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Abstract

In this paper, we study the problem of Compositional
Zero-Shot Learning (CZSL), which is to recognize novel
attribute-object combinations with pre-existing concepts.
Recent researchers focus on applying large-scale Vision-
Language Pre-trained (VLP) models like CLIP with strong
generalization ability. However, these methods treat the
pre-trained model as a black box and focus on pre- and
post-CLIP operations, which do not inherently mine the se-
mantic concept between the layers inside CLIP. We propose
to dive deep into the architecture and insert adapters, a
parameter-efficient technique proven to be effective among
large language models, into each CLIP encoder layer.
We further equip adapters with concept awareness so
that concept-specific features of “object”, “attribute”, and
“composition” can be extracted. We assess our method
on four popular CZSL datasets, MIT-States, C-GQA, UT-
Zappos, and VAW-CZSL, which shows state-of-the-art per-
formance compared to existing methods on all of them.

1. Introduction

When facing a novel concept such as a large castle,
humans can deconstruct individual components (large and
castle) from familiar concepts (large bear, old castle) to
comprehend the new composition. Such task of recogniz-
ing new attribute-object compositions based on a set of ob-
served pairs is Compositional Zero-Shot Learning (CZSL)
[24], a sine qua non for an intelligent entity. However, the
inherent challenge in CZSL lies in the capacity to identify
unobserved novel compositions without compromising the
recognition of previously observed combinations. Conven-
tional approaches [1, 19, 20, 23–27, 31, 35, 39, 40, 43] often
suffer from training biases. Even though recent methods
employ large-scale Vision-Language Pre-training (VLP)
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Figure 1. Illustrations of CAILA and previous CLIP-based base-
lines. CAILA has adapters integrated into both CLIP encoders
and thus better transfers the knowledge from CLIP to CZSL, re-
sulting in significant performance boosts compared with other
CLIP-based baseline methods. “Van.-CLIP” refers to models with
vanilla CLIP architecture. Prompts highlighted in green are set
to be learnable parameters.

models with strong generalization ability, e.g., CLIP [32],
to accommodate this issue, they simply treat VLP models
as frozen black box encoders and fail to exploit the poten-
tial of VLP models. Thus, here, we explore how to more
effectively extract and utilize the knowledge embedded in
pre-trained vision-language models for the recognition of
novel attribute-object compositions.

More specifically, to adapt VLP models for CZSL, some
researchers apply prompt-tuning [28,47,48] or fine-tune the
model with extra adaptation layers [5] on the top of CLIP.
However, prompt-tuning methods, depicted in Figure 1(a),
only learn trainable prompts, while CLIP-Adapter, shown
in Figure 1(b), only adds external modules outside CLIP.
Both strategies abstain from altering the fundamental CLIP
encoder, consequently retaining CLIP as a static black box.
Nayak et al. [28] have shown that exhaustively fine-tuning
CLIP falls short of attaining practicable performance. Thus,
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we argue that properly optimizing features across layers
through a task-specific design is critical to effectively har-
nessing the knowledge embedded in CLIP. A feasible CLIP-
based CZSL should: i) have task-specific designs for CZSL;
ii) be capable of extracting concept-specific features related
to compositions and individual primitives.

Hence, we propose CAILA , Concept-Aware Intra-
Layer Adapters, that satisfy the given prerequisites and sub-
stantiate its superiority, as shown in Fig. 1(d), compared
with other CLIP-based methods. Fig. 1(c) highlights the
difference between CAILA and other VLP-based methods.
Instead of prompt tuning or fully fine-tuning, we adopt
adapters [7] to transfer knowledge from VLP models while
avoiding strong training biases.

Moreover, given that adapters are low-overhead com-
ponents, it is feasible to employ a variety of adapters to
extract concept-wise representations. More specifically,
CAILA integrates a group of adapters into each layer of
both encoders; each group possesses concept-specific com-
ponents to extract knowledge corresponding to particu-
lar concepts, including attributes, objects, and composi-
tions. To merge features extracted by various concept-aware
adapters, we propose the Mixture-of-Adapters (MoA)
mechanism for both vision and yrcy encoder. In addition,
the property that CAILA can extract concept-specific fea-
tures allows us to further propose Primitive Concept Shift,
which generates additional vision embeddings by combin-
ing the attribute feature from one image and the object fea-
ture from another for a more comprehensive understanding.

We evaluate our approach on three popular CZSL
datasets: MIT-States [9], C-GQA [25] and UT-Zappos
[44, 45], under both closed world and open world settings.
We also report the performance of CAILA in closed world
on VAW-CZSL [35], a newly released benchmark. Our ex-
periments show that, in both scenarios, our model beats the
state-of-the-arts over all benchmarks following the general-
ized evaluation protocol [31], by significant margins.

To summarize, our contributions are as follows: (i) We
propose CAILA, which is the first model exploring CZSL-
oriented designs with CLIP models to balance model capac-
ity and training bias robustness; (ii) we design the Mixture-
of-Adapter (MoA) mechanism to fuse the knowledge from
concept-aware adapters and improve the generalizability;
(iii) we further enrich the training data and exploit the power
of CAILA through Primitive Concept Shifts; (iv) we con-
duct extensive experiments in exploring the optimal setup
for CAILA on CZSL. Quantitative experiments show that
our model outperforms the SOTA by significant margins in
both closed world and open world, on all benchmarks.

2. Related Works
Zero-Shot Learning (ZSL). Unlike conventional fully-

supervised learning, ZSL requires models to learn from side

information without observing any visual training samples
[16]. The side information comes from multiple non-visual
resources such as attributes [16], word embeddings [36, 38]
, and text descriptions [33]. Notably, Zhang et al. [46] pro-
pose to learn a deep embedding model bridging the seen
and the unseen, while [2,42,49] investigate generative mod-
els that produce features for novel categories. Moreover,
[11,38] integrate Graph Convolution Networks (GCN) [15]
to better generalize over unseen categories.

Compostional Zero-Shot Learning (CZSL). Previous
CZSL approaches are built with pre-trained image en-
coders, e.g. ResNet and separate word embeddings, e.g.
GloVe [30]. More specifically, Li et al. [20] investigate the
symmetrical property between objects and attributes, while
Atzmon et al. [1] study the casual influence between the
two. Moreover, Li et al. [19] construct a Siamese network
with contrastive learning to learn better object/attribute pro-
totypes. On the other hand, joint representations of com-
positions can be leveraged in multiple ways. [31] utilizes
joint embeddings to control gating functions for the mod-
ular network, while [26, 27, 40, 43] treat them as categori-
cal centers in the joint latent space. Furthermore, some ap-
proaches [23–25,34,39] directly take compositional embed-
dings as classifier weights, while OADis [35] disentangles
attributes and objects in the visual space.

Parameter-Efficient Tuning. Recent research on large
scale pre-training models [6, 8, 10, 18, 32] has achieved su-
perior performance on various downstream tasks, compared
with regular approaches. Various works [7,12,37] show that
tuning adapters [7] on the language side yields comparable
results with fully fine-tuned variants, while Chen et al. [3]
investigate the adaptation of image encoders on dense pre-
diction tasks. For CZSL, a few models [28, 48] leverage
the knowledge of CLIP through prompt tuning [17] , while
Gao et al. [5] attach a post-processor to CLIP for knowledge
transfer. Though these methods show strong performance
on CZSL against regular models, they treat the CLIP model
as a black box and keep it completely frozen. In CAILA ,
we open up the CLIP black box by integrating intra-layer
adapters to both image and text encoders.

3. Approach
The problem of CZSL can be formulated as follows. We

denote the training set by T = {(x, y)|x ∈ X , y ∈ Ys},
where X contains images represented in the RGB color
space and Ys is a set of seen composition labels which are
available during the training phase. Each label y = (a, o)
is a pair of attribute a ∈ A and object category o ∈ O.
When testing, CZSL expects models to predict a set of un-
seen compositions Yu that is mutually exclusive with train-
ing labels Ys: Ys ∪ Yu = ∅. Note that Ys and Yu share
the same set of A,O, while CZSL assumes that each a ∈ A
or o ∈ O exists in the training set and only the composition
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(a, o) ∈ Yu is novel. Following [25, 31, 41], we focus on
generalized CZSL, where the test set contains both seen and
unseen labels, formally denoted by Ytest = Ys ∪ Yu.

Most recent works [1,25,31] study the generalized CZSL
problem under the closed world setting, where Ytest is a
subset of the complete composition set Y : A × O. The
closed world setting assumes that Yu are known during test-
ing and thus greatly reduce the size of the search space.
On the contrary, Mancini et al. [22] argue that such con-
straint should not be applied to the search space and in-
troduce the open world setting, where models are required
to search over the complete set of compositions, formally
Ys ∪ Yu = Y . In this paper, we investigate the problem in
both closed world and open world.

3.1. Compatibility Estimation Pipeline

As different attributes can lead to significant appearance
shifts even inside the same object category, performing at-
tribute and object predictions separately may be ineffective.
Hence, we model attribute-object compositions jointly and
learn a combined estimation function to measure the com-
patibility of input image x and query composition (a, o).
In addition, we let the model estimate attribute and object
compatibilities as auxiliary sub-tasks during training.

The estimation of composition compatibility is repre-
sented as C(x, a, o) : X×A×O → R. It contains two com-
ponents: The image feature extractor FC : RH×W×3 → Rd

and the text embedding generator G : A × O → Rd. Note
that d denotes the number of channels that each represen-
tation has. Given an image x and a composition (a, o), the
compatibility score is defined as the dot product of FC(x)
and G(a, o), formally

C(x, a, o) = FC(x) · G(a, o). (1)

Furthermore, as CZSL requires models to recognize
novel pairs composed of known attributes and objects, it is
important for a model to possess the capability of primitive
feature extraction that is disentangled with training compo-
sitions. Thus, we make our model extract features corre-
sponding to primitives and estimate the compatibility be-
tween vision features and text representations during train-
ing. Similar to Eqn. 1, we have

C(x, a) = FA(x) · GA(a), C(x, o) = FO(x) · GO(o). (2)

All three compatibility scores contribute independently to
the loss function, while C(x, a, o) is leveraged during in-
ference. More specifically, our framework learns separate
representations through CAILA discussed in Sec. 3.2 and
conducts knowledge fusion through Mixture-of-Adapters
(MoA), which will be covered in Sec. 3.3.

Following [32], we create a prompt template similar to
"a photo of [CLASS]" for each compatibility esti-
mation sub-task. For composition compatibility, we feed

the text encoder with "a photo of [ATTRIBUTE]
[OBJECT]"; We use "a photo of [ATTRIBUTE]
object" and "a photo of [OBJECT]" for attribute
and object compatibilities, respectively. Similar to [28], we
only make [CLASS] prompts trainable. For both encoders
F and G, we take the output hidden state of the [CLS] to-
ken as the representation.

3.2. Concept-Aware Intra-Layer Adapters

Though CLIP-based CZSL approaches [5, 28, 48] have
achieved significant improvements compared with earlier
methods [22,24,25,28,31], the CLIP encoder is considered
as a black box and no modifications are made to improve its
generalizability. Thus, we propose to improve CLIP-based
CZSL models in both modalities with CAILA , Concept-
Aware Intra-Layer Adapters.

As shown in Fig. 2 (a)(b), we take the CLIP image en-
coder as F and the text encoder as G, while adding concept
awareness to both encoders when estimating compatibilities
of different concepts. Fig. 2 (c) demonstrates how adapters
are integrated into a regular transformer encoding block.
For each encoding block, we add adapters behind the frozen
self-attention layer and the feed-forward network. More
specifically, given the input hidden state h of an adapter, we
compute the latent feature z by the downsampling operator
fDown, followed by the activation function σ. The output
h′ of an adapter is obtained by upscaling z and summing it
with h through the skip connection. Formally, we have

z = σ(fDown(h)), h′ = fUp(z) + h, (3)

where both fDown and fUp are fully-connected layers.
To extract concept-specific features, at each depth level,

we create three encoding blocks corresponding to attribute,
object, and composition, respectively. As in Fig. 2(c), en-
coding blocks of at the same level share the same weights
except for the adapter layers. Inputs from both modalities
are processed by encoders equipped with different types of
encoding blocks and features related to each of the three
concepts are produced. During training, vision-language
compatibility scores for “attribute”, “object” and “compo-
sitions” are estimated. More specifically, encoders referred
in Fig. 2(a) and (b) are the same ones; There are not extra
side encoders for auxiliary sub-tasks.

3.3. MoA: Mixture of Adapters

To aggregate the knowledge extracted by adapters corre-
sponding to attributes, objects, and compositions, we pro-
pose Mixture-of-Adapters mechanisms for both the vision
side and language side of the encoder.

On the vision side, we perform a two-stage feature ex-
traction. As shown in Fig. 2 (a), for the first NV −M lay-
ers, we extract features related to the attribute (hA) and the
object (hO) through corresponding encoding blocks, which
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Figure 2. An overview of CAILA : (a) The main composition compatibility estimation pipeline; (b) Auxiliary sub-tasks on primitive
compatibility during training; (c) The structure of CAILA layers. Our model extracts concept-specific features by learning different adapters
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are further concatenated and processed by the trailing M
ternary MoA layers. An example of the vision MoA layer
is shown in Fig. 3. Given the hidden state h, we extract
latent features zA, zO and zC from the adapters. We then
combine all three features and create z′C, followed by fUp:

z′C = Avg
[
zA, zO, zC

]
, h′

C = fUp(z
′
C). (4)

We further combine h′
C with outputs of attribute and object

adapters, h′
A and h′

O, to create the output:

h′ = Avg
[
h′
A,h′

O,h′
C

]
+ h. (5)

The output of the last mixture layer is L2-normalized and
adopted as FC(x) for compatibility estimation. Ablation
study on this module is discussed in Sec. 4.3.

Unlike the vision side, where attributes and objects are
deeply entangled within the same input image. On the
language side, we can create disentangled language inputs
through different prompt templates for attributes and ob-
jects separately. Thus, we adopt a simple mixture strategy
for language adapters. We compute the compositional em-
bedding through NL encoding blocks for the composition
and combine it with primitive language embeddings:

G(a, o) = Avg
[
GA(a),GO(o),GC(a, o)

]
. (6)

3.4. Primitive Concept Shift on Image Embeddings

Due to the limited diversity of training data, current
CZSL models often suffer from training biases. As dis-
cussed in Sec. 3.3, in addition to the composition-related
feature, CAILA extracts attribute- and object-oriented fea-
tures during the first stage of FC . That motivates us to lever-
age these primitive-specific features to create additional em-
beddings for certain compositions. As it leads to changes in

1724



Language 
Encoder

O

Amelted butter

pressed candy

Vision
MoA

“A photo of
melted candy”

“A photo of
candy”

“A photo of
melted object”

Compatibility

Visual feature of 
“melted candy”

Figure 4. Illustrations of concept shift. We perform concept shift
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(melted candy) feature. Newly generated features are shuffled
with regular samples during training.

labels of original images, e.g. from melted butter to
melted candy, we call it primitive concept shift.

Fig. 4 demonstrates the process of concept shift: Given
one sample x0 of melted butter and one sample x1 of
pressed candy, we create a new sample of melted
candy in the feature space, by combining the attribute-
oriented feature hA of x0 and the object-oriented feature
hO of x1. The newly combined feature is further processed
by vision MoA layers described in Sec. 3.3, leading to an
embedding representing melted candy. Such change
can be viewed as an “object shift” from melted butter
or an “attribute shift” from pressed candy. Thus, we
name this process “primitive concept shift”. In practice, we
randomly pick a proportion of samples for shifting and en-
sure that the new label after shifting still lies in the training
set. We discuss the effectiveness of the shifting in Sec .4.3.

Although there are previous explorations [19,40] in gen-
erating novel features in the latent space, our method is es-
sentially novel from two aspects: i) Wei et al. [40] generate
features directly from word embeddings, while our method
leverages disentangled vision features that have richer and
more diverse knowledge; ii) Li et al. [19] uses generated
features to augment primitive vision encoders, while ours
augments the entire model through CAILA for both compo-
sitions and individual primitives.

3.5. Training and Testing

Objective. We optimize our model with a main loss
on attribute-object compositions and auxiliary losses on at-
tributes and objects. As our model only has access to seen
compositions Ys, we create our training objective upon Ys

and ignore other compositions during training. More specif-
ically, given an image x, we compute the compatibility
score C(x, a, o), C(x, a) and C(x, o) for all (a, o) ∈ Ys. We
then jointly optimize F and G by the cross-entropy loss with

temperature:

L =
−1

|T |
∑
i

{
log

e[C(xi,ai,oi)/τC ]∑
j

e[C(xi,aj ,oj)/τC ]
+

log
e[C(xi,ai)/τA]∑
j

e[C(xi,aj)/τA]
+ log

e[C(xi,oi)/τO]∑
j

e[C(xi,oj)/τO]

}
.

(7)

Intuitively, the cross-entropy loss will force the model to
produce a higher compatibility score when (x, a, o) matches
and lower the score when a non-label composition occurs.

Inference. The generalized CZSL task requires models
to perform recognition over a joint set of seen and unseen
compositions. Thus, for each test sample x, we estimate the
compatibility score between x and every candidate (a, o)
inside the search space Ys ∪ Yu. We predict the image x as
the composition that has the highest compatibility score:

ŷ = argmax
(a,o)∈Ys∪Yu

C(x, a, o) (8)

We apply the prediction protocol to all benchmarks.

4. Experiments
4.1. Experiment Settings

Datasets. We evaluate CAILA on four popular datasets:
MIT-States [9], C-GQA [25], UT-Zappos [44, 45] and
VAW-CZSL [35]. For splits, we follow [25] for C-GQA,
[35] for VAW-CZSL, and [31] for MIT-States/UT-Zappos.
Statistically, the numbers of images in train/val/test are
29k/10k/10k for MIT-States, 23k/3k/3k for UT-Zappos,
26k/7k/5k for C-GQA, and 72k/10k/10k for VAW-CZSL.

Scenarios. We perform evaluation of CZSL models on
both closed and open world scenarios and denote them as •
and ◦, respectively. Regarding the closed world setting, we
follow [1, 25, 31] and conduct CZSL with a limited search
space. We further run models in the open world scenario,
proposed by Mancini et al. [22], to assess the scalability
of CZSL models. It is worth noting that C-GQA becomes
much more challenging under the open world setting, as
the size of the search space drastically increases from 2k
to nearly 400k. We also notice similar space expansions
on MIT-States, while the number of possible compositions
does not increase much on UT-Zappos.

Evaluation Metrics. Our evaluation follows the gen-
eralized CZSL protocol adopted by [1, 22, 25, 31]. [31, 41]
argue that it is unreasonable to evaluate only Yu as signifi-
cant biases enter during training and model selection. They
suggest computing both seen and unseen accuracy with var-
ious bias values added to unseen categories and taking the
Area Under the Curve (AUC) as the core metric. We se-
lect our models with the best AUC on val sets and report
performance on test sets.
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Closed World • MIT-States • C-GQA • UT-Zappos
Model AUC (↑) HM (↑) S (↑) U (↑) AUC (↑) HM (↑) S (↑) U (↑) AUC (↑) HM (↑) S (↑) U (↑)

Without
CLIP

CompCos [22] 4.5 16.4 25.3 24.6 2.6 12.4 28.1 11.2 28.7 43.1 59.8 62.5
ProtoProp [34] - - - - 3.7 15.1 26.4 18.1 34.7 50.2 62.1 65.7

OADis [35] 5.9 18.9 31.1 25.6 - - - - 30.0 44.4 59.5 65.5
SCEN [19] 5.3 18.4 29.9 25.2 2.9 12.4 28.9 12.1 32.0 47.8 63.5 63.1

CGE [25] 6.5 21.4 32.8 28.0 4.2 15.5 33.5 16.0 33.5 60.5 64.5 71.5
Co-CGE [23] 6.6 20.0 32.1 28.3 4.1 14.4 33.3 14.9 33.9 48.1 62.3 66.3

CAPE [14] 6.7 20.4 32.1 28.0 4.6 16.3 33.0 16.4 35.2 49.5 62.3 68.5

With
CLIP

CLIP-ZS [32] 11.0 26.1 30.2 46.0 1.4 8.6 7.5 25.0 5.0 15.6 15.8 49.1
CoOp [48] 13.5 29.8 34.4 47.6 4.4 17.1 26.8 20.5 18.8 34.6 52.1 49.3

Co-CGE† [23] 17.0 33.1 46.7 45.9 5.7 18.9 34.1 21.2 36.3 49.7 63.4 71.3
CSP [28] 19.4 36.3 46.6 49.9 6.2 20.5 28.8 26.8 33.0 46.6 64.2 66.2

DFSP [21] 20.6 37.3 46.9 52.0 10.5 27.1 38.2 32.9 36.0 47.2 66.7 71.7

CAILA (Ours) 23.4 39.9 51.0 53.9 14.8 32.7 43.9 38.5 44.1 57.0 67.8 74.0

Table 1. Quantitative results on generalized CZSL in closed world, all numbers are reported in percentage. S and U refer to best seen and
unseen accuracy on the accuracy curve. CLIP-ZS refers to the vanilla CLIP model without fine-tuning. All CLIP-based models are run
with ViT-L/14 and we conduct extensive experiments in Tab. 4. †We run Co-CGE with similar CLIP features and report our best number
of the model. Models published before CGE are omitted as their performances are inferior to current baselines.

Closed World • VAW-CZSL
Model AUC (↑) HM (↑) S (↑) U (↑)

Without
CLIP

CompCos [22] 5.6 14.2 23.9 18.0
OADis [35] 6.1 15.2 24.9 18.7

CGE [25] 5.1 13.0 23.4 16.8

With
CLIP

CLIP-ZS [32] 2.6 11.9 12.8 27.8
CSP [28] 8.5 23.3 31.9 33.6

DFSP [21] 14.1 31.1 40.1 40.9

CAILA (Ours) 17.2 34.6 41.6 49.2

Table 2. Quantitative results on generalized CZSL of VAW-CZSL
in closed world, all numbers are reported in percentage.

Furthermore, best-seen accuracy and best-unseen accu-
racy are calculated when other candidates are filtered out
by specific bias terms. We also report best Harmonic Mean
(HM), defined as (2 ∗ seen ∗ unseen)/(seen+ unseen).

Implementation Details: We build our model on the Py-
Torch [29] framework. As for optimization, we use Adam
optimizer with a weight decay of 5e − 5. The learning rate
is set to 2e − 5. The batch size is set to 32 for all three
datasets. The temperature τC , τA, τO is set to 0.01, 0.0005
and 0.0005, respectively. Most of the experiments are run
on two NVIDIA A100 GPUs. We the number of vision
MoA layers M to 6 by default. For the downsampling func-
tion fDown, we set the reduction factor to 4. Ablation stud-
ies on these settings can be found in Sec 4.3.

4.2. Quantitative Results

In this section, we present quantitative results in detail
under both closed world and open world settings. Such
results verify the effectiveness of our method, which sur-
passes the current SOTA on most metrics, in both scenarios.

Closed World Results. Performance of the closed world

scenario are reported in Tab. 1 and 2. On MIT-States,
results show that CAILA overcomes the label noise and
achieves SOTA. More specifically, on AUC, we observe a
2.8% improvement, from 20.6% to 23.4%. Furthermore,
regarding HM, CAILA achieves 39.9%, outperforming all
baselines. When it comes to best seen and unseen accuracy,
our model improves by ∼4% and ∼2%, respectively.

Our results on C-GQA further verify the advantage of
CAILA, especially when the number of unseen composi-
tions is larger. On AUC, our model achieves a 4.3% im-
provement, 40% of the previous SOTA, from 10.5% to
14.8%. HM is also improved by 5.6%. Moreover, improve-
ments of best seen and unseen accuracy are 5.7% and 5.6%.

UT-Zappos has much fewer attributes and object cate-
gories, compared with its counterparts, and is thus much
easier, as the gap between various methods is smaller. But it
is noticeable that our model, CAILA , outperforms all other
baselines, with a 7.2% improvement on the AUC metric.

Moreover, on the recently released benchmark, VAW-
CZSL, CAILA is able to achieve noticeable improvements
against baseline models, particularly the newly published
method, DFSP [21]. CAILA improves the AUC by 3.1%
while boosting the harmonic mean by 3.5%.

Open World Results. We further conduct experiments
under the open world setting to evaluate the robustness of
CAILA . Results are shown in Tab. 3. Noticeably, open
world is much harder than closed world, as performance
on all benchmarks drops drastically, while CAILA achieves
SOTA on most metrics in this scenario without any filtering
techniques adopted in the previous papers [22, 23, 28].

On MIT-States, our approach greatly beats SOTA on
all metrics, particularly the AUC. Our model improves
AUC from 6.8% to 8.2% and achieves a 21.6% harmonic
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Open World ◦ MIT-States ◦ C-GQA ◦ UT-Zappos
Model AUC (↑) HM (↑) S (↑) U (↑) AUC (↑) HM (↑) S (↑) U (↑) AUC (↑) HM (↑) S (↑) U (↑)

Without
CLIP

CompCos [22] 0.8 5.8 21.4 7.0 0.43 3.3 26.7 2.2 18.5 34.5 53.3 44.6
CGE [25] 1.0 6.0 32.4 5.1 0.47 2.9 32.7 1.8 23.1 39.0 61.7 47.7

KG-SP [13] 1.3 7.4 28.4 7.5 0.78 4.7 31.5 2.9 26.5 42.3 61.8 52.1
Co-CGECW [23] 1.1 6.4 31.1 5.8 0.53 3.4 32.1 2.0 23.1 40.3 62.0 44.3
Co-CGEopen [23] 2.3 10.7 30.3 11.2 0.78 4.8 32.1 3.0 23.3 40.8 61.2 45.8

With
CLIP

CLIP-ZS [32] 3.0 12.8 30.1 14.3 0.27 4.0 7.5 4.6 2.2 11.2 15.7 20.6
CoOp (a) [48] 4.7 16.1 36.8 16.5 0.73 5.7 20.9 4.5 19.5 35.6 61.8 39.3
CoOp (b) [48] 2.8 12.3 34.6 9.3 0.70 5.5 21.0 4.6 13.2 28.9 52.1 31.5
Co-CGE† [23] 5.6 17.7 38.1 20.0 0.91 5.3 33.2 3.9 28.4 45.3 59.9 56.2

CSP [28] 5.7 17.4 46.3 15.7 1.20 6.9 28.7 5.2 22.7 38.9 64.1 44.1
DFSP [21] 6.8 19.3 47.5 18.5 2.40 10.4 38.3 7.2 30.3 44.0 66.8 60.0

CAILA (Ours) 8.2 21.6 51.0 20.2 3.08 11.5 43.9 8.0 32.8 49.4 67.8 59.7

Table 3. Quantitative results on generalized CZSL in open world, all numbers are reported in percentage. S and U refer to best seen
and unseen accuracy on the curve. CLIP-ZS refers to the vanilla CLIP model without fine-tuning. All CLIP-based models are run with
ViT-L/14. Note that our models tested have identical weights as in Tab. 1. †We run Co-CGE with similar CLIP features and report our best
number of the model. Models published before CGE are omitted as their performances are inferior to current baselines.

Image
Encoder

Closed World •MIT-States •C-GQA •UT-ZapposModel

ViT B/32

CLIP-ZS* [32] 7.5 1.2 2.4
CLIP-FT [32] 10.9 7.6 21.1
Co-CGE† [23] 12.2 5.0 31.2

CSP* [28] 12.4 5.7 24.2
DFSP [21] 13.2 - 23.3

CAILA (Ours) 16.1 10.4 39.0

∆
+2.9 +2.8 +7.8

(21.9%) (36.8%) (25.0%)

ViT L/14

CLIP-ZS* [32] 11.0 1.4 5.0
CLIP-FT* [32] 14.4 10.5 4.8

CoOp* [48] 13.5 4.4 18.8
CLIP-Adapter* [5] 9.5 3.2 31.5

Co-CGE† [23] 17.0 5.7 36.3
CSP* [28] 19.4 6.2 33.0
DFSP [21] 20.6 10.5 36.0

CAILA (Ours) 23.4 14.8 44.1

∆
+2.8 +4.3 +7.8

(13.6%) (41.0%) (21.5%)

Table 4. Comparison of the AUC performance on all three bench-
marks among CLIP-based models. ZS and FT stand for zero-shot
and fine-tuned. Best results are shown in bold and runner-ups are
underlined. ∆ is calculated between CAILA and the second-best.
Numbers with * are acquired from the CSP paper [28]. †We obtain
these numbers by running Co-CGE on similar CLIP features.

mean. Moreover, CAILA achieves improves seen accuracy
by 3.5% and unseen accuracy by 0.2%.

The performance of CAILA on C-GQA in the open
world scenario is consistent with the one in closed world.
More specifically, our model achieves 3.08% AUC, 128%
of DFSP [21]. We also observe a ∼10% relative im-
provement on harmonic mean, from 10.4% to 11.5%.
CAILA achieves 5.6% and 0.8% boosts on seen and unseen.

Regarding UT-Zappos, our model also brings in perfor-
mance gains. It achieves a 49.4% harmonic mean, 4.1%
higher than Co-CGE. CAILA also gets the best AUC of
32.8%, at least 2% higher against other baselines.

Comparisons between CLIP-based Methods. We fur-
ther make head-to-head comparisons between CAILA and
other approaches built with CLIP in Tab. 4, with variations
on the vision encoder: ViT-B/32 [4] and ViT-L/14. Results
verify CAILA ’s effectiveness and consistency with differ-
ent visual backbones. In particular, CAILA achieves >35%
relative improvements on C-GQA against other baselines.

Discussion. Given that CLIP is trained on a web-
scale dataset, ensuring fair comparisons between CLIP-
based [21,23,28] and CLIP-free methods [13,22,25] can be
difficult, particularly as CLIP-based methods significantly
outperform CLIP-free ones. We follow the setting in ex-
isting CLIP-based methods [21, 23, 28, 32, 48] with a fo-
cus on enhancing CLIP-based CZSL. Comparisons between
CAILA and fine-tuned CLIP models show that a partially
tuned model can beat its fully fine-tuned counterpart by a
large margin, justifying that CAILA better suppresses train-
ing biases while remaining sharp on knowledge transfer for
CZSL, thus is a better way to exploit CLIP knowledge.

4.3. Ablation Studies

We conduct the ablation study with CLIP ViT-B/32 and
MIT-States in closed world.

Adapter and MoA. We evaluate different adapter/MoA
settings on MIT-States and report results in Tab. 5. We
observe that compared with CSP [28], adding adapters to
either side of encoders can effectively improve the perfor-
mance while attaching adapters to both sides shows further
improvements. Experiments in the last three rows verify
that our Mixture-of-Adapters mechanism further improves
the performance when it is applied on both sides.

Vision Mixture Strategies. We compare different ways
of mixing z and h′ inside the vision MoA layer as described
in Eqn. 4,5. Tab. 6 shows the results of mixing only one
of the feature vectors or none at all. The last row corre-
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Figure 5. Ablation studies: (a) The number of vision MoA layer M ; (b) The ratio of concept shift; (c) The reduction factor of fDown.

Adapter MoA •MIT-States
V L V L AUC (↑) HM (↑) S (↑) U (↑)

CSP [28] 12.4 28.6 36.4 42.5

✓ 14.0 30.1 41.4 42.0
✓ 13.9 30.5 40.3 42.8

✓ ✓ 14.4 30.7 42.2 43.2
✓ ✓ ✓ 15.4 31.4 43.4 44.5
✓ ✓ ✓ 15.2 31.7 41.6 44.8

✓ ✓ ✓ ✓ 16.1 32.9 43.3 45.6

Table 5. Ablation on adapters and MoA modules. V and L refer to
Vision and Language, respectively.

Closed World Mixture • MIT-States
Model z h′ AUC (↑) HM (↑) S (↑) U (↑)

CAILA (Ours)

✓ ✓ 16.1 32.9 43.3 45.6

✓ 15.8 32.2 43.3 45.2
✓ 15.5 31.7 43.0 45.1

15.5 32.0 42.7 44.8

Table 6. Ablation on vision MoA strategies.

sponds to averaging FA(x),FO(x),FC(x) without intra-
layer mixture, which is similar to the language side MoA.
Experiment results demonstrate that mixing both z and h′

as proposed in Sec. 3.3 yields optimal performance while
applying a similar strategy as the language side hurts.

Vision Mixture Functions. We evaluate various mixture
functions of vision MoA besides the default mean function,
including summation (Sum.), element-wise multiplication
(Mul.), and concatenation (Concat.). We add one linear
layer after “Concat” to align the feature dimension with up-
coming operations. Results in Tab. 7 show that the “Mean”
operation performs the best. We also notice that the varia-
tion with ”Sum.” performs worse, possibly because summa-
tion greatly changes the magnitude of the feature vector.

Learnable Prompts. We perform experiments to study
the effect of learnable prompts in our framework. Results
reported in Tab. 8 show that our model remains competitive
with prompt embeddings fixed. Such behavior justifies that
performance gains of CAILA come from designs that have
been discussed in the Approach section.

CAILA Setups. We explore different aspects of our
setup and show the results in Fig. 5. Fig. 5(a) demonstrates
that CAILA performs better with MoA layers and achieves
the best performance with 6 MoA layers on the vision side,

Closed World Mix. Fn. •MIT-States
Model AUC (↑) HM (↑) S (↑) U (↑)

CAILA (Ours)

Mean 16.1 32.9 43.3 45.6

Sum. 14.6 30.7 42.8 42.1
Mul. 15.8 32.2 43.3 45.0

Concat. 15.2 31.9 41.8 44.8

Table 7. Ablation on vision MoA mixture functions.

Closed World •MIT-States
Model AUC (↑) HM (↑) S (↑) U (↑)

CAILA(Ours) 16.1 32.9 43.3 45.6

w/o Learnable Prompts 15.8 32.1 43.5 44.6
DFSP [21] 13.2 29.4 36.7 43.4

CSP [28] 12.4 28.6 36.4 42.5

Table 8. Ablation study on learnable prompts.

which is also better than the single-stage MoA when M=0;
Fig. 5(b) indicates that replacing 10% of a batch with post-
shift features can increase the AUC while adding more shift
reduces it; In Fig. 5(c), we find that the optimal reduction
factor for the latent feature z is 4, while using higher re-
duction factors does not affect the performance significantly
and can be considered for efficiency reasons.

5. Conclusion
In this paper, we explore the problem of how to lever-

age large-scale Vision-Language Pre-trained (VLP) mod-
els, particularly CLIP, more effectively for compositional
zero-shot learning. Unlike previous methods which treat
CLIP as a black box, we propose to slightly modify the ar-
chitecture and attach Concept-Aware Intra-Layer Adapters
(CAILA) to each layer of the CLIP encoder to enhance the
knowledge transfer from CLIP to CZSL. Moreover, we de-
sign the mixture-of-adapters mechanism to further improve
the generalizability of the model. Quantitative evaluations
demonstrate that CAILA achieves significant improvements
on all three common benchmarks. Due the lack of unfea-
sible pair filter, CAILA’s performance drops from closed
world to open world, when the number of possible pairs
greatly increases, though. We also provide comprehensive
discussions on deciding the optimal setup.
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