transformer-based trackers and six benchmarks demonstrate
our augmentations enable the model benefit from more di-
verse and challenging samples, and be more flexible to
changes of search radius in inference.
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