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Abstract

The illumination of improperly exposed photographs has
been widely corrected using deep convolutional neural net-
works or Transformers. Despite with promising perfor-
mance, these methods usually suffer from large param-
eter amounts and heavy computational FLOPs on high-
resolution photographs. In this paper, we propose extremely
light-weight (with only ∼8K parameters) Multi-Scale Lin-
ear Transformation (MSLT) networks under the multi-layer
perception architecture, which can process 4K-resolution
sRGB images at 125 Frame-Per-Second (FPS) by a Titan
RTX GPU. Specifically, the proposed MSLT networks first
decompose an input image into high and low frequency lay-
ers by Laplacian pyramid techniques, and then sequentially
correct different layers by pixel-adaptive linear transforma-
tion, which is implemented by efficient bilateral grid learn-
ing or 1 × 1 convolutions. Experiments on two benchmark
datasets demonstrate the efficiency of our MSLTs against
the state-of-the-arts on photo exposure correction. Exten-
sive ablation studies validate the effectiveness of our con-
tributions. The code is available at https://github.
com/Zhou-Yijie/MSLTNet.

1. Introduction

The prevalence of smartphones with cameras encourages
people to take snapshots of their daily life like photogra-
phers. However, inaccurate setting of shutter speed, focal-
aperture ratio and/or ISO value may bring improper expo-
sure to the captured photographs with degradation on visual
quality [4]. To adjust the photo exposure properly for vi-
sually appealing purpose, it is essential to develop efficient
exposure correction methods for edge devices.

In last decades, low-light enhancement methods [10, 25,
38] and over exposure correction methods [3, 9] have been
proposed to adjust the brightness of under-exposed and
over-exposed images, respectively. However, low-light en-
hancement methods could hardly correct over-exposed im-
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Figure 1. Comparison of the proposed MSLT++ and state-
of-the-art exposure correction methods on the ME dataset [4].
Left: comparison of PSNR results and computational costs
(FLOPs). Right: comparison of speed (inference time on a
1024× 1024 sRGB image) and parameter amounts.

ages while over-exposure correction methods would fail on
under-exposed images [4]. High dynamic range (HDR)
tone-mapping methods [18, 19, 31, 33] can also adjust im-
proper illumination of the contents to some extent, but
mainly enhance local details in improperly-exposed areas
along with dynamic range reduction. In the end, all these
methods are not suitable for exposure correction, which re-
quires globally adjustment on improper exposure in images.

Recently, there emerges several exposure correc-
tion methods based on Convolutional Neural Networks
(CNN) [4] or Transformer [13]. For example, Multi-
Scale Exposure Correction (MSEC) [4] performs hierar-
chical exposure correction with Laplacian pyramid tech-
niques [6, 15, 28] and the UNet architecture [39]. Later, the
work of [48] exploits the Local Color Distributions Prior
(LCDP) to locate and enhance the improperly exposed re-
gion. The attention-based Illumination Adaptive Trans-
former (IAT) [13] estimates the parameters related to the
Image Signal Processor (ISP) under the Transformer archi-
tecture [47]. Despite with promising performance, these
exposure correction CNNs or Transformers are limited by
huge parameter amounts and computational costs [4, 13].

To produce visually pleasing results while still improv-
ing the model efficiency, in this paper, we propose ex-
tremely light-weight Multi-Scale Linear Transformation
(MSLT) networks for high-resolution image exposure cor-
rection. Specifically, we first decompose the input image
into high-frequency and low-frequency layers via Laplacian
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pyramid techniques [6,15,28] to perform coarse-to-fine ex-
posure correction. We then design simple linear transforma-
tion networks to progressively correct these layers, consum-
ing small parameter amounts and computational costs. For
the low-frequency layer, we adopt the bilateral grid learn-
ing (BGL) framework [20, 51, 53] to learn pixel-wise affine
transformation between improper and proper exposed im-
age pairs. To learn context-aware transformation coeffi-
cients in BGL, we propose a parameter-free Context-aware
Feature Decomposition (CFD) module and extend it for
multi-scale affine transformation. For the high-frequency
layers, we simply learn pixel-wise correction masks by two
channel-wise 1× 1 convolutional layers.

Benefited by using channel-wise multi-layer percep-
tion (MLP) for coarse-to-fine exposure correction, our
largest network MSLT++ has 8,098 parameters, while re-
quiring only 0.14G and 3.67ms to process a 1024 ×
1024 × 3 image with a RTX GPU. As a compari-
son, the parameter amounts of CNN-based MSEC [4],
LCDP [48] and transformer-based IAT [13] are ∼7,015K,
∼282K and ∼86.9K, respectively, while the correspond-
ing FLOPs/speed are 73.35G/240.46ms, 17.33G/507.67ms
and 22.96G/153.96ms, respectively. Experiments on two
benchmark datasets [4, 8] show that our MSLTs achieve
better quantitative and qualitative performance than state-
of-the-art exposure correction methods. A quick glimpse of
comparison on the ME dataset is shown in Figure 1.

Our main contributions are summarized as follows:

• We develop Multi-Scale Linear Transformation net-
works with at most 8,098 parameters, which run at
most 125 FPS on 4K-resolution (3840×2160×3) im-
ages with effective exposure correction performance.

• To accelerate the multi-scale decomposition, we de-
sign a bilateral grid network (BGN) to pixel-wisely
correct the exposure of low-frequency layer. Here,
we implement BGN via a channel-wise MLP, rather
than CNNs or Transformers, to endow our MSLTs with
small parameter amounts and computational costs.

• We propose a Context-aware Feature Decomposition
(CFD) module to learn hierarchical transformation co-
efficients in our BGN for effective exposure correction.

2. Related Work
2.1. Image Exposure Correction Methods

The exposure correction task is similar but different to
the tasks of low-light image enhancement [10, 25], over-
exposure correction [3, 9], and HDR tone mapping [18, 19,
31, 33]. As far as we know, the work of MSEC [4] is
among the first deep learning based method for exposure
correction. It decomposes an image into high-frequency

and low-frequency parts, and progressively corrects the ex-
posure errors. However, MSEC has over 7M parameters and
is not efficient enough on high-resolution images. The Lo-
cal Color Distributions Prior (LCDP) [48] exploits the local
color distributions to uniformly tackle the under-exposure
and over-exposure, with about 282K parameters and re-
quires huge computational costs, e.g., 17.33G FLOPs, to
process a 1024 × 1024 × 3 image. The Transformer based
Illumination-Adaptive-Transformer (IAT) [13] has about
86.9K parameters, but suffering from large computational
costs and slow inference speed on high-resolution images.

In this paper, we propose light-weight and efficient
Multi-Scale Linear Transformation (MSLT) networks,
which at most have 8,098 parameters and run at 125 FPS
to correct 4K resolution images with improper exposures.

2.2. Image Processing MLPs

Multi-layer perceptions (MLPs) [40] play an important
role in visual tasks before the prosperity of convolutional
neural networks (CNNs) and Transformers. MLP based net-
works have attracted the attention of researchers again for
its simplicity. The method of MLP-Mixer [41] is a purely
MLP-based network without convolutions or self-attention.
Later, ResMLP [42] is proposed using only linear layers and
GELU non-linearity. The work of gMLP [32] utilizes MLPs
with gating to achieve comparable results with Transform-
ers [17, 43] on image classification [14]. Ding et al. [16]
proposed a re-parameterization technique to boost the ca-
pability of MLP on image classification. The recently de-
veloped MAXIM [44] is a multi-axis MLP based network
for general image processing tasks. In this paper, we de-
velop an extremely efficient exposure correction network,
which mainly utilizes channel-wise (not spatial-wise) MLPs
to globally perceive the exposure information of the image.

2.3. Light-weight Image Enhancement Networks

In pursuit for light-weight and efficient models, one
naive way is to apply the model at a low-resolution input
and then resize the output into high-resolutions. But the
high-frequency details would be lost. To this end, the Lapla-
cian Pyramid decomposition [4,6] is used to preserve high-
frequency information. A further approach is to learn an ap-
proximate operator at downsampled inputs and then apply
this operator to the original image [11,20,34]. Such approx-
imate operators are usually simple and efficient. Later, this
approximation insight is also studied by bilateral grid learn-
ing [12], to accelerate diverse image processing methods on
the tasks of image enhancement [20], image dehazing [53],
and stereo matching [51], etc.

In this paper, we design light-weight and efficient im-
age exposure correction networks with Laplacian pyramid
technique and bilateral grid learning framework. Differ-
ently, our bilateral grid network is purely implemented by
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Figure 2. Overview of our Multi-Scale Linear Transformation (MSLT) network with n = 4. Given an input image I ∈ RH×W×3 with
improper exposure, our MSLT firstly decomposes the image I into high frequency layers {Hi ∈ R

H
2i−1 × W

2i−1 ×3|i = 1, 2, 3} and a low
frequency layer L4 by Laplacian pyramid decomposition. The L4 is corrected by the proposed Bilateral Grid Network: 1) the L4 is input
to Self-modulated Feature Extraction (SFE) module to obtain a guidance map G, 2) the L4 is downsampled to L̂4 of size 48 × 48 × 3,
which is used to learn the 3D bilateral grid of affine coefficients B by the Hierarchical Feature Decomposition (HFD) module, 3) with the
guidance map G, the coefficients B are sliced to produce a 2D grid of coefficients B, which is used to pixel-wisely correct the L4. The
high frequency layers {Hi|i = 1, 2, 3} are corrected by learning corresponding masks via two 1×1 convolutions. Finally, the corrected
low/high-frequency layers are reconstructed to output the exposure corrected image O. The SFE and HFD modules are detailed in Figure 3.

channel-wise MLP, consuming much less parameters and
computational costs than CNNs and Transformers.

3. Proposed Method
3.1. Network Overview

As illustrated in Figure 2, our Multi-Scale Linear Trans-
formation (MSLT) network for exposure correction is con-
sisted of four close-knit parts introduced as follows.
Multi-Scale Image Decomposition. As suggested in [4],
the coarse-to-fine architecture is effective for the exposure
correction task. Given an input image I ∈ RH×W×3, we
employ the Laplacian pyramid technique [6] to decompose
the image I into a sequence of n − 1 high-frequency lay-
ers {Hi ∈ R

H

2i−1 × W

2i−1 ×3|i = 1, ..., n− 1} and one low-
frequency layer Ln ∈ R

H

2n−1 × W

2n−1 ×3.
Low-Frequency Layer Correction is performed by learn-
ing pixel-adaptive exposure correction under the bilateral
gird learning framework [51]. To learn meaningful bilat-
eral grid of affine coefficients, we propose a parameter-free
Context-aware Feature Decomposition (CFD) module and
extend it to a hierarchical version for better performance.
High-Frequency Layers Correction is implemented by

multiplying each layer pixel-wisely with a comfortable
mask, predicted by two consecutive 1× 1 convolutions.

Final Reconstruction is performed by Laplacian recon-
struction [6] on the exposure-corrected layers of different
frequencies to output a well-exposed O ∈ RH×W×3.

3.2. Low-Frequency Layer Correction

The illumination information is mainly in low-
frequency [4], so we pay more attention to the low-
frequency layer Ln for effective exposure correction. In-
spired by its success on efficient image processing [11, 51,
53], we employ the bilateral grid learning [12] to correct the
exposure of low-frequency layer Ln. As shown in Figure 2,
our Bilateral Grid Network contains three components: 1)
learning the guidance map, 2) estimating the bilateral grid
of affine coefficients, and 3) coefficients transformation.
Learning guidance map. We propose a Self-modulated
Feature Extraction (SFE) module to learn the guidance map
G with the same size as Ln. As shown in Figure 3 (b), the
SFE module uses two 1×1 convolutions and global average
pooling (GAP) to modulate the extracted feature map.
Estimating bilateral grid of affine coefficients. We
first downsample the low-frequency layer Ln to L̂n ∈
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(a) Context-aware Feature Decomposition (CFD)

(b) Self-modulated Feature Extraction (SFE)

(c) Hierarchical Feature Decomposition (HFD)

Figure 3. Architectures of our CFD, SFE, and HFD modules. Our HFD (c) mainly contains of three pairs of CFD (a) and SFE (b)
modules. For the downsampled low-frequency layer L̂4 ∈ R48×48×3, we first use a 1 × 1 convolution to increases its channel dimension
from 3 to 40. Then our CFD separates the feature into context-aware feature and residual feature, which are subsequently refined by 1× 1
convolution followed by a ReLU function and an SFE module, respectively. The three hierarchical context-aware feature maps and the
residual feature from the third SFE module are summed and fused by a 1× 1 convolution, with decreased channel dimension from 40 to 8.
Finally, the fused feature is reshaped into a 3D bilateral grid of affine transformation coefficients B ∈ R16×16×72.

R48×48×3. The mean and standard deviation (std) of each
channel roughly reflect the brightness and contrast, respec-
tively, of that feature map [46]. Exploiting these infor-
mation is useful to estimate the bilateral grid of affine
coefficients for exposure correction. For this, we pro-
pose a parameter-free Context-aware Feature Decomposi-
tion (CFD) module to extract the context-aware feature and
the residual feature. As shown in Figure 3 (a), the context-
aware feature is obtained by multiplying the original fea-
ture channel-wisely with the sum of mean and std calcu-
lated by global average pooling and global std pooling, re-
spectively. We extend CFD to a Hierarchical Feature De-
composition (HFD) module by cascading three parameter-
sharing CFD and SFE modules, as shown in Figure 3 (c).
The goal is to learn a 3D bilateral grid of affine coefficients
B ∈ R16×16×72, in which every 12 channels representing
a 3×4 affine matrix. We implement our HFD module by
channel-wise 1 × 1 convolutions to perform spatial consis-
tent and pixel-adaptive brightness adjustment. Three 1 × 1
convolutions shared parameters before ReLU, with small
parameter amounts and computational costs (Figure 3 (c)).
Coefficients transformation. With the guidance map G ∈
R

H

2n−1 × W

2n−1 , we upsample the 3D bilateral grid of affine
coefficients B ∈ R16×16×72 back to a 2D bilateral grid of
coefficients B ∈ R

H

2n−1 × W

2n−1 and then correct the low-
frequency layer Ln by tri-linear interpolation [11]. Each
cell of grid B contains a 3 × 4 matrix for pixel-adaptive
affine transformation. At last, the affine transformations in
B will act on the low-frequency layer Ln pixel-by-pixel to
obtain the exposure-corrected low-frequency layer Ln.

3.3. High-Frequency Layers Correction

With the corrected low-frequency layer, now we correct
the high-frequency layers {Hi|i = 1, ..., n−1} in the order

of i = n− 1, ..., 1. The correction is implemented by mul-
tiplying each high-frequency layer Hi with a comfortable
mask in an element-wise manner. Each mask is predicted
by a small MLP consisted of two 1× 1 convolutional layers
with a LeakyReLU [36] between them.

To correct the high-frequency layer Hn−1, we first con-
catenate it with the upsampled low-frequency layer Ln and
the upsampled corrected layer Ln along the channel dimen-
sion. Then the concatenated layers are put into the small
MLP to predict the mask Mn−1. Since the concatenated
layers have nine channels, we set the numbers of input
and output channels as nine for the first 1 × 1 convolu-
tional layer in the small MLP, and set those of the second
1 × 1 convolutional layer as nine and three, respectively.
By element-wisely multiplying high-frequency layer Hn−1

with the mask Mn−1, we obtain the exposure corrected
high-frequency layer Hn−1. Besides, the predicted mask
Mn−1 will be reused as the input of the MLP in the correc-
tion of next high-frequency layer for mask prediction.

For i = n−2, ..., 1, we upsample the mask Mi+1 output
in previous layer into the MLP of current layer to predict
a new mask Mi. Unlike the MLP in predicting the mask
Mn−1, the MLPs for predicting masks {Mi+1|i = n −
2, ..., 1} have three input and output channels for both two
1×1 convolutional layers. Similarly, each mask Mi is mul-
tiplied with the high-frequency layer Hi element-wisely to
output the exposure-corrected high-frequency layer Hi. Fi-
nally, we reconstruct the output image O from the exposure-
corrected low/high-frequency layers {H1, ...,Hn−1,Ln}.
Here, we set n = 4 for our MSLT.

To study the effect of exposure correction by our MSLT,
we convert the input image I and output image O from
the sRGB color space to the CIELAB color space. We
denote the lightness channels of I and O as IL and OL,

1590



(a) Input Image (b) Corrected Image (c) Ground Truth (d) Heatmap of Correction Strength
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Figure 4. Heatmap of Correction Strength in our MSLT. (a) the under/over exposed input images. (b) the corrected images by our
MSLT. (c) the “ground truth” images. (d) the heatmaps of correction strength described in §3.3. The values in (0, 1] (or [−1, 0)) indicate
brightness enhancement (or shrinkage). Darker color indicates larger absolute values and stronger correction strength in brightness.

respectively, and compute their difference residual R =
OL − IL. Denote Rmax as the maximum absolute value
of R, i.e., Rmax = max |R|. The residual R is normal-
ized into [−1, 1] by R/Rmax to represent pixel-wise cor-
rection strength, where (0, 1] (or [−1, 0)) indicates bright-
ness enhancement (or shrinkage). The heatmap of correc-
tion strength, as shown in Figure 4, exhibits close relation-
ship to the context of input I. This demonstrates that our
MSLT indeed performs pixel-adaptive exposure correction.

3.4. Network Acceleration

The proposed MSLT network implements Laplacian
pyramid decomposition via standard Gaussian kernel [5],
which is not optimized in current deep learning frame-
works [2,37]. To speed up our MSLT, we replace the Gaus-
sian kernel with learnable 3 × 3 convolution kernel, which
is highly optimized by the PyTorch framework [29]. By in-
troducing 3 × 3 convolutional kernels into our MSLT, we
break its fully MLP architecture with more parameters and
computational costs. The speed of our MSLT is clearly im-
proved from 4.34ms to 4.07ms on 1024 × 1024 sRGB im-
ages and from 19.27ms to 11.04ms on 3840 × 2160 sRGB
images. We call this variant network as MSLT+. Through
experiments, we also observe that the learnable 3 × 3 con-
volutional kernels can perform adaptive decomposition for
each image to better correct the exposure of different layers.

Considering that the high-frequency layer H1 is of the
largest resolution with the finest information among all lay-
ers, it is worth to study whether it is feasible to avoid the
correction of this layer for further model acceleration. In
fact, even without correcting H1, the learnable convolution
kernels in MSLT+ would still produce adaptive Laplacian
pyramid decomposition to compensate the overall exposure
correction performance. To illustrate this point, we remove
the mask prediction MLP in correcting the high-frequency

Input MSLT MSLT+ MSLT++ Ground Truth

Figure 5. Corrected images by our MSLT, MSLT+ and MSLT++.

layer H1 in MSLT+, and directly using the H1 together
with other corrected layers {L4,H3,H2} for final recon-
struction. We call this variant network as MSLT++. As
shown in Figure 5, on two under-exposed and over-exposed
images, we observe similar visual quality of the exposure-
corrected images by MSLT, MSLT+, and MSLT++. This in-
dicates that removing the correction of the high-frequency
layer H1 potentially influences little our MSLT++ on ex-
posure correction, and brings additional reduction on the
computational costs and inference time of MSLT+. For ex-
ample, our MSLT++ improves the speed of MSLT+ from
4.07ms to 3.67ms on 1024 × 1024 sRGB images and from
11.04ms to 7.94ms on 3840× 2160 (4K) sRGB images.

3.5. Implementation Details

Our MSLT networks are optimized by Adam [26] with
β1=0.9 and β2=0.999, using the mean-square error (MSE)
loss function. The initial learning rate is set as 1 × 10−3

and is decayed to 1× 10−7 with cosine annealing schedule
for every 5 epochs. The batch size is 32. For the training
set, we randomly crop the images into 512×512 patches.
Here, we have n = 4 Laplacian pyramid layers, the 64× 64
low-frequency layers are downsampled to 48×48 for learn-
ing accurate 3D bilateral grid of affine coefficients. Our
MSLT networks, implemented by PyTorch [29] and Mind-
Spore [1], are trained in 200 epochs on a Titan RTX GPU,
which takes about 18 hours.
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Table 1. Quantitative results of different methods on the ME dataset [4].We take the correctly exposed images rendered by five experts
as the ground truth images, respectively. The best, second best and third best results are highlighted in red, blue and bold, respectively.

Method Expert A Expert B Expert C Expert D Expert E Average
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS PSNR↑ SSIM↑ LPIPS↓

LPTN [30] 17.50 0.746 0.2236 18.28 0.789 0.2067 18.08 0.780 0.2121 17.70 0.770 0.2154 17.45 0.768 0.2235 17.80 0.771 0.2519
Zero-DCE [21] 12.16 0.658 0.3103 13.16 0.725 0.2649 12.61 0.694 0.3022 13.47 0.720 0.2678 14.18 0.749 0.2643 13.11 0.709 0.2819

SCI [35] 16.11 0.737 0.2064 17.15 0.805 0.1725 16.36 0.764 0.2079 16.51 0.766 0.1899 16.09 0.761 0.2125 16.44 0.767 0.1978
MSEC w/o adv [4] 19.16 0.796 0.1802 20.10 0.815 0.1724 20.21 0.817 0.1805 18.98 0.796 0.1816 18.98 0.805 0.1911 19.48 0.806 0.1812
MSEC w/ adv [4] 19.11 0.784 0.1861 19.96 0.813 0.1802 20.08 0.815 0.1875 18.87 0.793 0.1901 18.86 0.803 0.1999 19.38 0.802 0.1888

LCDP [48] 20.59 0.814 0.1540 21.95 0.845 0.1399 22.30 0.856 0.1448 20.22 0.825 0.1526 20.07 0.827 0.1617 21.02 0.833 0.1506
IAT [13] 19.63 0.780 0.1962 21.21 0.816 0.1771 21.21 0.820 0.1828 19.58 0.805 0.1871 19.21 0.797 0.1947 20.17 0.804 0.1876

FECNet [24] 20.73 0.815 0.1861 22.87 0.861 0.1636 22.92 0.858 0.1700 20.67 0.835 0.1808 20.22 0.829 0.1913 21.48 0.839 0.1783
Channel-MLP 16.21 0.708 0.2577 17.48 0.784 0.2255 16.96 0.741 0.2421 16.59 0.746 0.2442 16.53 0.750 0.2481 16.75 0.746 0.2435

MSLT 20.21 0.805 0.1724 22.47 0.864 0.1460 22.03 0.844 0.1639 20.33 0.830 0.1637 20.04 0.832 0.1758 21.02 0.835 0.1644
MSLT+ 20.21 0.799 0.1677 22.49 0.858 0.1410 22.09 0.840 0.1588 20.59 0.828 0.1585 20.53 0.830 0.1687 21.18 0.831 0.1589

MSLT++ 20.09 0.797 0.1745 22.55 0.860 0.1452 22.07 0.838 0.1639 20.54 0.826 0.1640 20.36 0.828 0.1762 21.12 0.830 0.1648

Table 2. Quantitative results of different methods on SICE
dataset [50]. The best, second best and third best results are high-
lighted in red, blue and bold, respectively.

Method PSNR↑ SSIM↑ LPIPS↓
LPTN [30] 15.46 0.609 0.4150

Zero-DCE [21] 12.05 0.592 0.4439
SCI [35] 12.85 0.569 0.3776

MSEC w/o adv [4] 17.86 0.664 0.3761
MSEC w/ adv [4] 17.67 0.664 0.3875

LCDP [48] 18.50 0.609 0.4749
IAT [13] 18.55 0.672 0.3325

FECNet [24] 19.39 0.691 0.3939
Channel-MLP 15.21 0.546 0.5370

MSLT 18.22 0.661 0.3557
MSLT+ 18.32 0.642 0.3883

MSLT++ 18.69 0.653 0.3900

4. Experiments
4.1. Dataset and Metric

Dataset. We evaluate our MSLT networks on two bench-
mark datasets: the ME dataset [4] and the SICE dataset [8].

The ME dataset is built upon the MIT-Adobe FiveK
dataset [7], from which each raw-sRGB image was rendered
with five relative exposure values {−1.5,−1, 0,+1,+1.5}
to mimic improperly exposed images. Five expert photog-
raphers (A-E) manually retouched the raw-sRGB images to
produce the correctly exposed images (“ground truths”). As
suggested in [4], we use the images retouched by Expert C
as the training targets. This dataset contains 17,675 training
images, 750 validation images, and 5,905 test images.

The SICE dataset is randomly divided into 412, 44, and
100 sequences as train, validation, and test sets respectively.
We set the second and the last second images in each se-
quence as the under or over exposed inputs, as suggested
by [23]. For each image in the training set, we randomly
crop 30 patches of size 512× 512 for training.
Evaluation metrics. We use three evaluation metrics of
Peak Signal-to-noise Ratio (PSNR), Structural Similarity
Index (SSIM) [49], and Learned Perceptual Image Patch
Similarity (LPIPS) [52] to measure the distance between
the exposure corrected images and the “ground truths”. For
LPIPS, we use the AlexNet [27] to extract feature maps.

4.2. Comparison Results

We compare our MSLTs with four exposure correc-
tion methods (MSEC [4], LCDP [48], FECNet [24] and
IAT [13]), two enhancement methods (Zero-DCE [21] and

Table 3. Comparison of model size, computational costs, and
speed (ms). The speed is test on a Titan RTX GPU. MSEC in-
dicates “MSEC w/o adv”. The best, second best and third best
results are highlighted in red, blue and bold, respectively.

Method # Param (K) FLOPs (G) Speed (ms)
1024× 1024 3840× 2160 1024× 1024 3840× 2160

LPTN [30] 616.215 21.55 170.46 6.90 55.96
Zero-DCE [21] 79.416 83.27 658.71 22.98 197.36

SCI [35] 0.348 0.55 4.38 6.55 48.37
MSEC [4] 7015.449 73.35 579.98 240.46 2250.74
LCDP [48] 281.758 17.33 127.79 507.67 3305.73

IAT [13] 86.856 22.96 182.59 153.96 1226.73
FECNet [24] 151.97 94.61 748.35 139.12 1277.24

Channel-MLP 7.683 8.05 63.73 8.69 66.87
MSLT 7.594 0.08 0.42 4.34 19.27

MSLT+ 8.098 0.17 1.10 4.07 11.04
MSLT++ 8.098 0.14 0.88 3.67 7.94

SCI [35]), and one image translation method (LPTN [30]).
To validate the design of our MSLTs with MLPs, we also
compare with a plain Channel-MLP with 7,683 parameters
(more details are provided in the Supplementary File).
Objective results. For the ME and SICE datasets, as shown
in Table 1 and Table 2, our MSLTs obtain better PSNR,
SSIM and LPIPS results than LPTN, Zero-DCE, SCI and
Channel-MLP. On ME, our MSLTs achieve better results
than MSEC and IAT, and are comparable to LCDP and
FECNet. On SICE, our MSLTs achieve comparable perfor-
mance with MSECs and a little inferior results to IAT and
FECNet. However, our MSLTs exhibit higher efficiency
than all the other comparison methods, as shown in Table 3.
Speed. In order to be deployed into practical application,
the inference speed is put forward high requirements. To
measure the speed of the models, we randomly generate an
“image” of size 1024× 1024× 3 or 3840×2160×3, repeat
the inference test for 100 times, and average the results as
the speed of comparison methods. The speed tests are all
run on a Titan RTX GPU. The results are shown in Table
3. One can see that the inference speed of our MSLT++
on a 1024 × 1024 × 3 tensor is 3.67 ms, much faster than
all the other methods. On a high-resolution tensor of size
3840× 2160× 3, our MSLT++ reaches an inference speed
of 7.94ms, also faster than the other comparison methods.
Visual quality. The ultimate goal of exposure correction
task is to restore more realistic images and improve the vi-
sual experience of the observer. Thus, the visual quality
of images is also an important factor to consider. In Fig-
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Figure 6. Visual quality comparison of exposure corrected images by different methods. 1st and 2nd rows: visual results on one
over-exposed image from the ME dataset [4]. 3rd and 4th rows: visual results on one under-exposed image from the SICE dataset [8].

ure 6, we provide the corrected images of “Manor” in ME
dataset and “Mountain” in SICE dataset by the compari-
son methods, respectively. More visual comparison results
can be found in the Supplementary File. On over-exposed
“Manor” image, one can see that Zero-DCE, SCI, LPTN
and Channel-MLP are hardly able to weaken the exposure.
Our MSLTs generate better details in clouds, walls and
lawns than those of LCDP and IAT. The corrected image
by MSEC has too high contrasts to be realistic. On under-
exposed “Mountain”, our MSLTs outperform the others in
terms of overall brightness and details of the green leaves.

4.3. Ablation Study

Here, we provide detailed experiments of our MSLT
on exposure correction to study: 1) the number of Lapla-
cian pyramid layers in our MSLT; 2) how to design the
Context-aware Feature Decomposition (CFD) module; 3)
the number of CFD modules in our HFD; 4) how to develop
the Hierarchical Feature Decomposition (HFD) module in
the bilateral grid network; 5) how the correction of high-
frequency layers influences our MSLT and MSLT+. All ex-
periments are performed on the ME dataset [4]. The im-
ages retouched by five experts are respectively considered
as the “ground-truth” images to calculate average PSNR,
SSIM and LPIPS values. We compute FLOPs and speed
on a 1024×1024 sRGB image. The rows with light shadow
indicate the results of our MSLT networks on exposure cor-
rection. More results are provided in Supplementary File.
1) The number of Laplacian pyramid (LP) layers in our

Table 4. Results of exposure correction by our MSLT with
different number (n) of Laplacian pyramid levels. “w/o LP”
means we do not use Laplacian pyramid.

LP Layers PSNR ↑ SSIM ↑ LPIPS ↓ # Param FLOPs (M) Speed (ms)
w/o LP 21.06 0.830 0.1615 7,448 303.85 6.50

2 20.98 0.835 0.1631 7,594 237.79 4.91
3 20.92 0.828 0.1643 7,594 114.32 4.41
4 21.02 0.835 0.1644 7,594 83.45 4.34
5 20.55 0.825 0.1646 7,594 75.73 4.66

MSLT. The Laplacian pyramid structure is deployed in our
MSLT networks to reduce the computational costs and in-
ference time (speed). As shown in Table 4, generally, the
Laplacian pyramid with more layers produces smaller low-
frequency layer. Since the main costs are paid to this layer,
our MSLT will be faster. However, when the number of
LP layers is 5, the low-frequency layer is small, which de-
grades our MSLT network. Besides, the decomposition of
5 LP layers offsets the overall acceleration, and slow down
our MSLT for exposure correction. By considering both
the performance and inference speed of our MSLT, we set
n = 4 for the LP decomposition in our MSLT networks.
2) How to design the Context-aware Feature Decom-
position (CFD) module? In our CFD, we use the mean
and standard deviation of each channel to learn the context-
aware feature. To demonstrate its effect, we replace this part
with Instance Normalization (IN) [45] or Channel Attention
(CA) [22], and remain the rest of our MSLT. As shown in
Table 5, our CFD achieves highest PSNR and LPIPS among
the three methods and it has comparable SSIM with the
“IN” version. This shows that the method using mean and
standard deviation information of each channel does work.
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Table 5. Results of our MSLT with different variants of CFD
module in our HFD. “CFD”: Context-aware Feature Decompo-
sition. “IN”: Instance Normalization [45] with feature decompo-
sition. “CA”: Channel Attention [22] with feature decomposition.

Variant PSNR ↑ SSIM ↑ LPIPS ↓ # Param FLOPs (M) Speed (ms)
IN 20.82 0.831 0.1652 7,684 83.45 4.28
CA 20.60 0.829 0.1701 7,912 83.45 4.22

CFD 21.02 0.835 0.1644 7,594 83.45 4.34

Table 6. Results of our MSLT with different number of CFD
modules in the proposed HFD module.

# CFD PSNR ↑ SSIM ↑ LPIPS ↓ # Param FLOPs (M) Speed (ms)
1 20.31 0.824 0.1845 7,594 60.59 3.54
2 20.50 0.826 0.1818 7,594 72.02 3.82
3 21.02 0.835 0.1644 7,594 83.45 4.34
4 20.73 0.832 0.1699 7,594 94.88 4.56
5 20.63 0.827 0.1714 7,594 106.31 4.91

3) The number of CFD modules in our HFD. To better
learn bilateral grid of affine coefficients, we extend Context-
aware Feature Decomposition (CFD) module to a hierarchi-
cal structure. As a comparison, we set different number of
CFD modules as the composition of Hierarchical Feature
Decomposition (HFD). From Table 6, it can be found that
when the number of CFD modules of HFD increases from
1 to 5, the performance of our MSLT improves and then
decreases, reaching the best results with three CFDs. This
demonstrates that the power of context transformation is en-
hanced by multiple modules. However, it is unnecessary to
use too many CFD modules to extract redundant features.
Therefore, we use three CFD modules in our HFD module.
4) How to develop the Hierarchical Feature Decompo-
sition (HFD) module in the bilateral grid network? To
answer this question, we apply a variety of networks with
comparable parameters with our HFD module to conduct
experiments. For ease of presentation, we denote the net-
work consisting of multiple 1 × 1 convolutional layers and
ReLU activation layers as “Conv-1”. Similarly, when only
using 3× 3 convolutions, the network is denoted as “Conv-
3”. More details are provided in the Supplementary File.
As shown in Table 7, although “Conv-1” and “Conv-3” also
achieve fast speed, our MSLT with HFD achieves better
quantitative results in terms of PSNR, SSIM and LPIPS.
This shows that our HFD module well estimates the 3D bi-
lateral grid of affine coefficients for exposure correction.
5) How the correction of high-frequency layers influ-
ences our MSLT and MSLT+? To this end, for both MSLT
and MSLT+, we use partial instead of all corrected high-
frequency layers for LP reconstruction. Specifically, our
experimental setting could be seen in Table 8. The Hi

means that we use the corrected high-frequency layer for
LP reconstruction. These high-frequency layers are used
for LP reconstruction with L4. Similarly, the Hi means we
directly use the unprocessed high-frequency layer for LP
reconstruction. As shown in Table 8, from H3+H2+H1 to
H3+H2+H1, we clearly reduce the FLOPs and inference
time (speed) of our MSLT and MSLT+, with little influence

Table 7. Results of our MSLT with different variants of HFD
module in the developed Bilateral Grid Network. “Conv-1” (or
“Conv-3”): the network consisting of multiple 1 × 1 (or 3 × 3)
convolutional layers and ReLU activation function. “HFD”: our
Hierarchical Feature Decomposition module.

Variant PSNR ↑ SSIM ↑ LPIPS ↓ # Param FLOPs (M) Speed (ms)
“Conv-1” 19.31 0.810 0.2103 7,676 64.47 3.58
“Conv-3” 19.10 0.795 0.2167 8,410 65.54 3.70

HFD 21.02 0.835 0.1644 7,594 83.45 4.34

Table 8. Results of our MSLT and MSLT+ with some
high-frequency layers in Laplacian pyramid unprocessed by
MSLT/MSLT+. “Hi”: the unprocessed high-frequency layer.
“Hi”: the exposure-corrected high-frequency layer.

Model Layers PSNR ↑ SSIM↑ LPIPS ↓ # Param FLOPs (M) Speed (ms)

MSLT

H3+H2+H1 21.02 0.835 0.1644 7,594 83.45 4.34
H3+H2+H1 20.82 0.831 0.1704 7,594 55.14 3.97
H3+H2+H1 20.60 0.818 0.1841 7,568 48.06 3.72
H3+H2+H1 20.46 0.820 0.2004 7,448 39.61 3.60

MSLT+

H3+H2+H1 21.18 0.831 0.1589 8,098 170.15 4.07
H3+H2+H1 21.12 0.830 0.1648 8,098 141.84 3.67
H3+H2+H1 21.15 0.827 0.1723 8,072 134.77 3.59
H3+H2+H1 20.57 0.817 0.1806 7,952 126.31 3.36

on the objective metrics. In our MSLT+, H1 is generated by
learnable convolutions, which can partly compensate for the
effect of not processing H1. This is why our acceleration
strategy has little impact on the objective results of MSLT+.
All these results show that our acceleration strategy applied
on MSLT+ influences little on the objective metrics, but can
clearly reduce the computational costs and inference speed.

5. Conclusion

In this paper, we proposed a light-weight and efficient
Multi-Scale Linear Transformation (MSLT) network for ex-
posure correction. The proposed MSLT sequentially cor-
rects the exposures of multi-scale low/high-frequency lay-
ers decomposed by Laplacian pyramid technique. For the
low-frequency layer, we developed a bilateral grid net-
work to learn context-aware affine transformation for pixel-
adaptive correction. The high-frequency layers are mul-
tiplied in an element-wise manner by comfortable masks
learned by channel-wise MLPs. We also accelerated our
MSLT by learnable multi-scale decomposition and remov-
ing the correction of the largest high-frequency layer. The
resulting MSLT++ network has 8,098 parameters, and can
process a 4K-resolution image at a 125 FPS speed with only
0.88G FLOPs. Experiments on two benchmarks demon-
strated that, our MSLT networks are very efficient and ex-
hibit promising exposure correction performance.
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E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. 5

[38] Wenqi Ren, Sifei Liu, Lin Ma, Qianqian Xu, Xiangyu Xu,
Xiaochun Cao, Junping Du, and Ming-Hsuan Yang. Low-
light image enhancement via a deep hybrid network. IEEE
Transactions on Image Processing, 28(9):4364–4375, 2019.
1

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–241.
Springer, 2015. 1

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. Readings in
Cognitive Science, 323(6088):399–421, 1988. 2

[41] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. Advances
in Neural Information Processing Systems, 34:24261–24272,
2021. 2

[42] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izac-
ard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.
Resmlp: Feedforward networks for image classification with
data-efficient training. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2022. 2

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers amp; distillation through
attention. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning
Research, pages 10347–10357. PMLR, 18–24 Jul 2021. 2

[44] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxim:
Multi-axis mlp for image processing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5769–5780, 2022. 2

[45] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 7, 8

[46] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. CoRR, abs/1607.08022, 2016. 4

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 1

[48] Haoyuan Wang, Ke Xu, and Rynson WH Lau. Local color
distributions prior for image enhancement. In Eur. Conf.
Comput. Vis., pages 343–359, 2022. 1, 2, 6, 7

[49] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004. 6

1596



[50] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.
Deep retinex decomposition for low-light enhancement. In
British Machine Vision Conference, 2018. 6

[51] Bin Xu, Yuhua Xu, Xiaoli Yang, Wei Jia, and Yulan Guo.
Bilateral grid learning for stereo matching networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12497–12506, 2021. 2, 3

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 586–595, 2018. 6

[53] Zhuoran Zheng, Wenqi Ren, Xiaochun Cao, Xiaobin Hu, Tao
Wang, Fenglong Song, and Xiuyi Jia. Ultra-high-definition
image dehazing via multi-guided bilateral learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16185–16194, 2021. 2, 3

1597


