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Abstract

Vision-and-Language Pre-trained (VLP) models have
demonstrated their powerful zero-shot ability in multiple
downstream tasks. Most of these models are designed to
learn joint embeddings of images and their paired sen-
tences, with both modalities considered globally. This does
not lead to optimal solutions for applications where what
matters more is the local-level cross-modal association,
such as the situation where a user may want to retrieve im-
ages with query words that link to only small parts of the
images. While a VLP model could in principle be retrained
to learn a new embedding capturing such fine-grained as-
sociation, expensive annotation would be needed, making it
impractical for big data applications. This paper proposes
a novel method named Fragment Embedding by Local and
Global Alignment (FELGA), which learns fragment-level
embeddings that capture fine-grained cross-modal associa-
tion through utilizing visual entity proposals and semantic
concept proposals in an unsupervised manner. Comprehen-
sive experiments conducted on three VLP models and two
datasets demonstrate that FELGA is not limited to specific
VLP models and outperforms the original VLP features.
In particular, the learned embeddings support cross-modal
fragment association tasks including query-driven object
discovery and description assignment.

1. Introduction

Recent years have witnessed phenomenal growth of
multi-modal data on social media platforms. A common
task on such platforms is cross-modal retrieval, such as
searching for images or videos based on a query textual
description. The key to support such cross-modal tasks
is the development of some unified representations that
can facilitate the association of entities in different modali-
ties. Recent Vision-and-Language Pre-trained (VLP) mod-
els [4, 14, 24–27, 29, 32, 39, 55, 61–63, 66] have emerged as

a powerful way for learning such cross-modal representa-
tions. However, current mainstream VLP models are typi-
cally designed to learn joint embeddings of images and their
paired textual descriptions, with both modalities considered
globally. This would inadvertently neglect semantic rela-
tions occurring only at the fragment level. Consequently,
the learned embeddings may not optimally support tasks
that rely on fine-grained cross-modal association.

There are some recent efforts that attempted to address
this issue to some extent. For example, RegionCLIP [63],
an extension of CLIP [39], focused on learning the region-
level visual representations. The limitation is that textual
descriptions are still considered globally as only the vi-
sual encoder is trained at region level. On the other hand,
GLIP [29] and GLIPv2 [62] unify object detection and
phrase grounding for object-level visual representations.
But they require costly manual annotations for the bounding
boxes and thus can hardly scale to large training data.

In an attempt to address the above challenges in support-
ing fine-grained cross-modal association tasks, we propose
the Fragment Embedding by Local and Global Alignment
(FELGA) to learn the embeddings of visual entities (ob-
jects) and semantic concepts (keywords) in an unsupervised
manner. FELGA leverages an image fragment generator to
provide region proposals and a keyword detector to provide
semantic concepts. It then learns the fragment embeddings
through local and global level alignments, which are guided
by the designed pseudo-label matrices.

Our contributions are summarized as follows. (1) We in-
troduce the two fine-grained cross-modal association tasks
to validate the performance of learned fragment embed-
dings. (2) We propose the FELGA method that is able to
learn the fragment embeddings without requiring expensive
manual annotations. (3) Comprehensive experiments and
results demonstrate that the fragment embeddings learned
by FELGA can outperform the reference VLP models,
hence establishing a new baseline for unsupervised frag-
ment embedding learning. We emphasize that FELGA is
not restricted to specific VLP models and can be extended
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to open real-world image-text data like Tweets.

2. Related Work
Unsupervised Object Discovery Unsupervised object

discovery [46] (UOD) task refers to identifying objects in
images without supervised annotations during training (no
annotations of object bounding boxes or class labels). In
testing, it requires the method to find the image regions that
contain objects and clustering images that contain the same
objects, whose evaluation metrics are known as the Cor-
rect Localization (CorLoc) and Correct Retrieval (CorRet).
Cho et al. [5] work on discovering the object instances with
distinctive parts by part-based proposals matching method.
Vo et al. [48] used self-supervised features to construct a
pipeline that treats the UOD as a ranking problem and scales
it to large-scale datasets. TokenCut [50] is a graph-based
method that utilizes unsupervised transformer features to
discover objects. Indeed, these UOD methods have primar-
ily focused on learning visual embeddings and may not ex-
plicitly incorporate the learning of text embeddings, which
limits their capability to perform multi-modal retrieval.

Open-Vocabulary Object Detection Object Detec-
tion [68] is traditionally formulated under the closed-
vocabulary set settings. Recently, some object detec-
tion works aimed at generalizing the limited number of
classes to detect novel unseen classes during the testing
stage. OVR-CNN [60] is a two-stage training frame-
work. It first constructs the visual-semantic space by image-
caption pairs and then learns object detection through base-
classes object-level annotation data. Vision Transformer
for Open-World Localization (OWL-ViT) [34] transferred
contrastively trained image-text models to detection by the
designed attaching heads with limited object-level data.
BARON [51] was proposed to cluster the contextually re-
lated regions into a bag. Then it aligned the bag-of-region
representations of the object detector and VLP models.
Even though these open-vocabulary object detection works
support detecting objects in unseen classes, they still re-
quire seen classes supervised annotations, i.e. object-level
bounding boxes and class labels during training. Besides
that, they are only able to solve the text-to-image direction
query-driven object discovery task at a certain level and not
able to work for description assignment task.

Cross-Modal Retrieval There are a lot of works on
cross-modal retrieval in recent years. Some of them are
focused on learning embeddings with better performance
[12, 16, 43, 49, 54]. Others prefer learning hashing codes
that have less storage space and faster searching speed
[8, 10, 30, 45, 58, 67]. Andrej et al. [18] designs a neural
network to learn the embedding space based on fragments
to further reason the representations of image and text. Lee
et al. [22] proposed the Stacked Cross Attention Network
(SCAN) that attends the words in the sentence with re-

spect to image regions to form the attended sentence vec-
tor. Wu et al. [52] proposed the Self-Attention Embeddings
(SAEM) that use FasterRCNN and WordPiece models to
extract the salient image regions and sentence tokens and
then feed them into the self-attention [47] layers to get fea-
ture vectors for entire images and sentences. IRRA [15]
designed the implicit relation reasoning module to explore
the part alignments. Most of these approaches encapsulate
the entirety of both images and texts, hence lacking the ca-
pacity for supporting inference with local-level association
or only supported single-direction (text-to-visual) retrieval.

Vision-Language Unified Representation Learning
Since the transformer [47] architecture appears, VLP mod-
els became popular in recent years [9]. VisualBERT [28]
utilizes the designed masked prediction and object tags as
anchor points to pre-train the model to learn the embed-
ding. To avoid the restriction of a fixed number of object
categories, CLIP [39] leverages large-scale image-text pairs
to learn visual and language representations. ALBEF [27]
designs the contrastive loss and momentum distillation to
align the visual tokens and word tokens. BLIP [26] focuses
on dealing with the noisy image-text pairs from the web by
the designed filter. GLIP [29] reformulates object detection
as a phrase grounding task by aligning each bounding box
to phrases in the text prompt. CoCa [57] is a new design of
the pre-training model that combines contrastive loss and
captioning loss during training.

Some works also paid attention to the fine-grained frag-
ments during pre-training. GLIPv2 [62] unifies the lo-
calization task and understanding task into one frame-
work and utilizes the region-words pairs for pre-training.
Ge et al. [11] considered the fine-grained local associa-
tion between nouns/verbs and videos during pre-training.
Zhou [66] trains the model with un-parallel image-text data
by three granularities: tag alignment, phrase alignment, and
entire image-sentence alignment. ALPRO [23] introduces
a video-text contrastive loss to align unimodal features by
the generated soft entity labels. G-ViLM [53] involves spa-
tiotemporal grounding and temporal grouping during fea-
ture learning with the local region-noun alignment design.
They require large-scale datasets [1, 3, 35, 36] or even ex-
pensive manual annotated datasets [21, 41] for pre-training.

However, the most important thing is these VLP works
are still focused on learning the embeddings of the entire
image and text. They cannot provide the embeddings of the
fragments (visual entities and semantic concepts) directly
for the cross-modal fragment association tasks.

3. Method
To facilitate the discussion on the benefit of fragment

embeddings, we first introduce the two fine-grained cross-
modal association tasks: (text to image) query-driven object
discovery (Object Discovery) and the task of assigning the
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Figure 1. The framework of the proposed FELGA (best viewed in color).

most relevant description (Description Assignment) (image
to text) in section 3.1. Then we introduce the proposed un-
supervised method FELGA in section 3.2.

3.1. Problem Definition

In real applications, a user may want to retrieve im-
ages with query words linking to only small parts of the
images. While the training set may contain images with
paired descriptive sentences, we define the task of query-
driven object discovery as finding images that contain vi-
sual entities associated with given semantic concepts (but
not the entire sentences). In the other direction, we de-
fine the task of description assignment as: given visual
entities (not the whole image), to find the descriptive
sentences that contain the associated semantic concepts.
Given: N images I = {I1, I2, I3, ..., IN} and texts T =
{T1,T2,T3, ...,TN}. The n-th image In has mv

n visual
entities Vn = {vn1 , vn2 , vn3 , ..., vnmv

n
} and the n-th text Tn

has mt
n semantic concepts Tn = {tn1 , tn2 , tn3 , ..., tnmt

n
}. Ob-

ject Discovery retrieves images that contain visual entities
associated with given query semantic concepts. Description
Assignment retrieves relevant texts that contain the seman-
tic concepts associated with given query visual entities. The
unsupervised setting means that there is no annotation of
visual entities and semantic concepts (and their correspon-
dence) provided in the training stage.

3.2. FELGA:Fragment Embedding by Local and
Global Alignment

3.2.1 Fragment Proposal Extraction

Given N pairs of images I = {I1, I2, I3, ..., IN} and texts
T = {T1,T2,T3, ...,TN}, we have no access to the fine-

grained annotations of the visual entities V =
⋃N

n=1 Vn in
the images and the semantic concepts T =

⋃N
n=1 Tn in sen-

tences in the unsupervised setting. To overcome this limita-
tion and better deal with the huge amount of naturally paired
image-text data like Tweets, we apply the unsupervised pre-
trained models to extract the proposals for each image and
text. For the n-th image In, the unsupervised pre-trained
region proposal generator will provide m̄v

n region proposals
as the visual entity proposals V̄n = {v̄n1 , v̄n2 , v̄n3 , ..., v̄nm̄v

n
}.

For the n-th text Tn, the unsupervised keyword extraction
will extract m̄t

n keywords from sentences as the semantic
concept proposals T̄n = {t̄n1 , t̄n2 , t̄n3 , ..., t̄nm̄t

n
}.

3.2.2 Fragment Pseudo Label Construction

In a supervised setting, we could access the visual entities
V and semantic concepts T and assume the knowledge of
their association by the association label matrix Llocal:

Llocal
i,j =

{
1, if vi is associated with tj
0, otherwise (1)

where i is the index of the visual entity in the current
batch images, ranging in [1,

∑N
n=1 m

v
n], and j is the in-

dex of semantic concept in the current batch text, ranging
in [1,

∑N
n=1 m

t
n]. If the visual entity vi is associated with

the semantic concept tj , the association label Llocal
i,j will be

1. Otherwise, it is 0, which means they are not related.
In the unsupervised setting of this paper, we cannot as-

sume knowing the visual entities or the semantic concepts,
let alone the association label matrix Llocal. Following the
steps in subsection 3.2.1, we start by building up the frag-
ment (local-level) pseudo label matrix L̄local for the frag-
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Method name Microsoft COCO 2017 Microsoft COCO 2014
Object Discovery Description Assignment Object Discovery Description Assignment

CLIP [39] based on entire image/sentence 50.7 38.6 50.7 39.3

CLIP [39] model based on proposals 50.7 35.6 50.7 36.2
Dense 50.9 39.2 50.5 39.5
Sparse 59.4 40.3 54.7 41.0

Dynamic 57.5 41.0 56.9 41.7
FELGA 63.1 42.2 63.6 42.8

Table 1. The mAP results of different methods with CLIP model. Notes: the gray means the distance is obtained by the feature of the
entire image or sentence.

ment proposals V̄ and T̄ . Firstly, we use a pre-trained VLP
model to extract their feature vectors:

FV̄ , FT̄ = VLP model(V̄ , T̄ ) (2)

where the VLP model will take the different modalities’
proposals as input and output their features. For visual
entity proposals, we crop the corresponding small regions
from the original image and feed them into the visual
encoder of the VLP model to get their features FV̄ =
{fv̄n

1
, fv̄n

2
, fv̄n

3
, ..., fv̄n

m̄v
n
}. The semantic concepts propos-

als are first tokenized and then fed into the language en-
coder of the VLP model to get their features FT̄ =
{ft̄n1 , ft̄n2 , ft̄n3 , ..., ft̄nm̄v

n

}. These steps of proposal extraction
and corresponding feature extraction are shown as orange
arrows in Figure 1.

Then we construct the fragment pseudo label matrix
L̄local
i,j for the proposals based on the similarity scores com-

puted in the following ways.
Dense Connection The first way is to assign all fragment

pseudo labels to 1 if the proposals are within the same pair
as follows:

L̄local
i,j =

{
1, if (v̄i, t̄j) are within same pair
0, otherwise (3)

where i in [1,
∑N

n=1 m̄
v
n] is the index of the visual

entity proposals in the current batch images and j in
[1,

∑N
n=1 m̄

t
n] is the index of semantic concept proposals

in the current batch texts. The reason for setting the local-
level pseudo labels to 1 for all proposals within a pair is that
their similarities should be the highest compared to propos-
als from different pairs. As a result, setting the pseudo la-
bels to 1 ensures that the proposals within the same pair are
aligned, while others are not. Conversely, proposals from
different pairs are assigned to the pseudo labels of 0, indi-
cating that they are not aligned.

Sparse Connection Different from “Dense Connection”
which assigns all pseudo labels of the fragments within the
same pair to 1, “Sparse Connection” selects only the high-
est relevant visual entity proposal, which has the maximum
similarity score with the corresponding semantic concept

proposal. Then it assigns the fragment pseudo label to 1:

L̄local
i,j =


1, if d(fv̄i , ft̄j ) = max{d(fv̄i , ft̄j )} ,

∀i ∈ [1, m̄v
n],

and (v̄i, t̄j) are within same pair
0, otherwise

(4)

The main idea is at least one image region should be rele-
vant to the semantic concept in the sentence, implying that
they have the highest similarity score with each other. Here
we assume that the visual entity proposal with the highest
similarity score is associated with the semantic concept pro-
posal.

The above two ways of computing pseudo labels have
certain limitations. “Dense Connection” relies on the strong
assumption that all proposals within one pair are associ-
ated with each other, which may not always be true, while
“Sparse Connection” may have a pseudo-label matrix cap-
turing situations where multiple visual entities are associ-
ated with the same semantic concept or vice versa, causing
difficulties in learning fragment embeddings.

Dynamic Connection To address these limitations, we
propose to dynamically construct the fragment pseudo-label
matrix. We divide the similarity scores of the same pair
proposals into two groups, “Similar Group” and “Dissimilar
Group”, by a dynamic threshold defined by the local meann:

meann =

∑m̄v
n

i=1

∑m̄t
n

j=1 d(fv̄i , ft̄j )

m̄v
n × m̄t

n

(5)

where n is the index of image or text in the data batch, and
the meann is the average of similarities of all visual entity
proposals and semantic concept proposals within the n-th
image-text pair. The dynamic pseudo-labels are assigned
adaptively by the meann as follows:

L̄local
i,j =


1, if d(fv̄i , ft̄j ) ≥ meann ,

∀n ∈ [1, N ],
and (v̄i, t̄j) are within same pair

0, otherwise

(6)

This step of constructing the fragment pseudo labels is
shown as part of the blue arrows in Figure 1.
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Method name Microsoft COCO 2017 Microsoft COCO 2014
Object Discovery Description Assignment Object Discovery Description Assignment

BLIP [26] based on entire image/sentence 45.8 36.3 46.4 36.6

BLIP [26] based on proposals 42.4 39.5 40.1 40.4
Dense 53.3 41.5 54.0 42.0
Sparse 53.7 41.1 50.0 40.8

Dynamic 58.7 44.6 58.6 45.2
FELGA 66.4 46.1 66.1 46.7

Table 2. The mAP results of different methods with BLIP model. Notes: the gray font means the distance is obtained by the feature of the
entire image or sentence.

3.2.3 Global Pseudo Label Construction

Besides the fragment/local-level alignment, we also con-
sider the entire/global-level image-text pair alignment for
the fragment embedding learning. We design the global-
level pseudo labels as follows:

L̄global
k,l =

{
1, if k = l
0, otherwise (7)

where k and l, in [1, N ], are respectively indices of im-
age I and text T. If the image and text are from the same
pair, the pseudo label will be 1. Otherwise, the pseudo-
label is 0. We designed Equations 7 and 11 (to be intro-
duced in subsection 3.2.4) to make the similarity scores of
paired and unpaired data more discriminative. Specifically,
We aim to strengthen the maximum similarity within the
same pair while weakening the maximum similarity from
different pairs. This design is essential for improving the
alignment between visual entities and semantic concepts.
It ensures that the learned fragment embeddings are more
accurate and discriminative. This step of constructing the
global pseudo labels is shown as part of the blue arrows in
Figure 1.

3.2.4 Models and Loss Functions for Local and Global
Alignments

Most VLP models [25–27, 29, 39, 57] adopt dual-encoders
for processing image and text separately. Since the pro-
posal features FV̄ and FT̄ from the pre-trained VLP model
are already in the unified representation space, we design
a multi-layer perception (MLP) as the FENet to learn the
fragment embeddings. It takes the features from the VLP
model as input to obtain the fragment embedding:

F̂V̄ = FENet(F̄V̄ ), F̂T̄ = FENet(F̄T̄ ) (8)

where F̂V̄ = {f̂v̄n
1
, f̂v̄n

2
, ..., f̂v̄n

m̄v
n
} are the fragment

embeddings of visual entity proposals and F̂T̄ =
{f̂t̄n1 , f̂t̄n2 , ..., f̂t̄nm̄t

n

} are the fragment embeddings of seman-

tic concept proposals. Firstly, the fragment-level affinity

matrix of visual entity proposals and semantic concept pro-
posals is constructed as follows:

Ŝlocal
V̄ T̄ = d(F̂V̄ , F̂T̄ ) = F̂V̄ F̂

⊤
T̄ (9)

where Ŝlocal
V̄ T̄

∈ [0, 1]
∑N

n=1 m̄v
n×

∑N
n=1 m̄t

n represents the sim-
ilarities of fragment embeddings in current training batch
data, and d denotes the cosine similarity of normalized fea-
tures. We propose to compute the local contrastive loss for
all proposal pairs as follows:

Lcon l =

∑N
n=1 mv

n∑
i=1

∑N
n=1 mt

n∑
j=1

[ log
∑

L̄local
i,j =1

e
λ1−d(f̂v̄i ,f̂t̄j )+

log
∑

L̄local
i,j =0

e
d(f̂v̄i ,f̂t̄j )]

(10)

where
∑N

n=1 m̄
v
n is the total number of visual entity pro-

posals and
∑N

n=1 m̄
t
n is the total number of semantic con-

cept proposals in the current data batch (N pairs). λ1 is
the hyper-parameter of the threshold. This loss function is
inspired by the Lifted Structured Loss [37] and it incorpo-
rates all relative relationships of all proposal pairs, regard-
less of whether they are similar pairs or dissimilar pairs.
As this loss function encourages better separation and dis-
tinction among clusters in the learned embedding, it facil-
itates more effective alignment between visual entities and
semantic concepts.

Similarity, we construct the global-level affinity matrix
Ŝglobal
IT by computing the whole image and complete sen-

tence similarity scores as follows:

d(In,Tn) = max{d(f̂v̄i , f̂t̄j )},∀i ∈ [1, m̄v
n],∀j ∈ [1, m̄t

n]
(11)

where f̂v̄i is the final fragment embedding of the visual en-
tity proposal v̄i and f̂t̄j is the final fragment embedding of
the semantic concept proposal t̄j . The maximum similarity
score d(fv̂i , ft̂j ) was used to represent the entire image-text
similarity score due to the focus of the most relevant frag-
ments. Based on that, the global contrastive loss for the
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Method name Microsoft COCO 2017 Microsoft COCO 2014
Object Discovery Description Assignment Object Discovery Description Assignment

BLIPv2 [25] based on entire image/sentence 55.3 35.1 55.6 35.5

BLIPv2 [25] based on proposals 52.6 39.1 52.2 39.6
Dense 56.8 42.9 57.1 43.3
Sparse 64.2 42.0 59.3 41.9

Dynamic 62.7 43.7 62.4 44.2
FELGA 69.7 45.5 69.9 46.3

Table 3. The mAP results of different methods with BLIPv2 model. Notes: the gray means the distance is obtained by the feature of the
entire image or sentence.

entire image-text pairs is designed as follows:

Lcon g =

N∑
k=1

N∑
l=1

[ log
∑

L̄global
k,l =1

eλ2−d(Ik,Tl)+

log
∑

L̄global
k,l =0

ed(Ik,Tl)]

(12)

where N is the total number of pairs in the current train-
ing batch, and λ2 is the hyper-parameter of the threshold.
Within the same image-text pair, this loss function empha-
sizes the importance of the proposal pair that has the highest
similarity score. For proposal pairs from different image-
text pairs, this loss function suppresses the significance of
the pair with the highest similarity score.

Finally, FELGA train the FENet with the following
overall loss function for learning the fragment embedding:

L = Lcon l + λ3Lcon g (13)

where Lcon l is guided by Dynamic Connection fragment
pseudo labels from Equation 6 and Lcon g is guided by
global pseudo labels from Equation 7. λ3 is a hyper-
parameter that controls the trade-off between the local-level
contrastive loss and global-level contrastive loss.

4. Experiments
4.1. Datasets

Since most traditional cross-modal retrieval datasets like
Flickr30k [56], NUS-WIDE [6] and Recipe 1M+ [33, 40]
only provide the data in the format of image and sentence
pairs, they lack the annotations of the visual entities and se-
mantic concepts. Therefore, we utilize Microsoft COCO
[31]. RefCOCO, RefCOCO+ and RefCOCOg [19, 59]
datasets were also considered as the training set. However,
the referring expressions in these datasets can be viewed
as weakly supervised localization annotations. They re-
vealed the relationship information of semantic concepts
and visual entities. So we just select the COCO Cap-
tion dataset for training. Finally, we use the combination
of the Microsoft COCO Captioning dataset and Detection

dataset. The Microsoft COCO Captioning dataset serves
as the training set, while the Detection dataset is used as
the testing set. This combination allows us to evaluate the
performance of the proposed method in an unsupervised
fashion, where annotations of visual entities and semantic
concepts are not available for training. Microsoft COCO
2014 dataset has 82, 783 training images and 40, 504 vali-
dation images. Following paper [17], we use the Microsoft
COCO 2017 dataset that consists of 118, 287 training im-
ages and 5, 000 validation images. For both of them, we
use their training images from the Captioning dataset for
training and validation images from the Detection dataset
for testing. We introduce more details in subsection 4.3.

4.2. Selection of Pre-Trained Models

In fragment proposal extraction (section 3.2.1), FELGA
uses a region proposal generator and a keyword extractor
to provide the visual entity proposals and semantic concept
proposals, respectively. For image I, we use DETReg [2]
for region proposals, which is pre-trained on ImageNet [7]
only. The top-10 proposals are treated as the visual enti-
ties proposals V̄n for n-th image In. For the text T, we
use the unsupervised KeyBERT [13] model as the keyword
proposal generator. The top-10 keywords are treated as the
semantic concept proposals T̄n for n-th text Tn. In frag-
ment pseudo label construction (section 3.2.2), the proposed
method requires the VLP model to extract the features of
fragment proposals. To verify our method is not limited to
any specific VLP models, three VLP models are selected:
CLIP [39], BLIP [26] and BLIPv2 [25]. For a fair compar-
ison, all these pre-trained models are not fine-tuned on the
Microsoft COCO dataset.

4.3. Training and Testing Settings

In the training stage, the Microsoft COCO Captioning
dataset provides the training images I and texts T. Each
image is annotated with five-sentence descriptions, which
are concatenated to form the corresponding text T. We do
not use any fragment-level annotations, i.e., the bounding
boxes of objects, or the object class labels during training.

In the testing stage, to facilitate the query-driven object
discovery task, we design a special testing protocol. Rather
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Module Name Microsoft COCO 2017 Microsoft COCO 2014
Local-level Alignment Global-level Alignment Object Discovery Description Assignment Object Discovery Description Assignment

✓ 57.5 41.0 56.9 41.7
✓ 59.8 34.6 58.9 35.7

✓ ✓ 63.1 42.2 63.6 42.8

Table 4. Ablation Study of the local-level alignment and global-level alignment design with CLIP model on Microsoft COCO 2017 and
2014 dataset.

Method Name Microsoft COCO 2017 Microsoft COCO 2014
Object Discovery Description Assignment Object Discovery Description Assignment

Dense 50.9 39.2 50.5 39.5
Dense + Global Alignment 59.6 41.7 60.7 41.7

Sparse 59.4 40.3 54.7 41.0
Sparse + Global Alignment 61.0 41.0 59.6 41.6

Dynamic 57.5 41.0 56.9 41.7
Dynamic + Global Alignment (FELGA) 63.1 42.2 63.6 42.8

Table 5. Ablation Study of adding global-level alignment to different baselines with CLIP model on Microsoft COCO 2017 and 2014
dataset.

than providing the entire text as the query, the 80 labels are
treated as semantic concepts and used as the query. The
objective is to retrieve the relevant images containing asso-
ciated visual entity v, i.e., to discover objects within images.
The distance between t and I is computed as the maximum
values of d(f̂t, f̂v̄i), where v̄i is the visual entities proposals
in image I. We do not use d(f̂t, f̂vi) because in real appli-
cations exact object locations are in general not available.
For the description assignment task, we crop the bounding
boxes of objects as the visual entities and use them as the
query. The objective is to retrieve the relevant sentences
containing the associated semantic concepts, which are the
labels of the objects. Similarly, the distance between v and
T is computed as the maximum values of d(f̂v, f̂t̄j ), where
the t̄j is the semantic concept proposals in T.

For the quantitative evaluation, we select the mean Av-
erage Precision (mAP) to evaluate the performance of the
learned fragment embedding. In the object discovery exper-
iment, the average precisions (APs) of all semantic concepts
are averaged to get mAP. For the description assignment ex-
periment, the average precisions (APs) of all visual entities
are averaged to get mAP.

4.4. Baselines

Since the baseline VLP models were designed for gen-
erating features of entire images rather than fragments, we
also provide their performance based on the entire image
(not visual entity proposals) in the object discovery task and
the performance based on the entire sentence (not semantic
concept proposals) in the description assignment task.

In section 3.2.2, we propose multiple ways to construct
the fragment pseudo labels. The “Dense Connection”,
“Sparse Connection” and “Dynamic Connection” can be ap-

plied directly to guide the training of the FENet by setting
λ3 = 0 in Eqn. 13. We name them as “Dense”, “Sparse”
and “Dynamic”. They are viewed as baselines to be com-
pared with FELGA.

4.5. Additional Implementation Details

The FENet consists of 3 Linear Layers, whose dimen-
sions are 4, 096, 4, 096, and 512 (more advanced layers like
transformer layers could be applied but it is not the focus
of this work). There is one ReLU layer and one Dropout
layer between every two Linear layers. The Dropout layer
probability is set to be 0.2. The SGD optimizer is employed
with 0.9 momentum and 0.0005 weight decay. The train-
ing batch size N is 8. The hyper-parameters are set as
λ1 = 0.5, λ2 = 0.5 and λ3 = 0.2. We implement our
method in PyTorch framework [38] with a single NVIDIA
V100 GPU. The total training epoch is 50. All the methods
are trained with an initial learning rate of 0.1 and it will be
decreased by a factor of 0.1 at the 40-th epoch. FELGA is
an end-to-end framework but we implement the VLP fea-
tures extraction part and fragment embedding learning part
separately due to the hardware constraints.

4.6. Quantitative Results and Analysis

The results of three VLP models CLIP, BLIP, and
BLIPv2 on Microsoft COCO 2014 and 2017 datasets are
shown in Tables 1, 2 and 3. Our approach FELGA achieves
the best performance compared with other baselines on
both Object Discovery and Description Assignment tasks.
FELGA also performed better than the original VLP mod-
els when the features are based on the whole image or com-
plete sentence.

From the tables, we find that “Dynamic” is better than
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boat

CLIP

FELGA

Figure 2. Illustrating results from CLIP and FELGA on Microsoft
COCO 2017 dataset with the semantic concept query “boat” on the
query-driven object discovery task.

“Dense” or “Sparse” in most cases, which means the dy-
namic pseudo label design is superior in discriminating the
relationships between visual entities and semantic concepts.
But its performance is still restricted by the original VLP
model (BLIPv2 provides more powerful unified features
compared with CLIP and BLIP). These also show the lim-
itations of fragment-level only alignment. For all the ex-
periments, the proposed FELGA outperforms other base-
lines, which shows that global-level alignment is important
for fragment embedding learning.

Comparing the performance of VLP models and
FELGA, we also found the performance gain is more in
object discovery than in description assignment. The rea-
son is that object discovery has a limited number of queries
(80) and each query has a lot of images containing the cor-
responding objects. But description assignment has a larger
number of bounding boxes as the query.

4.7. Ablation Study

To analyze the impacts of the designed local-level align-
ment and global-level alignment components, we report ab-
lation experiments in Table 4. For the local-level align-
ment training, we select “Dynamic Connection” (Eqn. 6) to
construct the fragment pseudo labels. It is easy to observe
that either training the FENet by local-level alignment or
global-level alignment individually could not achieve the
same satisfactory results as in FELGA, which considers
alignments of different levels during learning.

To show the effectiveness of the global-level alignment,
we do experiments on three local-level only baselines with
the added global-level alignment (Lglobal) during training.
From Table 5, we observe that the global-level alignment is
helpful for other fragment-level methods on the object dis-
covery task. But performance on the description assignment
task is limited by the design of the fragment pseudo labels,
it only has obviously better results when using “Dynamic
Connection” local level alignment during training.

4.8. Qualitative Visualization

In Figure 2, we show the illustration of the top-5 re-
trieved images in the query-driven object discovery task on
Microsoft COCO 2017 dataset. The semantic concept query

is “boat”. (The text query is a straightforward design and
more sophisticated prompt design works [20, 42, 44, 64, 65]
may further improve the retrieval results, but it is not the
focus part of this work). The green bounding box stands
for the correct image that contains the corresponding vi-
sual entities, while the red bounding box stands for the in-
correct images. The upper part shows the results of the
original CLIP model and the lower part shows the results
of FELGA. The maximum similarity visual proposals are
highlighted in purple rectangles (it is worth noting these
regions are not ground truth bounding boxes). These pro-
posals are generated from the unsupervised region proposal
generator. From the image, we found that FELGA can bet-
ter capture the information of semantic concepts by paying
more attention to the related visual entity proposals, which
results in better query-driven object discovery performance.

5. Limitations
FELGA requires the unsupervised pre-trained image re-

gion proposal generator to provide the visual entity propos-
als and the keyword extractor to provide the semantic con-
cept proposals. Since our method relies on these pre-trained
models, the proposal quality is dependent on their perfor-
mance, which inevitably affects the learned fragment em-
beddings. Also, FELGA-designed pseudo labels may not
always reflect the true association between visual entities
and semantic concepts. For example, different images in
the same training batch may share the same semantic con-
cepts. In this case, their local pseudo labels should also be
set to 1. Further work could explore novel approaches for
generating pseudo-labels that better capture the true asso-
ciations, which can contribute more to the refinement and
improvement of FELGA.

6. Conclusion
In this paper, we proposed a novel unsupervised method

named FELGA for fine-grained cross-modal embeddings.
To facilitate the evaluation of the learned embeddings, we
define the query-driven object discovery task and the de-
scription assignment task and report extensive results from
comparative experiments. Our results and their analysis
suggest that FELGA outperforms existing VLP models used
as references in this study, hence establishing a new baseline
for the two tasks to facilitate future research. It is also im-
portant to note that FELGA is not limited to just these two
tasks and can be extended to other applications that rely on
inference using fine-grained cross-modal correlation.
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