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Abstract

PatchMatch Multi-View Stereo (PatchMatch MVS) is one
of the popular MVS approaches, owing to its balanced ac-
curacy and efficiency. In this paper, we propose Polari-
metric PatchMatch multi-view Stereo (PolarPMS), which is
the first method exploiting polarization cues to PatchMatch
MVS. The key of PatchMatch MVS is to generate depth and
normal hypotheses, which form local 3D planes and slanted
stereo matching windows, and efficiently search for the best
hypothesis based on the consistency among multi-view im-
ages. In addition to standard photometric consistency, our
PolarPMS evaluates polarimetric consistency to assess the
validness of a depth and normal hypothesis, motivated by
the physical property that the polarimetric information is
related to the object’s surface normal. Experimental re-
sults demonstrate that our PolarPMS can improve the ac-
curacy and the completeness of reconstructed 3D models,
especially for texture-less surfaces, compared with state-of-
the-art PatchMatch MVS methods.

1. Introduction
PatchMatch Multi-View Stereo (PatchMatch MVS) [6]

is one of the popular MVS approaches for its good balance
in reconstruction accuracy and efficiency [12, 18, 22, 28].
PatchMatch MVS introduces the idea of PatchMatch [5] to
realize an accurate and fast global search for multi-view
correspondences. Specifically, PatchMatch MVS methods
generally estimate the depth and normal for each pixel of
each reference view as follows: (i) Initialize the depth
and normal randomly; (ii) Generate depth and normal hy-
potheses by random generation, perturbation of current
estimations, and the propagation considering an adjacent
pixel; (iii) Evaluate multi-view consistency to select the best
depth and normal hypothesis; (iv) Perform the processes
(ii) and (iii) for all the pixels in the scanning order of row-
major/column-major and iterate the whole process until suf-
ficient depth and normal results are derived.

In the above processes, a generated depth and normal
hypothesis for a pixel of a reference view is used to form a

Photometric evaluation
for 𝑑𝑑1,𝒏𝒏1

RGB image

AoP + 
DoP images

Polarimetric evaluation
for 𝑑𝑑1,𝒏𝒏1

Depth and normal hypotheses
{ 𝑑𝑑1,𝒏𝒏1 , 𝑑𝑑2,𝒏𝒏2 , … }.

𝑑𝑑2

𝒏𝒏2
𝒏𝒏1

𝑑𝑑1

0∘

60∘

120∘

180∘

AoP

Normal

AoP

Normal
Normal

Polarimetric evaluation
for 𝑑𝑑1,𝒏𝒏1

Reference view Source view

To another
source view

Figure 1. For the evaluation of a depth and normal hypothesis, our
method evaluates standard photometric consistency and additional
polarimetric consistency, which poses a cost to the inconsistency
between the observed angle-of-polarization (AoP) and the azimuth
angle of the normal hypothesis.

local 3D plane, as shown in the top part of Fig. 1. This local
plane is projected to a source view, which forms a slanted
patch for stereo matching. To evaluate the reliability of the
depth and normal hypothesis, PatchMatch MVS methods
evaluate the photometric consistency (color similarity) be-
tween the corresponding patches in the reference and the
source views. However, since both the depth and the normal
are evaluated based on color textures, it remains challenging
to accurately estimate them for texture-less regions.

In this paper, we propose Polarimetric PatchMatch
multi-view Stereo (PolarPMS), which is the first method
exploiting polarization cues to PatchMatch MVS. Our Po-
larPMS is motivated by the physical property that the angle-
of-polarization (AoP) of reflected light from an object is re-
lated to the azimuth angle calculated from the object’s sur-
face normal [8, 27]. Based on this, our PolarPMS evaluates
polarimetric consistency, which is the consistency between
the observed AoP and the azimuth angle from the normal,
as shown in the bottom part of Fig. 1. Compared with exist-
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ing PatchMatch MVS methods solely based on photometric
consistency, our PolarPMS utilizing additional polarimetric
consistency mainly has two benefits: (i) Since the AoP is
a direct cue to assess the surface normal, the accuracy of
the estimated normal map is significantly improved. Fur-
thermore, the improved normal estimation can derive im-
proved depth estimation by effectively incorporating depth-
normal consistency evaluation. (ii) Since the AoP is not in-
fluenced by the surface texture, the incorporation of polari-
metric consistency significantly improves the completeness
for texture-less regions. To summarize, the main contribu-
tions of this work are as follows:

• We propose PolarPMS, which is the first PatchMatch
MVS method exploiting polarization information.

• We introduce polarimetric consistency based on AoP,
which acts as a direct cue to assess the surface nor-
mal regardless of the surface texture, to select the best
depth and normal hypothesis in PatchMatch MVS.

• We introduce depth-normal consistency to improve the
depths by utilizing improved normals with AoP.

• We experimentally validate the effectiveness of our Po-
larPMS, which can derive improved 3D models, espe-
cially for texture-less surfaces.

• We make the source code publicly available at
http://www.ok.sc.e.titech.ac.jp/res/
PolarPMS/.

2. Related Works
2.1. PatchMatch Multi-View Stereo

PatchMatch MVS was originally proposed in [6] and its
improved versions have been actively proposed [12, 18, 22,
28]. Inspired by the PatchMatch search algorithm orig-
inally designed for image patches [5], PatchMatch MVS
realizes an accurate and fast global search of the best 3D
plane hypothesis that is the most consistent with multi-view
input images. However, as common to most other MVS
approaches, it remains challenging to derive accurate depth
and normal maps for texture-less regions, because Patch-
Match MVS methods rely on photometric consistency eval-
uation to select the best hypothesis.

Some recent PatchMatch MVS methods attempt to ad-
dress this challenge. TAPA-MVS [16] represents texture-
less regions as superpixels and fits a plane for each super-
pixel. ACMM [24] applies a multi-scale guided approach,
where texture-less regions are considered as better textured
when the original images are downsampled. ACMP [25]
and ACMMP [23] combine planar priors to ACMM, which
can provide additional geometric constraints to texture-less
regions. Even though the plane-based approaches work well
for planer scenes, such as buildings and indoor rooms, they
may lose surface details if general objects are targeted.

2.2. Multi-View Polarimetric Reconstruction

It is known that the azimuth angle and the zenith an-
gle of the object’s surface normal are related to AoP and
degree-of-polarization (DoP) of reflected light from the ob-
ject [8, 27]. Based on these physical properties, many
polarimetric 3D reconstruction methods have been pro-
posed in a single-view setting [19], a two-view stereo set-
ting [4, 11], or a multi-view setting [8, 26, 27].

Polarimetric MVS [8] and Polarimetric MVIR [27] are
two closely related methods to our PolarPMS, which adopt
multi-view polarization images as the inputs. Polarimetric
MVS exploits AoP information to decide the directions to
propagate the sparse depths obtained by SfM. While Polari-
metric MVS derives dense depth maps even for texture-less
regions, the depth propagation is performed in a view-by-
view manner without checking multi-view consistency re-
garding the polarization, leading to limited accuracy.

Polarimetric MVIR and our PolarPMS utilize a simi-
lar observation regarding the relationship between the AoP
and the azimuth angle in multi-view consistency. However,
they play different roles in the 3D reconstruction steps. Po-
larPMS is an MVS method that builds a dense point cloud
from scratch and uses AoP information to search for the best
3D plane hypothesis in the PatchMatch MVS framework. In
contrast, Polarimetric MVIR is a refinement method based
on a reasonable initial shape from MVS and uses AoP infor-
mation for global mesh optimization. Thus, these methods
can be applied to each reconstruction step in combination.

2.3. Deep-Learning-Based Methods

Deep-learning-based methods also have been emerging
for PatchMatch MVS [10,13,21] and multi-view polarimet-
ric 3D reconstruction [7, 20]. While these methods demon-
strate high potential and performance on their benchmarks,
a large amount of training data is still hard to obtain espe-
cially for polarization images, for which simulation tools
and open datasets are very limited. While a recent method
of [9] based on neural radiance fields does not require the
training data, it tends to generate over-smoothed surfaces
due to the convolutional nature of the network. Since our
PolarPMS builds a 3D model as in a classical MVS ap-
proach, it falls into a much different category from those
learning-based methods.

3. Polarimetric PatchMatch Multi-View Stereo
3.1. Depth and Normal Estimation Overview

Our PolarPMS uses multiple polarization images taken
from different viewpoints, and camera poses are derived
from SfM [17]. Figure 2 shows the flow of depth and nor-
mal estimation for a reference view, which is one of the
input views. Firstly, the depth and normal for each pixel
are randomly initialized. Then, based on the initial/current
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Figure 2. Flow of depth and normal estimation for a reference view in our PolarPMS. According to the PatchMatch algorithm, the depth and
normal hypothesis generation and evaluation are performed pixel-wisely in the scanning order of row-major/reverse-row-major/column-
major/reverse-column-major at each iteration. We utilize polarimetric information to evaluate the depth and normal hypotheses.

depth and normal, seven depth and normal hypotheses are
generated, as detailed later. Those hypotheses are then eval-
uated based on the pair-wise consistency between the ref-
erence and the source views to select the best hypothesis
as the current estimation. This hypothesis generation and
selection are performed pixel-wisely in the scanning order
of row-major, reverse-row-major, column-major, or reverse-
column-major at each iteration until the iteration limit to ob-
tain the final depth and normal estimations. These estima-
tion processes are performed on every input view to obtain
the depth and the normal maps of all the views.

3.2. Depth and Normal Hypothesis Generation

Given the initial/current depth and normal estimations,
seven depth and normal hypotheses are generated in the
same way as [18] as follows.

A = {(dl,nl), (d
prop
l−1 ,nl−1), (d

rnd
l ,nl), (dl,n

rnd
l ),

(drndl ,nrnd
l ), (dprtl ,nl), (dl,n

prt
l )},

(1)

where dl and nl are the current depth and normal of the
pixel l, respectively. dpropl−1 is the depth obtained by the
inter-pixel propagation from the depth and normal of the
adjacent pixel l − 1, which is the depth hypothesis assum-
ing a smooth surface. drndl and nrnd

l are randomly gener-
ated depth and normal hypotheses, and dprtl and nprt

l are
perturbed hypotheses of the current depth and normal.

3.3. Depth and Normal Hypothesis Evaluation

3.3.1 Overall Cost Function

Here, we detail the cost function for depth and normal eval-
uation. The overall cost function is as follows.

(doptl ,nopt
l )=arg min

d∗
l,n

∗
l

[
Fpho(d

∗
l,n

∗
l )+τgeo ·Fgeo(d

∗
l,n

∗
l )

+τpol ·Fpol(d
∗
l,n

∗
l )+τdep ·Fdep(d

∗
l,n

∗
l )
]
,

(2)
where (doptl ,nopt

l ) is the best hypothesis selected from A
for the pixel l with a minimum cost, and (d∗l ,n

∗
l ) rep-

resents one of the seven depth and normal hypotheses in
A. Fpho, Fgeo, Fpol, and Fdep evaluate photometric con-
sistency, geometric consistency, polarimetric consistency,
and depth-normal consistency, respectively. τgeo, τpol, and
τdep are balancing weights. Fpho and Fgeo are based on
COLMAP [18], and we newly introduce Fpol and Fdep. The
optimization problem can be solved by Ceres solver [3].

Figure 3 illustrates the geometric projections used for
cost evaluation. For one depth and normal hypothesis to
a considered pixel/patch in the reference image, one lo-
cal 3D plane hypothesis is generated. This local 3D plane
is then projected to the source image plane, by which a
slanted patch for photometric consistency evaluation is de-
rived. Similarly, the normal vector is projected to the ref-
erence and the source image planes, respectively, which are
used to derive the azimuth angle of the normal for polari-
metric consistency evaluation.

3.3.2 Photometric Consistency

The photometric consistency between the patch in the refer-
ence image and the corresponding patch in the source image
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Figure 3. Illustrations of geometric projections used for our cost
calculation.
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Figure 4. Illustrations of photometric cost calculation and polari-
metric cost calculation for hypothesis (d2,n2) of Fig. 3.

(see Fig. 4(a)) is evaluated using standard RGB images as

Fpho(d
∗
l ,n

∗
l ) =

1

|S|
∑
m∈S

[
1− σm

l (d∗l ,n
∗
l )
]
, (3)

where S is the set of source views, which is adaptively se-
lected for each pixel l of the reference image [18], and m
is the index of the source view. σm

l is the color similarity,
which is calculated as

σm
l (d∗l ,n

∗
l ) =

covω(ωl,ω
m
l )√

covω(ωl,ωl)covω(ωm
l ,ω

m
l )

, (4)

where covω is the weighted covariance of the patches, ωl is
the reference patch, and ωm

l is the corresponding patch in
the m-th source image.

This cost function gives a small cost for texture-less re-
gions with similar brightness, regardless of inconsistency
in geometry. To avoid such mis-evaluation, COLMAP ex-
cludes those regions, where pixel values hardly vary in the

reference patch, from the estimation by assigning a maxi-
mum cost so as to be removed by later filtering. In contrast,
we do not exclude those texture-less regions to improve the
completeness by using polarimetric information, as will be
explained in Section 3.3.4.

3.3.3 Geometric Consistency

The geometric consistency is evaluated as

Fgeo(d
∗
l ,n

∗
l ) =

1

|S|
∑
m∈S

ξml (d∗l ,n
∗
l ), (5)

where ξ is robustified geometric cost function:

ξml (d∗l ,n
∗
l ) = 1− σm

l (d∗l ,n
∗
l )

+ 0.5min(ψm
l (d∗l ,n

∗
l ), ψmax),

(6)

where ψm
l represents the distance error between the pixel

coordinates of the current pixel and the forward-backward
reprojected pixel using the depth value of the reference im-
age (forward direction) and that of the source image (back-
ward direction), and ψmax is the maximum reprojection er-
ror, which is set to be three (pixel).

3.3.4 Polarimetric Consistency

Unpolarized light becomes partially polarized when it is re-
flected from an object’s surface. It is known that the AoP
of the reflected light is related to the direction of the sur-
face normal’s projection (i.e., azimuth angle). However, the
relationship is not unique and depends on whether specular
reflection or diffuse reflection dominates. Generally, there
exist π− and π/2−ambiguities in the relationship between
the AoP (ϕ) and the azimuth angle (α) without prerequi-
site knowledge about lighting conditions and surface mate-
rials [27]. This means that four possible azimuth angles (ϕ,
ϕ ± π/2, ϕ + π) can be inferred from one observed AoP
value ϕ, as illustrated in Fig. 4(b).

Based on the above physical property, we evaluate po-
larimetric consistency as

Fpol(d
∗
l,n

∗
l )=

g(ρl)·δ(ηl(n∗
l ))+

∑
m∈S

g(ρml )·δ(ηml (d∗l,n
∗
l ))

g(ρl)+
∑

m∈S
g(ρml )

,

(7)
where ρl and ρml represent the DoP values of the reference
pixel and the warped pixel in the m-th source image, re-
spectively. g(ρ) is the weighting function based on the DoP
value, which is detailed later.

The symbol δ represents the function of the minimum
angle difference η between the azimuth angle α of the nor-
mal hypothesis n∗ and one of the four possible azimuth an-
gles inferred from the observed AoP value ϕ, as shown in
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Fig. 4(b). Mathematically, this minimum angle is calculated
for the reference pixel l as

ηl = min(|αl − ϕl − 2π|, |αl − ϕl − 3π/2|,
|αl − ϕl − π|, |αl − ϕl − π/2|, |αl − ϕl|,
|αl − ϕl + π/2|, |αl − ϕl + π|).

(8)

The minimum angle for the warped pixel in them-th source
image ηml can be calculated in the same way. As the specific
function δ, we adopt a concave-shaped function of [27],
which assigns a higher cost if η is larger and vice versa in
the range of [0, 1].

As for the weighting, since a high DoP value means high
reliability of the polarization information, we assign a larger
weight to the view with a larger DoP value as

g(ρ) = 1− [min(ρ, ρ0)− ρ0]
2/ρ20, (9)

which increases when the DoP value ρ becomes larger and
reaches the maximum value one when ρ becomes larger
than the threshold ρ0. By using this DoP weighting, only
reliable AoP values among all the reference and source
views are paid attention to assess the polarimetric consis-
tency. Furthermore, if no polarimetric information is avail-
able, which means that DoP equals zero for all the views,
the polarimetric consistency is neglected, resulting in prin-
cipally the same result as COLMAP relying on photometric
consistency.

3.3.5 Depth-Normal Consistency

By introducing the polarimetric consistency, it is expected
that the accuracy of the estimated normal is improved.
Thus, we aim to affect the improved normal estimations
to the depth estimations by enforcing the consistency be-
tween the normal and the depth. For this purpose, we intro-
duce a depth-normal consistency evaluation to enforce the
consistency between the estimated normal and the normal
calculated from the depths in neighboring pixels. The cost
function is calculated as follows.

Fdep(d
∗
l ,n

∗
l ) = 1− (n∗

l )
T · ndep

l (d∗l , d
h
l , d

v
l ), (10)

where ndep
l is the normal of the plane composed of the 3D

points associated with the depths of the current pixel l (d∗l ),
its adjucent pixels in the horizontal (dhl ) and the vertical (dvl )
directions.

3.4. Point Cloud Generation from Multi-Views

After generating the depth and the normal maps of all
input views, a point cloud is generated by fusing them. Be-
fore the fusion, we apply filtering to remove unreliable es-
timations. We consider that the estimation is unreliable if
a reference pixel/patch xl does not have both enough po-
larization cues (DoP value ρl) and textures (pixel intensity
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(a) Camera and illumination settings

(b) Sample images

Figure 5. Synthetic data generation: (a) Camera and illumination
settings; (b) the examples of the synthesized images.

variation in the patch λl). Thus, we first filter out the pixels
that do not satisfy the following conditions.

Sl = {xl|ρl ≥ ρt, λl ≥ λt}, (11)

where ρt is the threshold for the DoP value, and λt is the
variance threshold for the patch, which are set to 0.05 and
1.0 in our paper. We then follow COLMAP [18] for the fil-
tering of remaining pixels and the fusion processes, where
photometric consistency and geometric consistency are re-
checked so that 3D points are generated only from consis-
tent depth and normal estimations in multi-views.

4. Experimental Results
4.1. Comparison Using Synthetic Data

We used three CG models (Armadillo, Bunny, and
Dragon) available from Stanford 3D Scanning Reposi-
tory [1]. Following [27], input RGB, AoP, and DoP images
were synthesized using Mitsuba 2 renderer [15], which sup-
ports a polarimetric BRDF model to simulate realistic po-
larization images. The synthetic data were generated using
a polarized plastic material because it is only the polarized
material that can add arbitrary textures. The camera poses
and illumination (environment map) are shown in Fig. 5(a)
and the examples of synthesized RGB, AoP, and DoP im-
ages are shown in Fig. 5(b).

We empirically set (τgeo, τpol, τdep) in Eq. (2) to
(0.4, 4.0, 0.4), and ρ0 in Eq. (9) to 0.005, and compared
our PolarPMS with COLMAP [18], which is the base of
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(a) Armadillo (b) Bunny (c) Dragon

Figure 6. Numerical evaluation of depths (top) and normals (bot-
tom) of all pixels. The vertical axis represents the proportion of
the pixels whose errors are less than the threshold of the horizon-
tal axis.
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Figure 7. Depth and normal map comparison.

our method, and ACMMP [23], which is a state-of-the-art
PatchMatch MVS method incorporating planer priors.

Figure 6 numerically evaluates the depth and normal es-
timation results of all the pixels of all the views, where x-
axis indicates the depth or normal error threshold, and y-
axis represents the proportion of the pixels with a smaller
error than the threshold. We can clearly see that our Po-
larPMS achieves the best accuracy among compared meth-
ods with the fastest ascent speed and the highest proportion
of the pixels with less error than a certain threshold. Espe-
cially, the normal accuracy is significantly improved, owing
to our polarimetric consistency evaluation that directly af-
fects the selection of reliable normal hypothesis. This im-
provement can be seen visually in Fig. 7, where our Po-
larPMS derives significantly better normal results.

We then compare 3D point cloud results derived from
depth and normal maps, using the same fusion parame-
ters for all the compared methods. The quality of the re-
constructed point is evaluated using two commonly-used

Table 1. Comparisons of the average accuracy (Acc.) and com-
pleteness (Comp.) errors

COLMAP ACMMP PolarPMS (Ours)

Armadillo

# of Points 694,448 1,110,869 918,007

Acc.(×10−2) 0.622 0.679 0.522

Comp.(×10−2) 1.035 0.835 0.568

Bunny

# of Points 385,511 1,231,652 1,192,849

Acc.(×10−2) 0.689 0.780 0.778

Comp.(×10−2) 5.373 1.483 0.867

Dragon

# of Points 538,665 1,040,791 1,117,226

Acc.(×10−2) 0.714 0.799 0.669

Comp.(×10−2) 3.894 2.572 1.635

Average
Acc.(×10−2) 0.675 0.753 0.656

Comp.(×10−2) 3.434 1.630 1.023

metrics [2, 14]: “Accuracy” which is the distance from
each estimated 3D point to its nearest ground-truth 3D
point and “Completeness” which is the distance from each
ground-truth 3D point to its nearest estimated 3D point. Ta-
ble 1 summarizes the average accuracy and completeness
for each model. Figures 8 and 9 show the visual compar-
isons for the Armadillo model and the Bunny model, re-
spectively. Generally, COLMAP achieves good accuracy,
but poor completeness, because COLMAP only focuses on
the regions with rich texture and excludes the texture-less
regions from the estimation due to the difficulty in photo-
metric consistency evaluation. This is extremely conspic-
uous for the Bunny model of Fig. 9. ACMMP aims to re-
construct texture-less regions and exhibits the effectiveness
by better completeness than COLMAP. However, ACMMP
tends to lose the surface details because it assumes local
planer scenes, which is not always the case, as shown in
the enlarged regions of Figs. 8 and 9. In contrast, our Po-
larPMS achieves good performance in terms of both accu-
racy and completeness, thanks to our polarimetric consis-
tency evaluation, which is effective regardless of surface
textures, to derive better surface normals and depth-normal
consistency evaluation to utilize the improved normals to
improve depths too.

We also performed an ablation study to confirm the ef-
fectiveness of our proposed polarimetric and depth-normal
consistencies. Table 2 summarizes the average pixel-wise
depth and normal errors. Compared to the first column
where neither polarimetric consistency nor depth-normal
consistency is introduced (principally COLMAP), the sec-
ond column and the third column demonstrate that the ac-
curacy of both depth estimation and normal estimation can
be improved by considering polarimetric and depth-normal
consistencies, respectively. The fourth column shows that
the best results can be derived by introducing polarimetric
and depth-normal consistencies simultaneously.
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Figure 8. Visual comparison for the Armadillo model.

PolarPMS (Ours)ACMMP

Ground truth COLMAP

Figure 9. Visual comparison for the Bunny model.

4.2. Comparison Using Real Data

We used the dataset in [27] for a toy car (56 views), a
camera (32 views), and a statue (43 views). For real data,
we empirically set (τgeo, τpol, τdep) to (0.4, 10.0, 0.4) and
ρ0 to 1.0, seeing the actual strengths of noise and DoPs for
real scenes. The results in Fig. 10 show that COLMAP can
generally reconstruct regions with relatively rich textures,
but has limited performance in texture-less regions (e.g.,
the front window of the toy car). Compared to COLMAP,
ACMMP shows good performance in overall shape recon-
struction, thanks to multi-scale geometry consistency to
provide additional feature points and planar prior which can
provide geometric constraints for the scene (e.g., the base

Table 2. Comparisons of the average depth and normal errors

Polarimetric consistency ✓ ✓

Depth-normal consistency ✓ ✓

Armadillo
Depth 0.066 0.034 0.049 0.026
Normal (deg) 24.429 8.897 18.344 7.845

Bunny
Depth 0.338 0.155 0.346 0.103
Normal (deg) 46.348 10.430 40.707 8.054

Dragon
Depth 0.188 0.113 0.167 0.082
Normal (deg) 37.309 11.864 29.956 10.263

Average
Depth 0.197 0.101 0.187 0.070
Normal (deg) 36.029 10.397 29.669 8.721

part of the statue). However, at the same time, the planar
prior is principally difficult to apply for texture-less non-
planar regions, since details of those regions are difficult to
capture by fitting them to planes (e.g., the side window of
the toy car). In contrast, our PolarPMS can recover texture-
less regions better (e.g., the front window of the car and the
face of the statue), and meantime reconstruct the details bet-
ter (the side window of the car, the lens part of the camera,
and the bell of the statue). This demonstrates the effective-
ness of our PolarPMS by utilizing polarimetric information
for recovering texture-less regions and surface details.

4.3. Comparison with Polarimetric MVS

We next compare PolarPMS with Polarimetric MVS [8],
which is a representative MVS method with polarization.
Since the source code of Polarimetric MVS is not avail-
able, we used the input and the result data provided by
the authors of [8] for comparison. Figure 11 shows the
visual comparison for real car data. We can see that, com-
pared to COLMAP which does not utilize polarization, both
Polarimetric MVS and our PolarPMS reconstruct a much-
completed 3D point cloud. While Polarimetric MVS tends
to generate a very dense point cloud, it lacks accuracy and
generates scattered 3D points for a single surface. This is
because Polarimetric MVS uses AoP information for view-
by-view depth propagation, but does not include multi-view
consistency evaluation based on polarization. On the other
hand, our PolarPMS generates more accurate 3D points
by utilizing polarization information for multi-view consis-
tency evaluation regarding the surface normal.

5. Conclusion
In this paper, we have proposed PolarPMS, which is a

new PatchMatch MVS method that can improve the accu-
racy and completeness of reconstructed 3D models, com-
pared with existing PatchMatch MVS methods. PolarPMS
exploits polarization information to improve the estimation
accuracy of the object’s surface normal and depth, making
use of the physical relationship between the observed AoP
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(b) Visual comparison of reconstructed point clouds for three objects
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Figure 10. Examples of input images and the visual comparison using real data.
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Figure 11. Examples of input images and the visual comparison
for real car data provided by the authors of Polarimetric MVS.

and the azimuth angle of the normal. Since this relation-
ship is independent of the surface texture, PolarPMS real-
izes better completeness, especially for texture-less regions.
Our PolarPMS has a limitation in reconstructing the regions
where there exist strong inter-reflections, which have a more
complicated status in polarization, and this encourages us to
adopt a more accurate reflection model in our future work.
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