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Abstract

Brain-inspired event-driven processors execute deep neural
networks (DNNs) in a sparsity-aware manner, leading to
superior performance compared to conventional platforms.
In the pursuit of higher event sparsity, prior studies sup-
press non-zero events by either eliminating the intra-frame
activations (spatially) or leveraging the redundancy in the
inter-frame differences for a video (temporally). However,
we have empirically observed that simultaneously enhanc-
ing activation and temporal sparsity can lead to a syner-
gistic suppression outcome. To this end, we propose an
end-to-end event suppression training approach CATS −−
Combined Activation and Temporal Suppression for effi-
cient network inference. It utilizes a gradient-based method
to search for the optimal temporal thresholds per layer
while penalizing the presence of events in both spatial and
temporal domains. Our experimental results show that
CATS achieves 2 ∼ 6× higher event suppression compared
to the inherent ReLU suppression across a wide range of vi-
sion applications, consistently outperforming the state-of-
the-art (SOTA) methods by a significant margin at all ac-
curacy levels. Furthermore, a case study on the commer-
cial event-driven processor GrAI-VIP highlights that the in-
duced event sparsity in SSD on the EgoHands dataset can
be efficiently translated into a performance enhancement of
2.5× in FPS, 2.1× in latency, and 3.8× in energy consump-
tion, while maintaining the model accuracy.

1. Introduction
Deep Neural Networks (DNNs) dominate AI applications
but face a mismatch with industrial demands. While they
succeed in academia, increasing network complexity for
better performance [6, 37] conflicts with industrial require-
ments for low resource consumption, power efficiency,
and minimal latency. Novel AI computing architectures
are emerging to address these challenges. An innovative
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Figure 1: Two execution modes for DNN inference on hard-
ware: Full-Frame Inference and Delta-Frame Inference.
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Figure 2: Combining activation suppression and tempo-
ral suppression (CATS) results in an accumulated effect on
event suppression (lc ≫ ls, lq, ld), leading to a significant
performance boost on the event-driven processor [28, 33].

paradigm gaining attention is the event-driven architec-
ture [2, 18, 28, 29, 32, 11, 12, 27, 19], inspired by the brain’s
operational principles. This approach seeks to ease compu-
tational load by capitalizing on DNN sparsity.

An essential distinction between event-driven processors
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and conventional hardware (e.g., GPUs, CPUs), lies in their
approaches to DNN processing. Conventional hardware is
limited to full-frame inference, necessitating the reprocess-
ing of each frame within a video. In contrast, event-driven
processors can perform either full-frame (spatial) or delta-
frame (temporal) inference, as depicted in Fig. 1. This ca-
pability is achieved through the utilization of sigma-delta
(Σ−∆) modulation [9, 21] to solely communicate changes
in activations across video frames.

In event-driven processing, an event can be defined as ei-
ther a non-zero activation in full-frame inference or an
activation change in delta-frame inference. In both in-
ference modes, activated neurons trigger event generation
with values like integer or floating point. These events
access the weight memory and execute the convolutions
asynchronously [5]. The removal of an event can result
in the elimination of accompanying memory accesses and
multiply-accumulate (MAC) computations. A pivotal opti-
mization lies in the deliberate suppression of events within
the inputs of computational-heavy layers (e.g., Conv2D),
thereby resulting in a diminished event density (i.e., per-
centage of events). This optimization process, known as
event suppression, has been shown to contribute to latency
and energy savings on real-world silicons [39, 40, 36], with
both theoretical and experimental supports provided in Ap-
pendix A. Thus, the development of an efficient event sup-
pression approach is imperative for enhancing the overall
efficiency of event-driven processing

Prior research [7, 25] has indicated that videos captured by
stationary cameras exhibit notable content correlation in the
background, leading to substantial temporal sparsity dur-
ing delta-frame inference. However, this temporal sparsity
exploration becomes challenging when dealing with signifi-
cant camera motion (see Fig. 4). To address this issue, some
recent studies [9, 36, 21] attempt to lower the full-frame
resolution by quantizing the activation outputs, and thereby
augmenting the temporal correlation between successive
frames. Nevertheless, searching for the optimal quantiza-
tion scale (temporal threshold) per layer is challenging due
to several factors: the layerwise threshold fine-tuning incurs
a high manual cost [21], the rounding operation in quantiza-
tion renders the thresholds untrainable [9], and the floating-
point thresholds are not hardware-efficient [36].

Thus, we propose a novel method called Differentiable
Temporal Threshold Search (DTTS) to learn power-of-two
thresholds for layers during training. Inspired by differ-
entiable neural architecture search [23, 34], we formulate
the search space for temporal thresholds using a super net.
Through the inclusion of a delta sparsity penalty in the
training loss, the optimal threshold distribution is trained
by utilizing gradient-based optimization methods like SGD.
During inference, only the optimal threshold in the distri-

bution is sampled as the quantization scale on activation,
thereby enhancing the temporal sparsity. In contrast to re-
cent work [36], our approach introduces distinct intervals
between candidate thresholds to prevent local optima in
the quantization bit selection. Moreover, our utilization of
power-of-two thresholds enhances hardware compatibility.

In addition to temporal suppression, activation suppres-
sion [14, 22, 40] is also capable of inhibiting a significant
portion of events in the spatial domain, while leading to an
amplified suppression effect in the temporal domain. As
shown in Fig. 2, we empirically find that the combined ac-
tivation suppression and temporal suppression yield greater
event sparsity compared to any single-domain event sup-
pression approach. Our results demonstrate that activation
suppression plays a crucial role in achieving comprehensive
event suppression, especially when models and datasets ex-
hibit notable spatial redundancy. This insight hasn’t been
addressed in prior studies paying attention solely to tempo-
ral suppression [9, 36, 25, 16, 13]. Therefore, we integrate
our temporal suppression approach DTTS with a modified
state-of-the-art activation suppression approach STAR [40]
in an end-to-end training. It considers the learning of tem-
poral thresholds and the penalization of events simulta-
neously in both intra-frame activations (sigma) and inter-
frame activation differences (delta).

The contributions of this paper are as follows:

1. A novel event suppression training method (CATS)
combines activation and temporal suppression to min-
imize event occurrences during delta-frame inference.

2. An efficient differentiable temporal threshold
search approach (DTTS) mitigates the learning ef-
forts for layerwise hardware-friendly thresholds 2n.

3. A case study on the commercial event-driven pro-
cessor GrAI-VIP (refer to Appendix B) illustrates that
CATS substantially boosts the on-chip performance of
various DNN models. Remarkably, CATS coupled
with GrAI-VIP exhibits a superior performance over
the TensorRT-enhanced edge-GPU (Jetson Nano).

The remainder of this paper is structured as follows. Sec. 2
gives an overview of the related work. Sec. 3 presents the
quantized sigma-delta network for efficient video process-
ing. Sec. 4 provides a detailed description of our optimiza-
tion approach, CATS. Sec. 5 presents the experimental setup
and results. Sec. 6 concludes the paper.

2. Related Work
2.1. Activation Suppression

Activation suppression inhibits the spiking of redundant
events in the sigma maps during full-frame inference, dif-
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fering from static weight pruning [17] as it is dynamic
and input-dependent. Various activation suppression tech-
niques [14, 22, 39, 40] have been developed to enhance the
activation sparsity in DNNs. Georgiadis [14] and Kurtz et
al. [22] introduce a sparsity penalty on the activation out-
puts of network and update the weights via the penalty gra-
dients to induce activation sparsity. Zhu et al. [39] fol-
low the idea of sparsity penalty and devise an adaptive
training schedule to efficiently adjust the weight of spar-
sity penalty in the training loss. Zhu et al. [40] further im-
prove the performance of activation suppression and accu-
racy recovery by solely penalizing and thresholding those
low-magnitude activations, while preserving the learning of
the large-magnitude ones. Consequently, recent research
have delved into achieving 70% ∼ 80% sparsity in the spa-
tial domain. However, pushing for more aggressive sup-
pression may risk causing irrecoverable drops in accuracy.

2.2. Temporal Suppression

Temporal suppression decreases the event firing of repet-
itive feature contents in the adjacent video frames, and
is distinct from activation suppression, which focuses
solely on redundant contents within frames. Several re-
cent approaches consider temporal redundancy for effi-
cient video inference. Skip-convolution networks (Skip-
Conv) [16] reuse activation values that have not changed
significantly between frames, but require frequent re-
initialization to maintain model quality, leading to reduced
efficiency on hardware, especially with a moving camera.
DeltaCNN [25] and EvNets [13] address this issue by in-
corporating long-term changes through sigma-delta modu-
lation. Unlike our method, they truncate small delta val-
ues and incur additional memory costs for the mask, limit-
ing the efficiency of near-memory computing. Moreover,
both methods lack network retraining, restricting the po-
tential gains from sparsity exploration, see Fig. 7. Sigma-
Delta networks [9] quantize neuron activation changes for
temporal redundancy, but are limited to basic tasks like
digit classification. CATS, in contrast, excels in the accu-
racy/computation trade-off and generalization for complex
real-world tasks. DAL [36] is a concurrent work with sim-
ilar goals to CATS. It employs a sparsity penalty on adja-
cent activation differences, thus enhancing temporal event
suppression. It simultaneously learns the network weights
and temporal thresholds in training, enhancing model qual-
ity and computational efficiency. However, DAL’s thresh-
olds are fine-tuned in floating points, and its resulting quan-
tization bits are heavily influenced by the initial threshold
value. In contrast, CATS autonomously explores the opti-
mal threshold among a range of discrete power-of-two val-
ues during training, rendering the learned thresholds more
suitable for hardware implementation. Moreover, CATS
takes a step further by integrating temporal suppression

with activation suppression, which promises an enhanced
approach to event suppression.

3. Preliminaries
3.1. Quantized Sigma-Delta Network

Consider a deep neural network as a stack of N convolution
blocks, each including 1 convolution layer and 1 activation
layer. Given a linear function g (e.g., a convolution) with a
kernel w ∈ Rco×ci×kh×kw and an input xt ∈ Rci×kh×kw

at time step t, the output feature map zt ∈ Rco×kh×kw is
computed for each frame as zt = g(xt) = w ∗ xt.

Given a sequence of frames in a video as network inputs,
we can use the distributive property of convolution g as a
linear function (visualized in Fig. 1), the output zt of each
convolution block can be obtained by:

  \footnotesize \begin {aligned} z_t &= g(x_{t-1}) + g(x_{t}) - g(x_{t-1}) \\ &= g(x_{t-1}) + g(x_{t}-x_{t-1}) \\ & = z_{t-1} + g(\Delta x_{t}), \end {aligned} \label {eq:delta_conv}     

    

  

(1)

where ∆xt represents the delta map as the difference be-
tween the adjacent sigma maps xt−1, xt at time steps t− 1,
t. Since zt−1 has been already computed for the frame t,
computing zt reduces to summing the term g(∆xt). Ow-
ing to the strong correlation between consecutive frames in
a video, ∆xt tends to exhibit sparsity, containing non-zero
values only for the regions that changed across time.

However, applying (Σ − ∆) modulation may not consis-
tently reduce the event count within the network’s delta
maps compared to the sigma maps (see the examples in
Fig. 4). Quantization is required to lower the resolution
of sigma maps and enhance inter-frame correlation in the
temporal domain [9, 36, 13]. The input xn

t of convolution
block n is obtained by applying a non-linear activation f to
the previous block’s output zn−1

t :

  \footnotesize \begin {aligned} y_{t-1} &= f(z_{t-1}), \\ y_t &= f(z_{t}). \end {aligned} \label {eq:forward}  

 
(2)

To quantize the sigma activation maps through temporal
threshold tt, the following applies:

  \footnotesize \begin {aligned} y_{t-1} &= round(f(z_{t-1}) / tt) \times tt, \\ y_t &= round(f(z_{t}) / tt) \times tt. \end {aligned} \label {eq:quantize_activation}   

  
(3)

Notably, the outcomes of quantized full-frame infer-
ence and quantized delta-frame inference remain identical,
thereby eliminating the accumulation of errors over time.
This capability facilitates long-term low-event DNN infer-
ence and streamlines the hardware deployment process.

4. Proposed Method
In this paper, we propose a novel end-to-end training ap-
proach that autonomously determines layerwise temporal
thresholds tt and orchestrates the sparsity penalties on both
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sigma and delta maps Lsigma, Ldelta. Our method aims
to achieve optimal event suppression while preserving the
model quality. We formulate the event sparsity exploration
problem as:

  \footnotesize \begin {aligned} \min _{w, \theta } \quad &L_{total}(w, \theta ), \\ \min _{w, \theta } \quad &L_{task}(w, \theta ) + \lambda _{s}L_{sigma}(w, \theta ) + \lambda _{d}L_{delta}(w, \theta ), \end {aligned} \label {eq:total_loss} 







      
(4)

where w embodies the model parameters and θ represents
the sampling parameters of temporal thresholds tt.

In our study, we concentrate on three factors of the prob-
lem: 1) how to induce sparsity in sigma maps for activation
suppression; 2) how to learn layerwise temporal thresholds
and mitigate delta-frame differences for temporal suppres-
sion; 3) how to balance task loss, sigma and delta sparsity
penalties in loss function for an optimal accuracy-sparsity
trade-off in combined activation and temporal suppression.

4.1. Activation Suppression

To induce more activation sparsity, we apply an L1 regular-
ization to the output of ReLUs during training. We follow
the approach in the previous study [40] to penalize the non-
zero activations below the temporal threshold only during
finetuning, thereby allowing the growth of large-magnitude
activations for better accuracy recovery. Thus, by applying
partial regularization [40], weight parameters wl in the lth

layer are updated by the gradients gpartial,l as follows:

  \begin {aligned} \mathit {g_{partial, l}} = \frac {\partial \mathit {L_{total}}}{\partial a_{out, l} } \frac {\partial \mathit {a_{out, l} }}{\partial w_{l} } + \lambda _{s, l}\frac {\partial L^{partial}_{sigma, l} }{\partial a_{out, l} } \frac {\partial a_{out, l}}{\partial w_{l} } , \end {aligned} \label {eq:bp_partial} 

















 (5)

with
  \begin {aligned} L^{partial}_{sigma, l} = ||M(a_{out, l}, tt) \odot a_{out, l}||_{1}, \end {aligned} \label {eq:partial_reg} 
     (6)

and

  \begin {aligned} M(a_{out, l}, tt) = \left \{\begin {matrix} 1 & a_{out, l}\in (0, tt)\\ 0 & otherwise \end {matrix}\right . \end {aligned}, \label {eq:mask_below_threshold}  


   


 (7)

where aout,l represents the lth layer activation outputs,
Lpartial
sigma,l is the partial regularization on the sigma maps, and

λs,l is the coefficient of sigma penalty used to balance spar-
sity exploration and accuracy recovery in network learning.

4.2. Differentiable Temporal Threshold Search

Inspired by the prior method that applies a differentiable
approach to search for the optimal super net for the prob-
lem of ConvNet design [34], we represent the quantization
scale (i.e., temporal threshold) search space after nonlinear
activations f by a stochastic multi-threshold block (MTB),
which contains M candidate branches with various power-
of-2 threshold values, as described in Fig. 3.

During the inference (see Fig. 3, right), the candidate
thresholds ttlm in the super net MTB at the lth layer are
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Activation Activation
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Prediction
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Figure 3: Differentiable Temporal Threshold Search
(DTTS) in training (left) and inference (right).

executed with the sampling probability:

  \footnotesize \begin {aligned} P_{\theta _l}(tt_l=tt_{l}^m) = softmax(\theta _{l}^m; \theta _{l}) = \frac {exp(\theta _{l}^m)}{\sum _{m} exp(\theta _{l}^m)}, \end {aligned} \label {eq:probability}         

 

 (8)

θl indicates the trainable parameters that determine the sam-
pling probability of each threshold. Following Eq. (3), the
outputs ytl of lth layer at time step t can be expressed as

  \footnotesize \begin {aligned} mask_{l}^m = \left \{\begin {matrix} 1 & P_{\theta _l^m} = max(P_{\theta _l^m})\\ 0 & otherwise \end {matrix}\right . \end {aligned}, \label {eq:mask} 











 (9)

  \footnotesize \begin {aligned} & tt_l = \sum _{m} mask_{l}^m tt_l^m, \\ & y_{l}^{t} = round(f(z_{l}^{t})/tt_l)\times tt_l, \end {aligned} \label {eq:hard_forward} 



 

   

(10)

where maskml is a random variable in {0, 1} and is evalu-
ated to 1 if threshold ttml is sampled. The sampling prob-
ability is determined by Eq. (8). ttl denotes the outputs of
MTB at lth layer and ytl denotes the quantized outputs of
activation map f(ztl ) with the sampled ttl at time step t.

Regarding training, the overall loss from Eq. (25) is mini-
mized by stochastic gradient descent (SGD) to update the
weights wl in convolution layers and the parameters θl in
MTB (see Fig. 3 left). θl generates the sampling probability
Pθl for each candidate branch, however, only one branch is
activated through maskml in the forward pass. As a result,
the gradient can not be passed through the discrete mask
variable maskml to update θl. To sidestep this, previous
studies [20] apply the Gumbel-Softmax technique to pro-
vide a differentiable relaxation of discrete sampling. There-
fore, Eq. (8) and Eq. (9) in training can be updated as

  \footnotesize \begin {aligned} mask_{l}^m = G(\theta _l^m) &= GumbelSoftmax(\theta _{l}^m | \theta _{l})\\ & =\frac {exp[(\theta _{l}^m + Z_{l}^m) / \tau ])}{\sum _{m} exp[(\theta _{l}^m + Z_{l}^m) / \tau ]}, \end {aligned} \label {eq:hard_forward}      


 

 
  

 


(11)

where Zm
l ∼Gumbel(0, 1) is a random noise following the

Gumbel distribution. The Gumbel Softmax function is con-
trolled by a temperature parameter τ . As τ approaches 0,
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it approximates the discrete categorical sampling as Eq. (9).
As τ increases, maskml becomes a continuous random vari-
able. Regardless of the value of τ , the mask is directly dif-
ferentiable with respect to θml .

4.3. Temporal Suppression

To suppress the events in the temporal domain, we apply
an L1 regularization on the delta maps ∆xt, defined as the
difference of two consecutive sigma maps. Without consid-
ering the sigma sparsity penalty, we formulate the temporal
suppression problem as

  \footnotesize \begin {aligned} \min _{w, \theta } \quad &L_{total}(w, \theta ), \\ \min _{w, \theta } \quad &L_{task}(w, \theta ) + \lambda _{d}L_{delta}(w, \theta ). \end {aligned} \label {eq:total_loss} 







   
(12)

Utilizing the Gradient Descent optimization algorithm dur-
ing training, the network weights w and the tt sampling pa-
rameter θ are updated after each epoch based on a learning
rate µ and the gradients of w and θ with respect to the train-
ing loss Ltotal(w, θ). This process is described as follows:

  \footnotesize \begin {aligned} \delta w = &-\mu \partial (L_{task}(w, \theta ) + \lambda _{d}L_{delta}(w, \theta ))/ \partial w, \\ \delta \theta = &-\mu \partial (L_{task}(w, \theta ) + \lambda _{d}L_{delta}(w, \theta ))/ \partial \theta , \\ & w_{new}:= w_{old} + \delta w, \theta _{new}:= \theta _{old} + \delta \theta . \end {aligned} \label {eq:theta_update}      

     

        

(13)

Eq. (13) shows that the update of θ and w is affected by both
task loss and delta sparsity penalty, and the optimization di-
rection is driven by the penalty coefficient λd. By adjusting
the parameter λd, the value of θ is learned to assign ap-
propriate importance to the set of M discrete tt candidates.
During inference, the sampling probability Pθ is hard-coded
as a mask, enabling the selection of the optimal power-of-
2 temporal threshold. This method results in an enhanced
accuracy-sparsity trade-off within the temporal domain.

4.4. Combination

The core of our study involves combining activation sup-
pression and temporal suppression to achieve a cumulative
effect in event suppression. As depicted in Eq. (25), the
efficacy of our suppression training hinges on three compo-
nents: task loss, sigma sparsity penalty, and delta sparsity
penalty. However, these three loss terms compete, since ex-
cessive optimization of one may result in the suboptimal
optimization of the other two. Therefore, the optimization
focus is regulated by coefficient pairs (λs, λd) associated
with these loss components.

As elaborated in Sections 4.1 and 4.3, escalating λs / λd

enhances sparsity in sigma and delta maps, but overly ag-
gressive λ settings may compromise accuracy irreversibly.
Consequently, extensive training iterations are required to
determine optimal coefficient pairs (λsigma, λdelta) for op-
timal optimization performance. To streamline the training
effort, we employ Bayesian Optimization (BO) for efficient
hyperparameter search.

4.4.1 Bayesian Optimization with SAT

This paper employs Bayesian Optimization (BO) [30] to
tackle the optimization challenge:

  \footnotesize \begin {aligned} max\ &f(\lambda _{s}, \lambda _{d})\\ \end {aligned} \label {eq:hard_forward}    (14)

Here, f represents the target function. To efficiently dis-
cover optimal coefficient pairs that maximize event suppres-
sion while staying within a specified accuracy drop bound-
ary, we introduce a custom-designed target function termed
Sparsity-Accuracy Aware Target (SAT):

  \footnotesize \begin {aligned} f(\lambda _{s}^i, \lambda _{d}^i) = S_{evt}(\lambda _{s}^i, \lambda _{d}^i) * \sigma (\beta * (C(\lambda _{s}^i, \lambda _{d}^i) - C_{lim})) \end {aligned} \label {eq:hard_forward} 



 





   



  (15)

In this context, i denotes the iteration index of BO, (λi
s,

λi
d) refers to the coefficient pair selected in the ith round,

C(λi
s, λ

i
d) signifies the downstream metric (e.g., accuracy,

mIoU, mAP, etc.) of the suppressed model on the validation
dataset, Clim sets the boundary for the downstream metric,
and Sevt(λ

i
s, λ

i
d) indicates the average event sparsity of the

network across the validation dataset. The function σ cor-
responds to the sigmoid function, generating a soft mask
on the resulting map of the downstream metric and filtering
values below the boundary Clim. Its behavior is modulated
by the temperature parameter β, which approximates dis-
crete sampling at low β and transitions to a continuous ran-
dom variable at higher β. Notably, both Sevt(λ

i
s, λ

i
d) and

C(λi
s, λ

i
d) are outcomes from the same optimization round,

and thus, they are computed simultaneously during training.
Illustrated in Fig. 3 from Appendix C, the SAT function
takes into account both model quality and event sparsity,
furnishing BO with an accurate optimization direction.

5. Experiments
5.1. Experimental Setup
Models and Datasets:We extensively evaluate various
event suppression approaches using the SSD object detec-
tor [24] and the Egohands dataset [4] to demonstrate the
effectiveness and superiority of CATS. However, solely val-
idating object detection may not address complex indus-
trial application needs. To prove the versatility of our ap-
proach, we extend its application to other domains, such as
object tracking (FairMOT-yolov5s [38] on MOT17 [26]),
pose estimation (MobileNet-PoseNet [35] on MPII [3])
and semantic segmentation (ResNet18-DeepLabV3+ [8] on
Cityscapes [10]).
Environment: We use TensorFlow (TF) for CATS im-
plementation, conducting event suppression training on an
Nvidia Quadro RTX 5000 GPU. After optimization, models
are evaluated on GrAI-VIP [33], a commercial event-driven
DNN processor by GrAI Matter Labs (more details in Ap-
pendix B). For inference performance comparison, the mod-
els are further evaluated on Nvidia Jetson Nano with Ten-
sorRT [31] acceleration, running in MAXN power mode.
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Figure 4: Network event density in full-frame (Sigma) and delta-frame (Delta) inference with different temporal thresholds.
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Figure 5: Event suppression via Differentiable Temporal Threshold Search (DTTS) with increased delta sparsity penalties.

Baseline and Evaluation: Baseline models (standard train-
ing) serve as reference and starting points for event sup-
pression experiments. The standard-trained model (base),
alongside its sparsity-augmented variants (spar), can oper-
ate in either full-frame or delta-frame inference on GrAI-
VIP. Metrics are defined to quantify the suppression per-
formance of CATS and its tangible advantages in on-chip
evaluation. Suppression metrics for CATS include Event
Density (Dev), Improvement Factor for Event Density
(ImpDev

), and Accuracy (Acc). Performance metrics for
hardware evaluation encompass Frame-per-Second (FPS),
Latency, Energy Consumption, Improvement Factors for
FPS (Impfps), Latency (Implat), and Energy Consump-
tion (Impene). Notably, the Improvement Factor is calcu-
lated as the ratio of Metricbase to Metricspar.

5.2. Results

Initially, we assess the accuracy vs. event density trade-off
across four computer vision applications: object detection,
object tracking, pose estimation, and semantic segmenta-
tion. Subsequently, we analyze how the CATS-optimized
models perform on an event-driven processor GrAI-VIP.

5.2.1 DTTS via Delta Sparsity Penalty

We present the effect of temporal threshold on network
event density in Fig. 4. Utilizing low temporal thresholds
(tt ≤ 2−6) for datasets like MOT17 and Cityscapes, which
exhibit limited temporal redundancy, results in (Σ − ∆)
modulation generating more events within the network’s
delta maps than the sigma maps. Nevertheless, increasing
the temporal threshold value effectively induces more ze-
ros in the delta maps, thereby achieving fewer event counts
compared to the sigma maps. This highlights that temporal
threshold enhances the performance of delta suppression,

even for datasets lacking substantial temporal redundancy.
As illustrated in Fig. 5, the occurrence of event suppres-
sion in networks trained using our DTTS method can be at-
tributed to the following three pivotal factors. Firstly, the
incorporation of the ReLU activation function (baseline)
serves to eliminate negative activations during standard
training, thereby suppressing the total volume of events by
approximately 47.51% ∼ 65.13%. Secondly, the quan-
tization of activation outputs (Full-Frame) compels low-
magnitude events to be eliminated, resulting in an extra
event reduction by 4.79% ∼ 9.26% beyond the ReLU
suppression. Thirdly, the existence of redundant temporal
content across consecutive time-steps within the network
(Delta-Frame) drives the delta differences towards zero,
leading to a substantial reduction of 1.28 ∼ 2.12× in event
density without compromising the model quality. This re-
duction can be further enlarged to 1.49 ∼ 3.35× with more
tolerance on accuracy drop (1% ∼ 3%). The results show
that both temporal redundancy and temporal thresholds are
crucial in boosting the performance of event suppression.

5.2.2 Combined Temporal and Activation Suppression

Temporal suppression consistently achieves greater event
sparsity than activation suppression while maintaining the
model quality (refer to Fig. 6). However, the impact of acti-
vation suppression on total event suppression should not be
disregarded due to the substantial number of events it elim-
inates in some particular applications. For instance, it re-
duces event density by 38.25% in Mobilenetv1-SSD (Ego-
Hands) and 23.49% in FairMOT-yolov5s (MOT17). How-
ever, comparing the full-frame temporal suppression curves
in Fig. 5 with the activation suppression curves in Fig. 6,
it’s evident that relying solely on a delta sparsity penalty
has a limited impact on mitigating spatial redundancy, as
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Figure 6: Comparing event suppression across activation suppression, temporal suppression, and CATS for various AI appli-
cations. * denotes models executed in full-frame inference, ** indicates models executed in delta-frame inference.

indicated by the steeper slope of full-frame temporal sup-
pression. As the activation suppression performed in the
sigma maps can also amplify the gains in sparsity within the
delta maps (see Fig. 2), we combine the activation suppres-
sion and temporal suppression (CATS, red curve) to yield
more event sparsity on top of those single-domain suppres-
sion approaches (see Fig. 6). Additionally, we observe that
a higher level of activation suppression leads to more event
suppression gains in the context of CATS, building upon the
foundation of temporal suppression. Activation suppression
becomes instrumental in achieving more event suppression,
particularly in scenarios where models and datasets display
pronounced spatial redundancy.

5.2.3 Comparison with State-Of-The-Art (SOTA)

We conducted a replication of recent research involv-
ing temporal and activation suppression techniques on
Mobilenetv1-SSD (EgoHands). The methods can be cat-
egorized into four groups: (1) Activation Suppression:
L1 [14], STAR [40], (2) Temporal Suppression without
Training: Delta-CNN [25], EvNet [13], (3) Temporal Sup-
pression with Training: DAL [36], Skip-Conv [16], (4)
Combining Activation Suppression and Temporal Suppres-
sion through Training: CATS.
In Fig. 7, one salient trend is that the training approaches
(L1, STAR, DAL, Skip-Conv, and CATS) exhibit signif-
icant superiority over the post-training methods (Delta-
CNN, EvNet) in terms of event suppression. The second
noticeable pattern is that temporal suppression (Skip-Conv,
DAL, CATS) methods yield greater event reduction com-
pared to activation suppression methods (L1, STAR), pri-
marily due to the considerable temporal redundancy present
in the dataset. A third observation underscores that CATS,
featuring an improved temporal threshold search algorithm
and benefiting from additional sparsity gain through acti-
vation suppression, consistently outperforms existing meth-
ods by a significant margin across different accuracy levels.
Notably, the disparities in event suppression between CATS
and other techniques become even more evident when per-
mitting increased tolerance for model quality degradation.

Figure 7: Comparisons with the state-of-the-art (SOTA).

5.2.4 Ablation Study

We conduct a comprehensive ablation study on
MobileNetv1-SSD (EgoHands) for object detection
in Tab. 1. A detailed breakdown of the experimental
settings is provided below: The baseline serves as the
foundation for comparison, reflecting the initial perfor-
mance under inherent ReLU suppression. Exp-1 has
the configuration of CATS, combining all the suppression
tricks in training. It achieves a mAP@.5 of 95.39%, reduces
event density (Dev) to only 9.43%, and improves the event
suppression by a factor of 6.91× while maintaining the
model quality. Exp-2 omits the partial regularization,
causing a slight mAP@.5 decrease of 0.29% compared
to Exp-1, while retaining the event density level. Exp-3
downgrades DTTS to a global non-trainable threshold
configuration, resulting in a 43.33% rise in event density
compared to Exp-2. Comparing Exp-2 and Exp-4, the
absence of activation quantization causes a significant
increase of 66.96% in the event counter. Exp-5 removes the
sigma sparsity penalty on top of Exp-4, causing a 92.41%
increase in event density. On the other hand, the removal
of the delta sparsity penalty in Exp-7 also leads to 66.81%
event augmentation. Last but not least, Exp-8 removes
(Σ −∆) modulation on top of Exp-7, showing an increase
of 30.72% in event density. By systematically varying
suppression components, we observe that activation quan-
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Table 1: Ablation study on various suppression methods through MobileNetv1-SSD on EgoHands (Object Detection).

EXP ID
ABLATION SETTINGS

MAP@.5 ↑ Dev ↓ IMPDev
↑Σ − ∆ PARTIAL DIFFERENTIABLE HARD DELTA SIGMA

MODULATION PENALTY THRESHOLD SEARCH THRESHOLD PENALTY PENALTY

BASELINE 95.35% 65.13% 1.00×

1 (CATS) ✓ ✓ ✓ ✓ ✓ 95.39% 9.43% 6.91×
2 ✓ ✓ ✓ ✓ 95.10% 9.23% 7.06×
3 ✓ ✓ ✓ ✓ 95.09% 13.23% 4.92×

4 ✓ ✓ ✓ 95.04% 15.41% 4.22×
5 ✓ ✓ 95.14% 29.65% 2.19×
7 ✓ ✓ ✓ ✓ 95.12% 22.07% 2.95×

8 ✓ ✓ ✓ 95.12% 28.85% 2.26×

tization, sigma sparsity penalty, and temporal sparsity
penalty are the most influential, each yielding extra event
suppression by 40.18%, 48.03%, and 40.05%, respectively.
Despite potential overlapping effects, the experimental
findings affirm that employing these methods concurrently
within an end-to-end training framework enables maximal
event suppression.

5.2.5 Hardware Performance

The charts in Fig. 8 demonstrate event/MAC suppression
in CATS models alongside their performance advantage
over their standard-trained counterparts. On average, CATS
achieves improvements of 2.4× in FPS, 2.1× in latency,
and 3.1× in energy consumption, showcasing a substantial
lead over the on-chip performance of the state-of-the-art ac-
tivation suppression method STAR [40]. Notably, energy
savings through CATS are approximately proportional to its
event/MAC reduction, although this relationship does not
apply directly to FPS and latency. We speculate this diver-
gence may stem from the poor segmentation of the network
for hardware mapping due to real-life hardware constraints,
such as limited on-chip memory and varying compilation
strategies. Thus, a more detailed analysis of the processing
bottlenecks will be conducted in future study.
Moreover, we conduct FPS and latency performance com-
parisons between GrAI-VIP and the widely-used Nvidia
GPU Jetson Nano (see charts in Fig. 9). Taking Jetson
TensorRT-enhanced performance as a reference, we observe
that GrAI-VIP exhibits slightly better performance than Jet-
son on the standard-trained models. However, CATS can
significantly boost the base model performance by ∼ 3×,
clearly surpassing the capabilities of Jetson in both latency
and FPS. Thus, CATS can elevate event-driven processors
as a superior alternative to GPUs for edge computing.

6. Conclusions
This paper introduces CATS, a novel event suppression
training method aimed at fulfilling the booming need for
sparsity exploration in event-driven processing. Our sub-
method DTTS automates the determination of layerwise
hardware-friendly temporal thresholds, achieving a harmo-
nious balance between accuracy and temporal suppression.

Figure 8: The speedups and energy-savings of activation
suppressed full-frame inference (STAR*) and CATS opti-
mized delta-frame inference (CATS**) at batch size 1 on
GrAI-VIP compared to the standard-trained model (Base*).

Figure 9: Latency and FPS comparisons between Jetson
Nano and GrAI-VIP (with the vertical axis on a log-scale).

We combine activation suppression and temporal suppres-
sion by penalizing the presence of non-zero events in spa-
tial and temporal domains simultaneously, which increases
the overall event suppression in the network and improves
the stability of event counts. Our method outperforms the
SOTA on event suppression by a significant margin, demon-
strating its strong ability to induce event sparsity. Further-
more, the achieved event suppression efficiently translates
into up to 2.4× FPS increase, up to 2.1× latency reduction,
and up to 3.1× energy savings on an event-driven proces-
sor. These findings highlight the significant value of CATS
optimizing DNNs for efficient event-driven processing.
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José Flich, Gianluca Furano, Alejandro Hernán Gloriani,
Erik Isusquiza, Radu Grosu, Carles Hernández, Daniele
Ielmini, David Jackson, Maha Kooli, Nicola Lepri, Bernabé
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