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Abstract

Identifying individuals in unconstrained video settings is
a valuable yet challenging task in biometric analysis due to
variations in appearances, environments, degradations, and
occlusions. In this paper, we present ShARc, a multimodal
approach for video-based person identification in uncon-
trolled environments that emphasizes 3-D body shape, pose,
and appearance. We introduce two encoders: a Pose and
Shape Encoder (PSE) and an Aggregated Appearance En-
coder (AAE). PSE encodes the body shape via binarized sil-
houettes, skeleton motions, and 3-D body shape, while AAE
provides two levels of temporal appearance feature aggre-
gation: attention-based feature aggregation and averaging
aggregation. For attention-based feature aggregation, we
employ spatial and temporal attention to focus on key ar-
eas for person distinction. For averaging aggregation, we
introduce a novel flattening layer after averaging to extract
more distinguishable information and reduce overfitting of
attention. We utilize centroid feature averaging for gallery
registration. We demonstrate significant improvements over
existing state-of-the-art methods on public datasets, includ-
ing CCVID, MEVID, and BRIAR.

1. Introduction

Recognizing individuals in-the-wild [43] is a challeng-
ing yet valuable task for determining a person’s identity
from images or videos, playing a crucial role in many ap-
plications. Since face images may be unreliable or unavail-
able for individuals at a distance or from specific view-
points, recognizing individuals via body images or videos
becomes increasingly important. In this paper, we focus on
video-level appearance and body shapes to develop a robust
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Figure 1. To identify a person, gait is unreliable in stationary
videos, and appearance alters when subjects wear different cloth-
ing. The imprecise reconstruction of 3-D body shapes results in
unstable predictions while the human prior assists in occlusions.

identification system suitable for various distances and cam-
era viewpoints, utilizing multiple videos as gallery samples.
We specifically address different clothing and activities in
generalized scenarios by comparing and combining shape
and appearance-based methods for identification.

To identify individuals from their body, research primar-
ily focuses on appearance [58, 60] and gait [2, 12, 35, 66,

, 73]. Unlike facial features, which are relatively con-
stant [8, 9, 28], body appearance can vary significantly due
to changes in clothing, environment, and occlusions [7], as
depicted in Figure 1. Gait analysis captures an individ-
ual’s walking pattern and is less affected by environmen-
tal changes or clothing. However, it requires a walking
sequence that may not always be available. Additionally,
varying environmental conditions pose challenges in feature
registration and matching, making the prediction of human
identity more sensitive to noisy samples in gallery videos.

We introduce ShARc, a method based on SHape and
Appearance ReCognition. Specifically, we employ a Pose
and Shape Encoder (PSE) and an Aggregated Appearance
Encoder (AAE) to project the input video into their cor-
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responding embedding spaces. Leveraging body shapes
with shape and motion representations [73], ShARc enables
identification in diverse scenarios; a robust body prior [40]
offers guidance under occlusion or variations in clothing.
Alongside this, we introduce multi-level appearance fea-
tures for both video-level and frame-level analysis. Impor-
tantly, these techniques show commendable performance
even before combining with body shapes.

To extract the shape of a person in a sequence, we dis-
entangle motion and poses by extracting skeletons, 3-D
body shapes, and silhouettes from tracklets with our Pose
and Shape Encoder (PSE). We utilize silhouettes and 3-D
body shapes to represent individual frame shape patterns in
2-D and 3-D space, while employing sequential skeletons
to represent motions. For the two different shape modal-
ities, we first extract their frame-wise features and then
combine them frame-by-frame using an attention mecha-
nism for body shape feature extraction. Subsequently, we
concatenate the pooled features with pose features encoded
from skeletons for the final shape representation.

Parallel to body shape extraction, we also use an Aggre-
gated Appearance Encoder (AAE) to extract features from
appearances, preserving identification information from
raw images. We obtain both frame-wise and video-level
features and integrate them for dual-level understanding.
For frame-level extraction, we introduce a novel flattening
layer after averaging to extract more distinguishable infor-
mation and reduce overfitting. At the video level, we em-
ploy spatial and temporal attention, as per [58], to focus on
key areas for person distinction. This allows the model to
concentrate on unique patterns in both frame and sequence.

After obtaining both shape and appearance features, we
employ centroid feature averaging for gallery registration,
using the mean features of the same ID rather than com-
paring to each gallery separately. This helps to mitigate
variances in gallery examples with different clothing. We
validate our approach on public datasets like CCVID [16],
MEVID [7], and the recently-released BRIAR [5], showing
state-of-the-art performance on all of them.

In summary, our contributions are as follows: 1) We in-
troduce ShARc, a multimodal method for person identifi-
cation in-the-wild using video samples, focusing on both
shape and appearance; 2) We unveil a novel Pose and Shape
Encoder (PSE) that captures dynamic motion and body
shape features for more robust shape-based identification;
3) We deploy an Aggregated Appearance Encoder (AAE)
that incorporates both frame-level and video-level features.

2. Related Work

Person Identification Based on Body Appearance is
a critical task in computer vision that focuses on iden-
tifying and matching individuals across different camera
views or separate instances [31, 68]. Unlike face recog-

nition [8, 9, 28], body appearance-based re-identification
[21, 27, 60, 69] requires less subject cooperation and is
achievable in diverse environments. With deep learning ad-
vancements, researchers focus on various ways to extract
maximally useful information from single-frame inputs.
Approaches include part-based methods [4,20,33,54,65,74]
and attention [15,26] to address occlusions and others.

Besides single-frame person identification, recent re-
search has explored video-level re-identification methods
[16,23,58] by introducing more frames and reducing poor-
quality frame impact for enhanced temporal robustness.
Since the model only needs to output one person ID pre-
diction for multiple frames, researchers either use temporal
pooling [14,30,38,67] or recurrent networks [6,41,70] for
fusing frames across timestamps. Recently, attention mech-
anisms [13,23,29,37,49,51, 58, 62] have been utilized for
aggregating useful information from temporal and spatial
dimensions for identification. However, most methods fo-
cus on videos with consistent clothing, limiting model gen-
eralizability. Researchers are now emphasizing videos with
different outfits and environments [7, 6], making identifi-
cation tasks more applicable for real-life scenarios.

Gait Recognition focuses on identifying a person based
on their walking patterns. Compared with appearance-
based recognition methods, gait patterns, usually captured
via binarized silhouettes [55, 63] describing body shape
contours, reduce the negative impact of clothing changes
for identification but introduce different appearance varia-
tions with body contours. Due to the lack of RGB patterns,
it is challenging to infer body information directly from sil-
houettes. To address this, some researchers [12, 35] focus
on part-based recognition, while others [2, | |, 24] extract
framewise consistencies for identification.

Due to the limited information in silhouettes, recent re-
search [1,18,48,56,73] focuses on external modalities to as-
sist silhouettes for identification. GaitGraph [56], GaitMix
[72] and GaitRef [72] apply or refine HRNet [57] for joint
detection and uses the generated pose sequence for identifi-
cation. Gait3D [66], GaitHBS [73], and ModelGait [32] fo-
cus on extracting or using body shapes alongside silhouettes
for gait recognition, intending to provide more information
for part separation. LiDARGait [48] employs point clouds
instead of silhouettes for body shape description. Some re-
searchers [ 18, 34] also integrate RGB images with silhou-
ettes for gait understanding. Since these methods still fo-
cus on gait representation, they can only apply to walking
sequences for identification. Our proposed PSE combines
pose with 3-D body shape for identification, inherently re-
moving the requirement for walking sequences.

3. Methodology

Given a video with sequential frames V' = {f;},, con-
taining n frames of the person, ShARc decomposes it into
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Figure 2. Our proposed method includes two sub modules: (a) a shape-based recognition system, PSE, which extracts the silhouette, 3-D
body shape and skeletons sequences and fuses them for person recognition, and (b) an appearance-based recognition system, AAE, which
takes both outputs from attention-based aggregation (AgA) and averaging aggregation (AvA) as input for identification.

two branches: the body shape {b;} and the RGB appear-
ance of the frames {a;} that exhibit the most distinguish-
able patterns, as illustrated in Figure 2. By estimating their
independent similarities Ssp,qpe (V') and Sy, (V') compared
with gallery candidates, ShARc combines the two scores to-
gether using weighted average for the final similarity S(V).

3.1. Shape-based Person Recognition

For shape-based person recognition, we mitigate the in-
fluence of appearance by focusing on alternative representa-
tions, such as 3-D human body shape and silhouettes, to em-
phasize the individual’s body shape, as well as skeletons to
capture motion in pose. Although gait recognition is useful
when walking segments are available, it offers limited dis-
tinguishable information in stationary videos when the per-
son is not walking. Unlike existing gait recognition meth-
ods [2, 35, 56, 73], our shape-based approach compensates
for the absence of gait by leveraging extra body shape pri-
ors. We first extract the corresponding modalities utilized in
our model, which include 3-D body shapes, skeletons, and
silhouettes, and then fuse them as the final representation.

Shape and motion extraction. For shape-based per-
son recognition, we focus on two crucial representations
for distinguishing individuals: body shape P; and motion
M;. Body shape encompasses specific actions or shapes
a person may exhibit, while motion refers to the tempo-
ral information, representing a more specific case. If both
shape and motion exist in all sequences, the task can be re-
garded as gait recognition. For body shape extraction, we
focus on two distinct modalities: silhouettes and 3-D body
shapes. Silhouettes represent the 2-D human boundary in
each frame, while 3-D body shape reconstruction remains
invariant to viewpoints by reconstructing the person’s 3-D
shape. The combination of silhouettes and body shapes al-
lows for the preservation of both general shape and frame-
wise detailed reconstruction of the individual.

In addition to body shape, we incorporate skeletons
to understand motions, as motions represent the specific
movement patterns of a person. Unlike gait recognition

tasks [2], which use binarized silhouettes as input, skeletons
can provide temporal understanding without the biases of
body shape. Furthermore, by separating body shapes from
motion analysis, the network for pose extraction can better
focus on the general shape, aiding temporal understanding
and helping the model to maximize the utilization of poten-
tial information in the sequence.

For the three modalties described above, we employ
three extractors, Fg; (), E3q(-) and Egk.(+), to encode the
corresponding representations of these three modalities for
each frame ¢ following

P; = Egi(fi) + Esa(fi); M = Eske(fi) 9]

and extract the corresponding body shape P; and motion
M; inputs for further processing. For silhouette input, we
concatenate the silhouette and the cropped RGB images us-
ing silhouette as masks, as our input, since this can provide
more separation of the human part in the body shape. Since
these modals requires heavy training to ensure a stable per-
formance, we use pretrained networks to extract these rep-
resentations, which we discuss in Section 4.1.

Multimodal Fusion. With these three modalities, we
introduce PSE for combining framewise body shape fea-
tures P; along with motion pattern M, as illustrated in Fig-
ure 3. For feature representation of silhouettes F'eats;; and
3-D body shapes Featsq, we use corresponding encoders
Fose to project Eg;(f;) and Esq(f;) into their embedding
space. We then apply the 3-D spatial transformation net-
work [66] with skip connection and implement horizontal
pyramid pooling H PP [2] with B bins after the encoder
output for each frame following

Isila I3d = Fpose(Esil(fi)a ESd(fz))

Ipose - (Isil : I3d) + Iszl (2)
Ipose = HPP(Ipose)
where I}; represents the feature for the modality k. For mo-
tion representation, we utilize a motion encoder Fiy,oti0n tO

extract multi-level spatial and temporal skeleton informa-
tion and use average pooling along the temporal dimension
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Figure 3. Architecture of PSE for combining body shape and mo-
tion information for shape-based identification.

for the generated feature of the last layer. Then, we con-
catenate the skeleton feature, after temporal pooling, along
with the pose representation as an additional new bin in the
matching process, making the concatenated (B + 1) x C
feature map our final output for shape representation:

Irnotion = AUgPOOl?/I’Lg( 'motzon( Sk@(fi)))
Ishape =

3)

[Ipose7 Imotion]
where |-, -] represents feature concatenation.

3.2. Appearance-based Person Recognition

Compared to shape-based methods, which depend on the
accuracy of body shape and contours, appearance provides
richer and lossless RGB information for distinguishing in-
dividuals. We implement both attention-based and averag-
ing appearance aggregation for identification. As people
may wear different clothing and be in varying environmen-
tal conditions, we incorporate temporal and spatial infor-
mation with attention-based appearance aggregation to fo-
cus on the relevant parts for differentiation between nearby
frames. Moreover, to avoid overfitting on specific body
parts or frames, we also employ video-level averaging ag-
gregation to equally utilize spatial and temporal features.

Attention-based Aggregation. For attention-based ag-
gregation, we follow Figure 4 (a) for building spatial and
temporal attention (STA) for the features extracted from the
backbone network, encoding each frame F; to their corre-
sponding features A;. We follow [58] to combine the fea-
tures of two frames using a 3-level pyramid following

AL — GA(AY) + SAAL )+ TAAL AL ) @)

where [ is the current layer in the pyramid, and ¢ is the tem-
poral stamp for the current frame. T'A and SA are two at-
tention generation layers following [58]. For each layer of
the pyramid, we reduce the number of available appearance
features to half the size of its previous layer, until we get the
output feature representation in the last layer. This means
the network, as an example, can handle at most 8 frames for
the final feature Ay, (V') with a three layers of pyramid.

Frame Agg. —>,
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;:H Frame Agg. 9’
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Figure 4. Architecture of the AAE with an example of sequence
length n = 4. AAE aggregate the video frames in two ways: 1)
attention-based aggregation, which mines the connection between
nearby frames with attention, and 2) averaging aggregation, which
takes all the frames together equally.

It is important to note that if attention-based aggregation is
not combined with averaging aggregation and its backbone
feature encoder not shared, it is degraded to the existing
method PSTA [58] encoder.

Averaging Aggregation. As attention mechanism may
create overfitting when there is shift between training and
testing domain, we add averaging aggregation, as illustrated
in Figure 4 (b), for global representation extraction. Video-
level appearance focuses on finding the corresponding fea-
tures of each frame and treating all the frames equally. After
extracting the framewise appearance feature A;, we average
the features of all the frames in the same video following

Aavg = ZA (5)

We then use Gamma Correction +y in the range of [0, 1]
to flatten the features as a feature flatten layer following

A(wg :Sgn( a'ug) ||Aang (6)

where sgn(-) is the sign function operated on channel-wise
elements. Since the videos include multiple frames that may
capture the person from different aspects, some of the spe-
cific representative features of this person may not be cap-
tured in all the frames. With v < 1, the new feature are dif-
ferent from the old one in cases. When the feature value is
close to the zero point (0), flattening layer makes the orig-
inal value more distinguishable by increasing its absolute
value. In addition, the flattening layer can also reduce the
maximum value and avoid overfitting with feature values far
from 0, making the network focus on more patterns instead
of on just a few of them for making predictions.

3.3. Registration and Fusion

For person identification in the wild, it is essential to han-
dle videos of individuals with varying clothing conditions,
as gallery videos also exhibit differences in clothing, lead-
ing to variances in appearance. To address this issue, we
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follow [60] and construct a centroid representation for reg-
istering gallery examples. Assuming we have k X c features
with a same ID, we average the k features and use the 1 X ¢
feature for representing this ID in the gallery. The averaging
operation helps to mitigate the biases arising from different
clothing, as clothing across videos are assumed to be ran-
domly distributed, while the appearance remains consistent.

Since shape and appearance are distinct modalities, we
compute the features independently for each and match
them with their corresponding modalities in the gallery
candidates to obtain two matching scores, Sgpqpe(V') and
Sapp(V). We then use a weighted average function to com-
bine these two scores following

S(V) = aSshape(V) + (1 — ) Sapp(V), @)

where S(V) is the final similarity score, Sspape(V) and
Sapp(V) are the shape-based and appearance-based simi-
larity scores, respectively, and « is a weight parameter that
balances the contributions of the two modalities. By adjust-
ing «, we can find the optimal combination that leads to the
best overall identification performance. Based on our abla-
tion results in Section 4.2, we set « to 0.1 in our experiment.

3.4. Objectives

Considering that ShARc is a model for video-based iden-
tification, we train shape and appearance models separately,
using end-to-end training for each. For the shape-based
recognition model, PSE, we follow [66] and combine triplet
loss Liripler [46] with a margin of 0.2, along with cross-
entropy loss Lo g as follows:

Eshape =01 £triplet + £CE (8)

For the appearance model, we apply four losses following
[60], which combines a Triplet loss Lyyipier [460] with 0.3
as margin, a Center Loss L., [59], a Cross Entropy loss
Lcg, and a Centroid Triplet Loss Loy, [60], as follows:

‘Capp = Etriplet + ACC’E + £cen + 56_4 ECTL (9)

4. Experiments and Results
4.1. Experimental Details

Datasets. In our experiment, we primarily compare
our method with other state-of-the-art methods on three
challenging, public, video-based datasets: CCVID [16],
MEVID [7], and BRIAR [5]. We include the statistics for
these three datasets in Table 1. CCVID [16] and MEVID [7]
are recent datasets featuring the same and different clothes
and include more than one outfit for each identity, with 226
and 158 identities, respectively. Unlike CCVID, which has
only one viewpoint from the same location, MEVID in-
cludes 33 viewpoints and multiple scales of images from

Dataset Split #frames  #identities  #tracklets
train 4,366,198 407 37,466
BRIAR query 189,819 192 886
gallery 2,326,111 544 4,379
train 116,799 75 948
CCVID query 118,613 151 834
gallery 112,421 151 1,074
train 3,609,156 104 6,338
MEVID query 205,044 52 316
gallery 981,207 54 1,438

Table 1. Statistics for the three datasets in our experiment.

33 different settings. BRIAR is a large, in-the-wild person
identification dataset with varying distances, conditions, ac-
tivities, and outfits for identification.

Compared to CCVID and MEVID, BRIAR [5] encom-
passes more variations of distances, viewpoints, and candi-
date IDs, which models the person identification problem in
the wild. In addition, BRIAR has more distractor IDs in the
gallery for the open-set problem evaluation, as well as fea-
turing more images from elevated cameras and UAVs, intro-
ducing greater difficulty for final template matching. Since
the BRIAR dataset is continuously expanding, we use the
version including both BGC1 and 2 following [5], which is
an extended version compared to [ 8].

Implementation Details. We first discuss the detailed
architecture used for shape and appearance-based networks,
followed by the training and inference details.

Shape-based Modalities Extraction. For shape-based
recognition, our model requires three different inputs: sil-
houettes, 3-D body shapes, and skeletons. For silhouette
extraction Ej;(-), we use DeepLab-v3 [3] with ResNet-
101 [19] pretrained on the Pascal VOC dataset as the back-
bone to identify the pixels predicted as the *person’ category
for silhouettes. For the 3-D human body shape extraction
Es54(-), we use ROMP [53] pretrained on Human3.6M [25]
and MPI-INF-3DHP [42] to extract three vectors: a 3-D
camera parameter, a 10-D vector body shape, and a 72-D
vector representing the rotation of the joints. These three
vectors form an 85-D SMPL [40,7 1] representation for each
frame. Since there is only one person in each frame se-
quence, we use the first SMPL body shape predicted by
ROMP as our body shape representation. For skeletons
Eske(+), we follow [56] and use HRNet [52] with architec-
ture ‘pose_hrnet_ w32’ and 384 %288 as input size, which
is pretrained on the MS COCO dataset [36] for 2-D pose
estimation as the skeleton representation.

With different input modalities available for shape-based
modal extraction, we use ResNet-9 [ 1] as the gait encoder,
a 4-layer MLP [66] for 3-D body shape encoding, and MS-
G3D [39] for skeleton encoding. All these three models are
trained together with PSE end-to-end with the shape-based
recognition model.
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All Activities ‘Walking Sequences Stationary Sequences

Method
Rank 1 Rank 20 Rank 1 Rank 20 Rank 1 Rank 20

GaitSet [2] 153 40.5 271 64.5 73 249
GaitPart [12] 14.1 41.7 25.7 67.8 6.6 24.8
GaitGL [35] 15.6 45.1 28.0 67.2 7.5 30.8
GaitMix [72] 15.9 46.5 27.6 65.3 8.1 339
GaitRef [72] 17.7 50.2 299 69.4 9.5 37.2
SMPLGait [66] 18.8 519 252 63.4 14.6 443
PSE (Ours) 21.2 65.3 23.2 68.6 19.9 63.2
DME [1§] 25.0 63.8 30.4 68.8 21.5 60.5
PSTA [58] 336 67.3 32.1 66.0 34.5 68.1
CAL[10] 349 71.4 347 71.0 35.0 71.7
TCL Net [23] 313 65.6 31.0 65.1 315 65.9
Attn-CL+rerank [44] 27.6 61.8 26.9 60.5 28.1 62.6
AAE (Ours) 38.3 81.8 376 79.0 39.5 83.7
ShARc 41.1 83.0 394 80.7 4.2 84.5

Table 2. Identification results on BRIAR dataset.

Appearance-based Recognition Model. For input frames
fi, we first employ a ResNet-50 [19] network which is pre-
trained on ImageNet [45] dataset for feature encoding to get
their H x W x C feature maps A; before spatial pooling.
For AAE, we follow [58] and use the patch level encoding
for building a three-layer pyramid architecture with two dif-
ferent levels of attentions: temporal attention (TA) between
two consecutive frames, and spatial attention (SA) of each
frame. TA and SA of the same layer of the pyramid share
weight, while those from different layers do not. The out-
put attention is the same size as the input feature A;, so we
apply point-wise production for each input attention-feature
pair and sum them up as the output, which is the input for
the next level of the pyramid. For averaging aggregation,
we set v as 0, which degrades the function to a binarized
representation, following our results for ablation studies in
Sec. 4.1. After having the two features from AAE, we con-
catenate them to represent the appearance of the person.

Training and Inference. Due to the network’s complex-
ity, we do not combine shape and appearance during train-
ing but train them individually end-to-end with their own
inputs. For the shape-based network, we use the Adam op-
timizer for 180,000 iterations and set the initial learning rate
as le=3. The learning rate is decayed to % three times at
iterations 30,000, 90,000, and 150,000. For the appearance-
based method, we follow [58] and train the network for 500
epochs, using the Adam optimizer with an initial learning
rate of 3.5e~*. We decay the learning rate by 0.3 at steps
70, 140, 210, 310, and 410 during training.

During inference, we follow [60] by using centroid rep-
resentation when registering the features of gallery exam-
ples via averaging all the features with the same ID. If there
are multiple single frames, as gallery examples in BRIAR,
we first combine the frames for the same ID as a ‘pseudo
video’ before sending it into the network for feature extrac-
tion. When querying an example with the gallery, we use
the cosine distance to find the highest score in the gallery
for shape score Sgpqpe(V') and Euclidean distance for ap-
pearance score S,p, (V') following existing gait recognition
works [2]. If videos are shorter than 8 frames, we resample

Methods mAP Rank-1 Rank-5 Rank-10 Rank-20
BiCnet-TKS [22] 6.3 19.0 35.1 40.5 529
PiT [64] 13.6 342 554 63.3 70.6
STMN [10] 11.3 31.0 54.4 65.5 72.5
AP3D [17] 15.9 39.6 56.0 63.3 76.3
TCLNet [23] 23.0 48.1 60.1 69.0 76.3
PSTA [58] 21.2 46.2 60.8 69.6 77.8
AGRL [61] 19.1 48.4 62.7 70.6 71.9
Attn-CL [44] 18.6 42.1 56.0 63.6 73.1
Attn-CL+rerank [44] 259 46.5 59.8 64.6 71.8
CAL[106] 27.1 525 66.5 73.7 80.7
PSE 10.6 259 39.9 48.7 62.7
AAE 29.6 59.2 70.3 71.2 83.2
ShARc 29.6 59.5 70.3 77.2 829

Table 3. Rank accuracy and mAP on MEVID dataset. Results for
existing methods are from official MEVID [7] implementation.

the frames until we have 8 frames for appearance feature
extraction, and if the video is longer than 8 frames, we sep-
arate the video into several groups of 8 frames and average
the results after extracting the features from all the groups.

Baseline Methods and Metrics. In our experiment,
we compare our method with some state-of-the-art person-
reID methods on different datasets. For MEVID [7], we
compared with CAL [16], AGRL [61], BiCnet-TKS [22],
TCLNet [23], PSTA [58], PiT [64], STMN [10], Attn-
CL [44], Attn-CL+rerank [44], and AP3D [17] following
the official results in MEVID [7]. For CCVID [16], we
compared with CAL [16] following their original paper set-
ting. For the comparison on BRIAR, we select some re-
ID methods [16, 23, 44, 58] based on their performance on
MEVID, as well as including some gait-based recognition
methods [2, 12, 18,35] for comparison. For evaluation met-
rics, we use rank accuracies and mAP (mean average preci-
sion) for evaluation on these datasets.

4.2. Results and Analysis

To compare with existing methods, we present the results
for different baseline methods on the BRIAR, MEVID, and
CCVID datasets in Tables 2, 3, and 4, respectively. In ad-
dition, we conduct some further ablation studies along with
visualizations of the attention generated by the appearance
branch for analysis of why the appearance model still works
for clothes changing cases.

Results for person identification. As our main exper-
iment, we have compared with all the three datasets with
state-of-the-art methods in Table 2, 3 and 4 respectively.
Note that all these three datasets are describing the clothes
change settings in the re-ID task, which is more complex
than the existing person re-ID tasks with same outfit. We
have the following observations.

(i) Identification Performance. Our proposed method,
ShARc, demonstrates significant performance improve-
ments on all three datasets when compared to other state-
of-the-art methods. For instance, on the BRIAR dataset,
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Method General CC

Rank-1 mAP Rank-1 mAP
GaitNet [50] 62.6 56.5 57.7 49.0
GaitSet [2] 81.9 73.2 71.0 62.1
PSE (Ours) 83.9 86.5 77.1 85.0
CAL-baseline [16] 78.3 75.4 71.3 73.9
CAL Triplet [16] 81.5 78.1 81.1 77.0
CAL [16] 82.6 81.3 81.7 79.6
AAE (Ours) 89.7 89.9 84.6 84.8
ShARc 89.8 90.2 84.7 85.2

Table 4. Rank-1 accuracy and mAP on CCVID dataset. CC in-
cludes the videos specifically for clothes changing, while general
include both same and different clothing.

SHARc, after combining shape and appearance, achieves
a 6.2% and 11.6% improvement in rank-1 and rank-20
accuracy, substantially outperforming other state-of-the-art
methods. Moreover, on the other clothes-changing datasets,
our method attains a 2.5% and 7.5% improvement in mAP
and Rank-1 accuracy on MEVID [7], as well as a 4.6% and
8.0% improvement on CCVID [16]. Note that we follow [7]
not using centroid averaging for gallery on MEVID. In ad-
dition, unlike BRIAR and CCVID, activities in MEVID do
not include specific walking patterns, which results in a lim-
ited contribution from the PSE when combined with the
appearance-based method, AAE.

Apart from the overall dataset results, we note that gait-
based methods [2, 12, 18, 35] and appearance-based meth-
ods [16,23,44,58] display different performance differences
for the two types of activities, standing and walking. On the
BRIAR dataset, gait-based methods [2, 12,35] struggle with
stationary sequences. Although DME [18]' demonstrates
reasonable performance by incorporating masked RGB im-
ages into the gait branch, it still faces challenges when gait
information is not available. In contrast, appearance-based
methods exhibit slightly better performance with stationary
videos compared to walking sequences, as stationary videos
have less blurred boundaries due to reduced motion.

(ii) Shape and Appearance Analysis. Apart from com-
paring our method with existing methods, we also separate
the shape and appearance models, PSE and AAE, to evalu-
ate their individual contributions in ShARc. We present the
results in Table 2, 3, and 4. Our appearance-based approach,
AAE, demonstrates a substantial improvement over other
appearance-based methods and achieves the best perfor-
mance. This suggests that the averaging aggregation is in-
deed effective in providing supplementary information not
captured by attention-based methods, thus helping to allevi-
ate the overfitting problem. Furthermore, our shape-based
model, PSE, not only outperforms other gait-based methods
but also shows relatively robust performance on stationary

IThe BRIAR dataset has included more subjects compared to the ver-
sion used in DME, making it considerably more challenging.

Distances 200m 400m 500m 1000m UAV

PSE 38.5 38.2 35.7 53 259
AAE 60.6 56.3 51.2 10.5 30.7
ShARc 64.3 60.4 56.0 10.5 36.4

Table 5. Rank-1 accuracy for different distances in BRIAR.

Distances Rank 1 Rank 5 Rank 20

PSE 21.2 449 65.3
w/o binarized sil. 8.7 20.7 40.1
w/o skeletons 19.7 35.6 63.4
w/o 3-D shape 8.7 20.1 37.6

AAE 38.3 63.7 81.8
w/o att. 29.1 51.3 68.9
w/o avg. 33.0 57.2 77.5
w/o centroid [60] 30.9 56.1 75.4

Table 6. Ablation results for different components in ShARc. ‘att’
and ‘avg’ are attention-based and averaging aggregations.

videos, indicating that the integration of body shape fea-
tures allows the model to better understand and distinguish
between individuals, particularly when gait is unavailable.

It is worth noting that on datasets involving clothes-
changing scenarios, such as BRIAR where the outfits
between gallery and query videos are strictly different,
appearance-based methods consistently outperform shape-
based methods, even when both gait and body shape infor-
mation are available. As shown in Table 2, appearance-
based methods continue to surpass gait and body shape-
based methods under different clothing conditions. One
possible explanation for this observation is that the pro-
cess of generating body shape (SMPL) and gait (silhouettes)
features directly from RGB frames introduces noise or in-
creases information loss during the preprocessing stage.
This results in a degradation of the extracted features’ qual-
ity and their effectiveness in the re-identification task.

On the other hand, appearance-based methods can effec-
tively leverage the rich information provided by RGB im-
ages to focus on relevant areas, even when the patterns of
outfits differ between gallery and probe videos. This finding
highlights the potential limitations of human-designed fea-
tures, such as gait patterns or 3-D body shape, which despite
being specifically and carefully designed for certain tasks,
may still lead to information loss and underperform when
compared to machine-designed features. In the final part of
this section, we will present visualizations that further illus-
trate the effectiveness of our appearance-based method in
handling clothes-changing scenarios.

Ablation results. Since the BRIAR dataset provides
valuable information, such as the exact distance at which
images are captured and the impact of different types of ac-
tivities in the sequences, we conduct ablation experiments
on a sampled validation set derived from the training se-
quences to analyze the selection of weights when fusing the
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Gamma 1 0.2 0.1 0
Rank 1 35.1 36.6 37.5 38.3

Table 7. Rank-1 accuracy for feature flattening for AvA.

App. 0.95 0.9 0.8 0.7 0.6
Shape 0.05 0.1 02 03 04
Rank 1 91.1 91.4 91.0 90.2 88.4

Table 8. Rank-1 accuracy for the selection of a.

scores from the shape and appearance models.

Distances. We present the performance of our method
across various distances in Table 5. We select five distance
variations from the BRIAR dataset: 200 meters, 400 meters,
500 meters, 1000 meters, and video captured from UAV
cameras. Generally, performance is better at shorter dis-
tances. However, we see a significant performance drop at
1000 meters, where the bodies in images are nearly indis-
tinguishable. The results for UAV-captured images aren’t as
strong as those at 200 meters. This is due to the incomplete
body images, as the UAV images are taken with the head
occluding the whole body. The performance decline of PSE
is less compared to AAE, showing its relative robustness in
identification when occlusion is present.

Model Components Ablations. Our pipeline consists of
multiple sub-modules, and we analyze the individual con-
tribution of each component in both branches. For gait rep-
resentation, we have two components: masked RGB and
binarized silhouettes. We investigate the contributions of
binarized silhouette masks and masked RGB images inde-
pendently. It is important to note that the masked RGB im-
ages in this case are resized to a smaller scale, similar to
binarized silhouettes, to provide information about the sep-
aration of body parts rather than directly using appearance
for training. To remove each component in the network, we
zero out the corresponding input for analysis.

We show the results in Table 6. For the shape-based
branch, masked RGB contributes the most, while 3-D body
shape and binarized silhouettes contribute almost equally.
Compared to other modalities, 3-D masked RGB images
precisely provide more internal content for the gait branch,
enabling the network to understand the boundary of differ-
ent body parts and the movement of each part. For the ap-
pearance branch, we find that both aggregation contribute
similarly to the final performance, and the combination of
both yields the best results. Furthermore, using centroid av-
eraging [60] when registering gallery examples also has a
significant contribution to the final performance.

Feature Flattening. For the flattening layer in averaging
aggregation, we analyze the different Gamma and their cor-
responding results in Table 7. When Gamma is 1, we have
simple averaging across all the features. We observe that

Figure 5. Attention generated from appearance model for (a) a
walking sequence and (b) a stationary video for two examples
taken from 100 meters distance category.

with higher gamma values, our performance improves, indi-
cating that the results exhibit more discriminative patterns.
When gamma is infinity, the final feature representation be-
comes binarized and yields the best performance.

Choice of a. To combine the two modalities, we con-
struct a small validation set from the training data to an-
alyze the weights between appearance and shape models,
and present the results in Table 8. We find that when the
weight is 0.9 for appearance and 0.1 for shape, the model
achieves the best performance. For shape-based methods,
we use Euclidean distance instead of cosine distance; thus,
0.1 does not imply that it contributes minimally, but rather
serves as a scaling factor for Sspqpe during combination.
For generalizability, we use this v and « for all datasets.

Visualization for Appearance Branch. In the BRIAR
dataset, where query and gallery images feature distinct out-
fits, we use GradCam [47] to visualize network focus. Fig-
ure 5 presents two examples taken from 100-meter-distance
cameras, one during walking and another while station-
ary. For walking videos, the network focuses mainly on
the lower body and arms, suggesting implicit pose pattern
extraction. In stationary scenarios, attention is directed to-
wards the waist and shoulders, important areas for discern-
ing body shape. We observe this trend across multiple ex-
amples, although quantification has not been performed.

5. Conclusion

In this paper, we introduce ShARc, a shape and
appearance-based method for identification in-the-wild.
Our approach explicitly explores the contribution of body
shape and appearance to the model with two encoders, pose
and shape encoder for body shape and motion, and aggre-
gated appearance encoder for human appearance. ShARc
is able to handle most of the challenges for identification in
the wild, such as occlusion, non-walking sequences, change
of clothes, and image degradations. We have compared our
method on three public datasets, including BRIAR, CCVID,
and MEVID, and show state-of-the-art performance.
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