
Unsupervised Graphic Layout Grouping with Transformers

Jialiang Zhu1, Danqing Huang2, Chunyu Wang2, Mingxi Cheng2

Ji Li2, Han Hu2, Xin Geng1, Baining Guo1,2*

1Southeast University, 2Microsoft Research Asia
jialiang.zhu@outlook.com,dahua@microsoft.com,chnuwa@microsoft.com,mingxicheng@microsoft.com

jili5@microsoft.com,hanhu@microsoft.com,xgeng@seu.edu.cn,bainguo@microsoft.com

Abstract

Graphic design conveys messages through the combina-
tion of text, images and other visual elements. Unstructured
designs such as overloaded social media graphics may fail
to communicate their intended messages effectively. To ad-
dress this issue, layout grouping offers a solution by orga-
nizing design elements into perceptual groups. While most
methods rely on heuristic Gestalt principles, they often lack
the context modeling ability needed to handle complex lay-
outs. In this work, we reformulate the layout grouping task
as a set prediction problem. It uses Transformers to learn
a set of group tokens at various hierarchies, enabling it to
reason the membership of the elements more effectively. The
self-attention mechanism in Transformers boosts its context
modeling ability, which enables it to handle complex layouts
more accurately. To reduce annotation costs, we also pro-
pose an unsupervised learning strategy that pre-trains on
noisy pseudo-labels induced by a novel heuristic algorithm.
This approach then bootstraps to self-refine the noisy labels,
further improving the accuracy of our model. Our extensive
experiments demonstrate the effectiveness of our method,
which outperforms existing state-of-the-art approaches in
terms of accuracy and efficiency.

1. Introduction
Layout grouping aims to organize the elements in a

graphic design into perceptual groups, forming a hierarchi-
cal structure for effective message delivery. For example in
Fig. 1, elements in the slide can be grouped at two differ-
ent levels: (a) the text box along with the diagram can be
assigned into one large group; or (b) besides the title box,
the text box on the left and the complicated diagrams com-
posed of many elements can be assigned into two separate
groups. By parsing the group structure, we can enable many
potential applications in graphic design intelligence, such
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(b) small fine-grained groups

Figure 1. An example slide with groupings in two levels, (a) large
coarse groups to (b) small fine-grained groups. Elements outlined
with the same color rectangle represent one group. Transparent
overlays in various colors visualize distinct group regions.

as graphic design understanding and summarizing, content
extraction and generation, graphic design beautification and
animation creation.

Layout grouping is challenging because of the combi-
natorial complexity of possible layout groups. The exist-
ing methods mainly use simple heuristics such as Gestalt
laws [15] to parse the layout structures [4, 19, 24]. For ex-
ample, proximity assumes that elements which are close in
distance are more likely to be related and united, and vice
versa. However, the lack of context modeling ability makes
them less effective in handling complex designs. Recently,
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there have been some machine learning-based attempts to
tackle this issue, such as those proposed in [25, 31], which
predict the relatedness between pairs of elements and iter-
atively merge them into groups using a pre-defined thresh-
old. While they show promising results, they are limited to
training on pairwise labeled data due to the lack of avail-
able datasets with hierarchical group annotation. Moreover,
the training objective of pairwise relatedness is not directly
aligned with the goal of hierarchical grouping, and relying
solely on threshold merging in post-processing cannot guar-
antee a reasonable grouping hierarchy.

In this paper, we propose a highly performant approach
for graphic layout grouping using the Transformer archi-
tecture. It learns a set of group tokens at various levels,
to directly reason about the membership between each lay-
out element and the group tokens. The group tokens are
aware of the global context since they attend to all elements
via the attention mechanism. Specifically, given a list of
elements, our model progressively combines elements into
groups with L grouping layers. We use a set prediction loss
which matches the predicted groups to the target groups
using a bipartite graph. However, we find that this initial
model barely converges during training. To address this,
we incorporate explicit positional priors by enforcing each
group token to predict the bounding box of the correspond-
ing group. The mechanism allows the group tokens to focus
on specific regions, resulting in faster convergence and bet-
ter grouping results.

We propose an approach to train the network in an un-
supervised way. Firstly, we introduce a heuristic algorithm
that utilizes the Gestalt principles to generate pseudo-labels,
which recursively segments the elements based on their
proximity to each other. Although the pseudo-labels may
be incorrect in challenging cases, we find that they suffice to
train a reasonable initial model. Then we adopt bootstrap-
ping [5] to automatically refine the noisy labels and re-train
the model. Particularly, after each epoch, we make group-
ing predictions using the current model. If the confidence
of the predictions is larger than a threshold, we trust the pre-
dictions and use them to replace the original pseudo-labels.
The threshold gradually decreases as the model becomes
more accurate during training. We observe that the model
can get accurate predictions on complex layouts, demon-
strating the effectiveness of bootstrapping. The unsuper-
vised training strategy allows the model to benefit from the
large-scale unlabeled data.

We construct a dataset of presentation slides for evalua-
tion. We manually annotate the slides with each annotation
being jointly reviewed by two people to ensure its quality.
We compare our method with the baselines on this dataset.
Besides, we also send the results to a group of people for
human evaluation. Both quantitative and qualitative results
show that our model achieves much better results. In par-

ticular, our method shows strong performance in handling
complex layouts with many elements. Moreover, we con-
duct extensive ablation studies and will share some interest-
ing observations in the experiment section.

2. Related Work
2.1. Visual Grouping

We classify the existing methods into pixel-based and
object-based ones. The former produces a hierarchical im-
age representation. Some methods use hand-crafted fea-
tures such as Gestalt cues (e.g., contour, texture and bright-
ness) [22] and normalized cuts [1, 21, 26] to group pixels
into superpixels. Recent approaches also use deep features
for perceptual grouping. For example, [7,9] use CNN’s low
resolution features for upsampling [17, 18] learn the multi-
scale deep graph features with LSTM. Furthermore, end-
to-end trainable models are proposed, such as DGM [16]
with hierarchical graph operations and GroupViT [32] with
Transformer-based layers.

Beyond pixels, directly grouping objects is studied for
graphic layouts. Several work target at grouping web
pages [4, 33] which leverage rich structures inherited from
the HTML DOM tree. Without such information, other
work [11, 19, 20, 24, 33] implement heuristic parsing rules
based on Gestalt laws (e.g., proximity, similarity) to identify
the groupings. For example, [14] extract features to com-
pute pairwise distance and iteratively combine objects with
thresholds. More recent work are mostly learning-based.
CanvasEmb [31] first pre-trains a large-scale unsupervised
representation and then predicts the pairwise object rela-
tions by fine-tuning on a small annotated data. Similarly,
Shi et al. [25] also train a model to predict the relatedness
of object pairs. To recover the hierarchical structure, they
recursively merge objects with relatedness score larger than
an empirical threshold in the post-processing step. Different
from the previous work, we propose an end-to-end trainable
model to progressively group objects without the heavy cost
of group label annotation.

2.2. Graphic Design Layout Understanding

Some work focus on element detection from pixel-based
input, which separates the layout image into different ele-
ment regions and classify their role (e.g., text, table, figure).
Traditional approaches [6, 12, 27] propose algorithms with
primitive heuristics to recursively merge pixel lines into ele-
ment regions. Later work adopt neural network to automati-
cally extract features for better detection [8,28]. For a more
systematic summary of related work, please refer to [2].
Besides detecting the elements, their inter-relationships are
also very important in parsing and understanding the layout.
Visual grouping studies how elements can be organized into
a hierarchical structure for more effective message commu-
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nication. This paper focus on this task and will introduce
more in the next sections.

3. Approach
3.1. Task Formulation

Each graphic layout is represented as a sequence of to-
kens {ei}Ni=0 , where each token ei contains a fixed set of
properties {pki }Kk=0. The properties include type, position,
color, font size, etc. The task is to organize the elements into
groups in L different levels where each level is responsible
for one granularity and contains Gl groups. Please note that
Gl > Gl+1 to ensure the fine-to-coarse granularities.

According to the Gestalt psychology, grouping can be
accomplished by considering but not limited to the follow-
ing laws:

• Proximity: Objects that are closer to one another
are perceived to be more related than objects that are
spaced farther apart.

• Similarity: Objects that are similar in nature (such as
size, shape, or color) tend to be grouped together.

• Continuity: Objects that appear to be connected are
grouped together. For example, lines and arrows can
be indicators to connect elements.

3.2. Grouping with Transformers

An overview of the system is shown in Fig. 2. Our model
consists of an element encoder and L Transformer-based
grouping layers.

Element Encoder. We represent each element with prop-
erties (e.g., type, position) in the embedding space by con-
catenating the property embeddings {pk}Kk=0:

ei = MLP(p1
i ⊕ p2

i ⊕ ...⊕ pK
i ) (1)

where ⊕ is the concatenation operator and MLP is a mul-
tilayer perceptron. For properties with categorical values
such as type and color, we use the embedding matrix as the
learning parameter. For properties with numerical values
such as position and size, the positional encoding [30] is
adopted.

Grouping Layers. Inspired by GroupViT [32], each layer
l contains a Transformer-based block with Gl learnable
group tokens {gli}. Element tokens {eli} are concatenated
with the group tokens into the self-attention for contextual
representation learning:

{el+1
i } ⊕ {gl+1

j } = Transformer({eli} ⊕ {gl
j}) (2)

On top is an element-to-group cross attention which par-
titions elements {eli} into Gl groups and obtains the new
element tokens {el+1

i } in the next layer:

{el+1
i } = CrossAttn({eli}, {gl

j}) (3)

Specifically the CrossAttn assigns each element token
eli to a group token glj with maximum score in the element-
to-group attention matrix (i.e., argmaxj∈Gl(Al

i,j)).
Since the one-hot assignment operation via argmax is

non-differentiable, we instead obtain the attention matrix
using Gumbel-Softmax [10]:

Al
i,j =

exp(WqgljWkeli + γj)∑Gl

h=0 exp(WqglhWkeli + γh)
(4)

where Wq and Wk are the linear projection weights for
group and element tokens respectively. {γh} of groups
{0, . . . , h, . . . , Gl} are i.i.d random samples drawn from the
Gumbel(0, 1) distribution. We then apply the straight-
through trick in [29] to assign elements to corresponding
groups:

Âl = one-hot(Al
argmax) +Al − sg(Al) (5)

where sg is the stop gradient operator. With the trick, Âl
i

has the one-hot value of assignment to a single group, and
its gradient is equal to the one of Al

i, which makes the at-
tention matrix differentiable and end-to-end trainable. The
elements in the next layer l+1 can be obtained by merging
all elements in each group in layer l:

el+1
i = glj +Wo

∑
i Â

l

ijWveli∑
i Â

l

ij

(6)

where Wv and Wo are the learnable projection weights.
For each layer, we set the following two learning objec-

tives.

Objective 1: Set Prediction. To train the model, we need
to match the predicted groups to the target groups, which
can be viewed as a set prediction problem. Inspired by re-
cent end-to-end object detection framework [3], we conduct
a bipartite graph matching with score function s(glj , ĝ

l
j)

which considers the number of overlap elements and the
box IoU between a predicted group and a target group. The
calculation of the score and the BCE loss Lset are:

s(glj , ĝ
l
j) = β1

|glj ∩ ĝlj |
|glj |

+ β2IoU(glj , ĝ
l
j)

Lset = [eli ∈ glj ] · log(Al
ij)+ (1− [eli ∈ glj ]) · log(1−Al

ij) (7)

where {β} are the hyper-parameters to sum the two weights.
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Figure 2. The overview of our approach. (a): model architecture with fine-to-coarse grouping layers to progressively combine elements
{e} with learnable group tokens {g}. (b): an example of the hierarchical grouping process, elements outlined with the same color rectangle
represent one group, corresponding to the “group tokens” in (a).

Objective 2: Anchor Prediction. In addition, we add an
auxiliary prediction head to predict the box coordinate of
each group (i.e., the minimum box covering all elements in
the group) using the group token. By injecting explicit po-
sitional priors, this does not only help improve group token
representation, but also eliminate the slow training conver-
gence issue in set matching.

bboxl
j = sigmoid(MLP(glj))

Lanchor = λ1||bboxl
j − ˆbboxj

l
||1+λ2Liou(bbox

l
j , ˆbboxj

l
) (8)

We use a linear combination of the L1 loss and the gener-
alized IoU loss [23] which is scale-invariant. In total, our
objective contains two losses: (1) set prediction loss; (2)
group anchor loss:

L = λ3Lset + λ4Lanchor (9)

where {λ} are hyperparameters for the loss weights.

3.3. Unsupervised Bootstrapped Training

Labeling of the visual groupings can be time-consuming.
To the best of our knowledge, currently there are no avail-
able datasets with complete hierarchical annotation. To al-
leviate the data bottleneck, this paper proposes a two-stage
unsupervised training without annotation cost, namely pre-
training and bootstrapping.

3.3.1 Pre-Training with Pseudo-Labeling

Similar to the traditional rule-based approaches in visual
grouping [11,24], we propose a heuristic labeling algorithm
using Gestalt principle of proximity to generate pseudo-
annotations. Intuitively, we assume that elements with
closer distance tend to be in the same group as mentioned
in Sec. 3.1. As shown in Algorithm 1, the main function
is SegmentRegion. Given a list of elements, we sort
them in the ascending order of top-left corner coordinate
(xl, yt). By iterating the ordered list, we calculate the hor-
izontal or vertical margin between two neighbouring ele-
ments. If the margin is larger than a pre-defined threshold,
we segment the two elements, otherwise we keep them in
the same group. Starting with all the elements in a lay-
out, we recursively apply the function SegmentRegion
for each segmented group and finally obtain the hierarchi-
cal labels. In this way, we are able to collect a large-scale
pseudo-labels for pre-training.

3.3.2 Bootstrapping with Self-Improved Labels.

Although we can get a reasonable initial model with pre-
training, pseudo-labels are noisy and might limit the model
learning capability. Hence we adopt a simple but effective
bootstrapping strategy to self-refine the training labels us-
ing the model predictions. For each training instance, we
compute the model confidence by averaging the element-
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Algorithm 1 Heuristic Label Induction.
Require: N elements, each with box coordinate (xl, yt, xr, yb),

margin threshold m
1: SEGMENTREGION({ei}N0 , xAxis,m)
2: procedure SEGMENTREGION({ei}G0 , d,m)
3: Sort {ei}G0 in ascending order of left-top (xl, yt)
4: endx, endy = e0[xr], e0[yb]
5: offset = 0
6: for i = 1, . . . , G do
7: if d = xAxis and ei[xr]− endx > m then
8: group elements {e}i−1

offset

9: SEGMENTREGION({e}i−1
offset, yAxis, m)

10: else if d = yAxis and ei[yb]− endy > m then
11: group elements {e}i−1

offset

12: SEGMENTREGION({e}i−1
offset, xAxis, m)

13: else
14: endx = max(endx, ei[xr])
15: endy = max(endy, ei[yb])

to-group attention scores:

c({gl}) = avg
∑
j

(
∑

ei∈gj
Aij)

|gj |
(10)

After training the model in several epochs to a stable
checkpoint, our bootstrapping replaces the training labels
with our model predictions if the model confidence is larger
than a threshold. We empirically try different threshold
strategies and will show more results in the experiments.

4. Experiments
4.1. Experimental Settings

To the best of our knowledge, there are currently no pub-
licly available datasets, baselines, or well-defined quantita-
tive metrics for evaluating the task of visual grouping. In
this paper, we formally define the settings and establish a
systematic approach for evaluating this task.

4.1.1 Datasets.

We start by collecting a large-scale dataset of public pre-
sentation slides in the .pptx format for training our model.
To obtain grouping annotations, we utilize our proposed
heuristic algorithm presented in Sec. 3.3.1 to assign pseudo-
labels to each slide. We then filter out the training samples
that yield empty group results. Our final training dataset
consists of 369,347 slides, with each slide containing an av-
erage of approximately 2 levels of pseudo-groups. More
specifically, there are 4.82 groups in each slide in level 0
(fine-grained) on average, with each group containing 2.28
shapes. In level 1 (coarse-grained), there are 2.93 groups on
average, each with 3.92 shapes. For evaluation, we created

a human-labeled dataset consisting of 79 slides. Two anno-
tators were provided with guidelines and examples to group
the shapes in a slide hierarchically. The evaluation set con-
sists of slides with at most two levels of annotated groups,
with an average of 4.11 groups, each with 2.06 shapes at
level 0 and an average of 2.25 groups, each with 4.01 shapes
at level 1. More information about the annotation process
can be found in the supplementary materials.

4.1.2 Evaluation Metrics.

We propose two quantitative metrics to evaluate the system
performance. Given a prediction with P levels of groups
{gP }lP−1

l=0 and a target with T levels {gT }lT−1

l=0 , we define
(1) Acc (soft) to determine a prediction as correct if any
level in the prediction matches with any level in the target.
On the other hand, (2) Acc (strict) requires a stricter exact
match where each level of group prediction must be equal to
the corresponding level in the target. The metric formulas
are as follows:

Acc(soft) =
1

|{gT }|
∑

p,t∈{gP },{gT }

[ lP−1∨
li=0

lT−1∨
lj=0

(pli = tlj)

]

Acc(strict) =
1

|{gT }|
∑

p,t∈{gP },{gT }

[ lT−1∧
i=0

(pli = tli)

]
(11)

Besides, we also conduct human evaluation to see how
people rate the grouping outputs by our approach and the
other ones. We invite 3 participants and each participant is
given 60 pairs of grouping candidates. Each pair consists of
our system’s prediction as well as one baseline’s output of
the same slide. Participants are asked to determine which
hierarchical grouping is better. We calculate the win rate of
our approach in the user study.

4.1.3 Baselines.

We consider the following two baselines for compari-
son: (1) Heuristic: we apply our algorithm mentioned
in Sec. 3.3.1 in the evaluation set to test its performance;
(2) Pair-Merge [25]: a Transformer-based model to pre-
dict the relatedness of pairwise shapes and then iteratively
merge shape pairs with a pre-determined threshold. In their
original approach, the authors collect presentations with
user-created groups (without complete and hierarchical an-
notations) on the web. In order to train their model on
our pseudo-labeled hierarchical dataset, we re-implemented
their approach by keeping the same Transformer backbone
and training one copy of the pairwise prediction head for
each grouping level (in total pre-defined L levels).
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(a)

(b)

Figure 3. Two example slides with grouping predictions from
heuristic algorithm, Pair-Merge, our system, and the ground truth.
Each slide contains hierarchical groupings with a coarse-level (1st
row) and a fine-level (2nd row).

4.1.4 Model and Training Parameters.

For model architecture, the maximum input sequence length
is 224. The token embedding size and hidden size are all
384. According to the data statistics, we set two grouping
layers, with the number of group tokens 42 and 8 respec-
tively. The first grouping layer consists of 6 attention lay-
ers, each with 6 heads, while the other grouping layers each
consist of 3 attention layers, also with 6 heads. The atten-
tion dropout rate is set to 0.5. We train the model for 60
epochs with a learning rate 5 × 10−5 and batch size 64 us-
ing 4 GPUs. Adam [13] is used as optimizer with β1 = 0.9
and β2 = 0.99. The loss weights λ1, λ2, λ3, λ4 are set to
1, 1, 10, 1 respectively. We use adaptive thresholds 0.7,
0.5, 0.3 during the epoch of 40, 50, 55 for bootstrapping,
which will be described more in the Sec. 4.3.2. Bounding
box coordinates are normalized from 0 to 1. For the heuris-
tic algorithm, we set the margin threshold to 0.05 in both x
and y axis.

Table 1. Overall results on the human labeled evaluation dataset.

Methods Acc (soft) Acc (strict) win-rate

Heuristic 44.3 12.7 80.85
Pair-Merge 60.8 0.0 94.92
ours (w/o bootstrapping) 40 15 82.86
ours 62.5 22.5 -

4.2. Overall Performance

The overall results are presented in Tab. 1. Without boot-
strapping, our approach is comparable to the heuristic base-
line. This is expected since the model is trained to fit the
noisy labeled data provided by the heuristic algorithm. We
can see a large performance increase using bootstrapping
(22.5% relative gain in soft accuracy and 7.5% in strict ac-
curacy) and achieves the best results compared to the two
baselines, which indicates that our model has captured rep-
resentative features and bootstrapping helps correct noisy
labels. Moreover, it is interesting to see that the Pair-Merge
baseline performs well in terms of soft accuracy but ex-
tremely bad in strict accuracy. We then take a deeper look
and observe that this baseline tends to predict correctly in
one of the grouping levels but fail to merge elements hier-
archically. Therefore, its strict accuracy related to the hier-
archical exact match results in 0. This indicates that a sys-
tem with the pairwise relatedness learning objective might
not be sensitive enough to construct a hierarchical group-
ing structure. While being compared, our approach outper-
forms the others in terms of strict accuracy, demonstrating
that our multiple grouping layers effectively capture the hi-
erarchical structure.

As for human evaluation, our approach beats the heuris-
tic and Pair-Merge baselines as well as ours (w/o bootstrap-
ping) with a win-rate of 80.85%, 94.92% and 82.86% re-
spectively, which is consistent with the automatic metric re-
sults.

Case Study. We show two examples with predictions
from different systems as well as the ground truths in
Fig. 3. For each case, we present two levels of group-
ings (coarse-grained in the 1st row and fine-grained in the
2nd row respectively). We can see that our approach cor-
rectly parses the slide grouping structure in both two cases.
In the first case (Fig. 3a), the heuristic algorithm wrongly
treats the horizontally-aligned elements as separate groups
in the coarse level, which is a commonly seen error pattern
since the algorithm scans along the x/y-axis to divide ele-
ments into groups. As for the second case (Fig. 3b), Pair-
Merge correctly merges the the elements to two column-
wise groups, but fail to combine them into a larger group
for a hierarchical structure.

4.3. Model Analysis

To give a better understanding of our model, we conduct
an in-depth model investigation in this subsection.

4.3.1 Group Token Analysis

Group tokens are a crucial component of our model as they
learn to attend and associate with elements. In order to gain
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Figure 4. Heatmaps of all box predictions on 11k sampled slides
from training dataset. We only visualize the active group tokens:
3 out of 8 in coarse level (1st row) and 4 out of 42 in fine-grained
level (2nd row).

insight, we examine their physical meanings through visu-
alization and conduct ablation experiments to study the im-
pact of the number of group tokens on model performance.

Visualization. To see what the group tokens have actu-
ally learnt, we visualize the boxes predicted by different
group tokens for a randomly-sampled slides (∼11k) from
the training dataset. As there are excessive group tokens
where some are associated without any elements (i.e., not
triggered), we filter those null tokens with the triggered rate
less than 1% in the dataset and only show the triggered
group tokens. As shown in Fig. 4, our model learns dif-
ferent specialization for each group token. We observe that
each token has several modes of operation focusing on dif-
ferent regions. For example, the three group tokens in the
coarse level (1st row) mainly attend in the top, center and
bottom region respectively. Moreover, group tokens in dif-
ferent layers tend to predict boxes in different sizes. The to-
kens in the fine-grained level (2nd row) are responsible for
smaller groups while the ones in the coarse level are more
likely to favor larger groups (e.g., title + content). This ob-
servation well explains the mechanism of our hierarchical
grouping model that different grouping layers handles dif-
ferent granularities and each group token controls its corre-
sponding regions.

Effects of Group Token Numbers. As the group tokens
have been shown to carry physical meanings via visualiza-
tion, we are also curious to see if a larger number of the
learnable group tokens can have a higher trigger rate and
capture more meaningful patterns. Here we try different
numbers of group tokens in the two corresponding group
layers and show the results in Tab. 2. Moreover, we cal-
culate the number of group tokens being triggered which
has been associated with at least one element. We observe
that the increasing number of group tokens does not result
in better performance but instead introduce more noise. We
argue that this is because there are only several key group
tokens for a limited set of regions while others act as null

tokens. As the group token number increases (e.g., {28, 6}
to {128, 16}), the number of triggered tokens stays around
{5, 3}, which further supports our argument.

Table 2. Ablation study of different numbers of group tokens in
two levels {G0, G1} (fine and coarse level). We also show the
statistics of number of tokens being triggered (2nd column).

# Group Token # Triggered Acc (soft) Acc (strict)

28 6 5 3 60.00 22.50
42 8 7 4 62.50 22.50

64 10 5 3 62.50 21.25
92 12 7 4 58.75 23.75

110 14 4 3 53.75 18.75
128 16 5 3 61.25 15.00

4.3.2 Effects of Bootstrapping

In this section, we investigate how different strategies of
bootstrapping affect the overall results. Starting from 40
epoch, we experiment with (1) fixed bootstrapping thresh-
old (0.7 in this study) (2) adaptive thresholds which accepts
an increasing percentage of label refinement with lower
thresholds (0.7, 0.5, 0.3) along training epochs. As shown in
Fig. 5, both fixed (green line) and adaptive thresholds (blue
line) perform better than the setting without bootstrapping
(red line), indicating that our model is able to capture rep-
resentative features and refine the noisy training labels cor-
rectly. Moreover, the adaptive thresholds work better than
the fixed one, which means that the decreasing thresholds
to include more refined labels do not deteriorate the perfor-
mance but instead help denoise more training samples as
our model becomes more robust during training iterations.
Moreover, we calculate the percentage of re-labeled train-
ing samples during the bootstrapping epochs. As we can
see, the replace rate of labels starts from 70% to 90%, which
means that our model effectively utilizes the bootstrapping
for data relabeling and denoising.

4.3.3 Effects of Different Learning Objectives

Our model architecture contains two prediction heads per
grouping layer, set prediction and anchor prediction respec-
tively. We would like to see how much they contribute to
the overall performance. Here we try different loss weight
combinations of λ3 (set prediction), λ4 (anchor prediction)
and show the results in Tab. 3. We can see that both the
two learning objectives are important, as the performance
drops dramatically without any of two losses. Moreover,
the setting of λ3 : λ4 = 10 : 1 achieves the best results,
which indicates that the set prediction objective dominates

1037



Figure 5. Accuracy curves with different bootstrapping strategies.
Bootstrapping starts from epoch 40. Adaptive thresholds work the
best (blue line).

the optimization while anchor prediction acts as auxiliary
objective to stabilize the training.

Table 3. Results with different loss weights in terms of set predic-
tion (λ3) and anchor prediction (λ4).

λ3 λ4 Acc (strict) Acc (soft)

1 0 1.25 54.06
0 1 0.00 38.75
1 1 0.00 47.50
5 1 13.75 47.50
1 5 0.00 55.00
10 1 22.50 62.50
15 1 21.25 57.50

4.3.4 Error Analysis

We observe two main errors that left to be solved in the
future work.

Error 1: Weak Global Contextualization. Though our
model has learned the interactions between elements via the
attention mechanism, it is still weak at capturing repetitive
patterns in a layout. As shown in Fig. 6a, there should be
four image-caption groups in the slide. However, our model
fails to detect the pattern and therefore predicts wrongly in
this case. To address this error type, it might need further
explicit modeling of global constraints to increase model
capability.

Error 2: Missing Semantic Content. Currently our
model only utilizes the visual properties of elements (e.g.,
type, position, font setting). We observe that there are a cer-
tain amount of error cases that element content (e.g., images
and texts) plays an decisive role. For example in Fig. 6b,
our model wrongly recognizes pictures and textboxes as
two separate groups, while each textbox describes its

(a) Weak global contextualization.

(b) Missing semantic content.

Figure 6. Examples of two main error types in our approach.

horizontally-aligned picture and should be grouped as an
image-caption pair. If the semantic contents of elements are
taken into consideration, the ambiguity would be resolved.
Multi-modality with text and vision could be a promising
future direction.

5. Conclusion

This paper presents the first end-to-end trainable model
for hierarchical visual grouping in graphic design lay-
outs. Since obtaining grouping labels requires a significant
amount of annotation effort, we propose a two-stage unsu-
pervised training strategy. In the first stage, our model is
pre-trained on heuristic-labeled data using Gestalt laws. In
the second stage, we adopt bootstrapping to iteratively re-
fine the noisy labels. Our experimental results demonstrate
the effectiveness of our approach, and we provide extensive
analysis to explain our model behaviors. Finally, we con-
clude by identifying two representative error types of our
approach for further investigation in future work.
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