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Abstract

Stress estimation is key to the early detection and mitiga-
tion of health problems, enhancing driving safety through
driver stress monitoring, and improving human–robot in-
teraction efficiency by adapting to user’s stress levels. In
this paper, we present a novel method for video-based re-
mote stress estimation and categorization, which involves
two separate experiments: one for stress task classifica-
tion and another for multilevel stress classification. The
method combines two deep learning approaches, the Com-
pact Convolutional Transformer (CCT) and Long Short-
Term Memory (LSTM), to form a CCT-LSTM pipeline. For
each modality (facial expression and rPPG), a CCT model
is used to extract features, followed by an LSTM block for
temporal pattern recognition. In stress task classification,
T1, T2, and T3 tasks from the UBFC-Phys dataset are used,
utilizing sevenfold cross-validation. The results indicated a
mean accuracy of 83.2% and an F1 score of 83.4%. For
multilevel stress classification, the control (lower stress)
and test (higher stress) groups from the same dataset were
used with fivefold cross-validation, achieving a mean accu-
racy of 80.5% and an F1 score of 80.3%. The results sug-
gest that our proposed model surpasses existing stress esti-
mation methods by effectively using multimodal deep learn-
ing and the CCT-LSTM pipeline for precise, non-invasive
stress detection and categorization, with applications in
health monitoring, safety, and interactive technologies.

1. Introduction
Stress, defined as physical, emotional, or mental tension

caused by significant environmental changes, has become
an integral part of modern living [18]. It can lead to chronic
physical and mental health issues, such as depression, anx-
iety, chronic fatigue syndrome, diabetes, and cardiovascu-
lar disease [1]. As reported by the American Psychological
Association, half of American adults have been negatively
affected by stress, indicating its pervasive influence [11].

Given the potential harm that stress can cause, early de-
tection and monitoring of stress are important in prevent-
ing short-term health issues from developing into long-term
conditions [10, 16]. Stress detection is crucial not only in
healthcare, but also in various fields such as monitoring the
state of the driver and human–robot interaction. In driver
state monitoring, the impact of cognitive stress on driving
performance and traffic safety can be evaluated and miti-
gated [2]. Similarly, in robotic systems, incorporating auto-
matic cognitive stress assessment in the feedback loop can
improve the system’s usability and efficiency by adapting
the robot’s behavior to the user’s cognitive state [25].

Three distinct methodologies exist in the field of stress
detection: questionnaires, behavioral analysis, and physio-
logical analysis. Traditionally, stress detection has relied
on subjective questionnaires and clinical interviews [17].
However, these conventional methods have limitations in
feasibility for continuous monitoring [17]. In stress esti-
mation, behavioral analysis is based on non-invasive in-
dicators such as facial expressions, head motion, and eye
gaze [24]. Still, the reliability is compromised, because
individuals can control these behaviors [29]. Conversely,
physiological signal analysis aims to capture stress markers
through a multitude of methods, including electrocardiog-
raphy (ECG), photoplethysmography (PPG), blood volume
pressure (BVP), electromyography (EMG), electrodermal
activity (EDA), respiratory measurements (RSP), and skin
temperature (SKT) evaluations [14]. Although these phys-
iological indicators can provide an in-depth understanding
of an individual’s physiological response to stress, they also
require direct physical contact, and often a specialized per-
son to install the sensor.

Over the last decade, significant advancements in remote
photoplethysmography (rPPG) [5, 7, 19, 26] have paved the
way for a noninvasive method of stress estimation. Sabour
et al. [22] made a significant contribution in this field by
creating the UBFC-Phys dataset following the Trier Social
Stress Test protocol and recording facial video, PPG, and
EDA signals. Their study involved three tasks: rest (T1),
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speech task (T2), and arithmetic task (T3). Additionally,
two groups of participants were subjected to these tasks,
which varied in difficulty and induced varying stress lev-
els. The control (ctrl) group faced easier tasks, whereas the
test group tackled more challenging tasks; the analysis re-
vealed that the latter experienced higher stress levels due to
increased task complexity. Sabour et al. applied machine
learning methods for both stress task (T1/T2/T3) and level
(ctrl and test groups) classification. In the case of stress
task classification, they achieved a satisfactory accuracy of
85.48% for binary classification tasks, but a notable decline
in performance, down to 63.09%, was observed when the
task was expanded to a three-class (T1 vs. T2 vs. T3)
task classification. In the context of stress level classifi-
cation, Sabour et al. focused solely on distinguishing be-
tween the control and test groups, achieving an accuracy
of 69.73%. However, no studies exploring multilevel stress
classification, such as differentiating among the T1 (relax),
control (lower stress), and test (higher stress) groups, have
yet been conducted. Further research has mainly concen-
trated on stress task classification. A recent study by Zhang
et al. [30], used contact-based PPG and EDA methods for
stress task classification, achieving a maximum accuracy of
81.8% in binary classification but experiencing a significant
decline to 55.8% in the three-class task classification (T1
vs. T2 vs. T3). These outcomes highlight the limitations
of current approaches in accurately classifying stress tasks
and levels when more than two categories are involved.

To overcome existing limitations, we introduced a novel,
comprehensive multimodal deep learning approach for re-
mote stress estimation using CCT-LSTM. The essence and
novelty of the proposed method are principally threefold:

1. Integration of techniques: The method integrates
two advanced deep learning techniques, Compact Con-
volutional Transformer (CCT) and Long Short-Term
Memory (LSTM), into a single CCT-LSTM pipeline
for remote stress estimation. This unique integration
combines the benefits of both techniques: CCT for ef-
ficient feature extraction and LSTM for temporal pat-
tern recognition, thus creating a more powerful and ac-
curate pipeline for stress estimation.

2. Bidirectional use of CCT-LSTM for multimodal-
ity: One novel aspect is the bidirectional use of the
CCT-LSTM framework to construct a multimodal sys-
tem. The framework uses CCT-LSTM in two direc-
tions: one for processing facial expressions based on
478 landmarks and another for handling rPPG signals
from video data. This two-directional approach im-
proves the multimodal nature of the system, making it
even more robust and accurate in remote stress estima-
tion.

3. Application to remote stress tasks: The CCT-LSTM

framework and preprocessing techniques are applied
to two specific tasks: remote stress task classification
and multilevel stress classification. This is a novel ap-
plication of these techniques and represents a signifi-
cant advancement in the field of remote stress monitor-
ing. The ability to determine not only whether some-
one is stressed but also the level of stress they are ex-
periencing is particularly novel and could have wide-
ranging applications in telemedicine, remote working,
and other fields.

2. Background
This section explains multilevel stress estimation using

remote and contact-based PPG and the essential concepts in
the research. Then, it discusses the role and significance of
Transformers in the field of computer vision. This includes
a comprehensive analysis of their inherent strengths and
limitations, along with a review of ongoing research aiming
to enhance their functionality. The final part of this section
describes the method used to convert time-series data into
images, which is a crucial step in analyzing time-series data
through computer vision.

2.1. Stress Estimation Using PPG/rPPG

Research in the area of stress estimation using rPPG and
heart rate variability (HRV) analysis has led to the develop-
ment of groundbreaking noninvasive techniques for stress
tracking. Bousefsaf et al. [3] proposed a new model that
uses facial videos of individuals to obtain rPPG signals
and HRV characteristics. They observed a close correla-
tion between signals such as the third-order derivative of
HRV, high-frequency (HF), and heart rate, once they were
smoothed and compared with EDA. Their study, which in-
volved 12 subjects, reported variances in the values ob-
tained in calm and stressful periods, supporting the idea
that BVP and EDA signals are associated with stress lev-
els. Furthering this idea, Mitsuhashi et al. [20] suggested
a means to assess four tiers of stress based on pulse rate
variability features, extracted from facial videos using the
rPPG method. They broke a new ground in using rPPG for
measuring multiple stress states and used a K-nearest neigh-
bors (KNN) model based on HRV indices such as Average
NN intervals (AVNN), the root mean square of successive
differences (RMSSD), the proportion of NN50 divided by
the total NNs (pNN50), and normalized low-frequency over
high-frequency ratio (nLF/HF). However, the obtained re-
sults indicated that the method could not achieve high accu-
racy, except for the relaxed state.

Sabour et al. [22] significantly contributed to remote
stress estimation by creating the first public dataset for mul-
tilevel social stress that includes facial video and biosignals:
the UBFC-Phys dataset. However, as described in the previ-
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Figure 1. Pipeline comparison of Vision Transformer (ViT) and Compact Convolutional Transformer (CCT) [15]

ous section, stress task and level classifications still remain
as challenging tasks.

While no recent attempts have been made in the multi-
level stress classification on the UBFC-Phys dataset, Zhang
et al. [30] conducted a study on stress task classification and
introduced a multimodal stress detection framework based
on a bidirectional cross and self-modal attention mecha-
nism. This model was designed to integrate two physiolog-
ical signals, BVP and EDA, while examining the temporal
relationship between them. To evaluate the efficacy of their
model in recognizing stress, Zhang et al. conducted com-
parative analyses with well-known neural networks special-
ized in stress detection using multimodal physiological sig-
nals, as well as several multimodal fusion models that use
attention mechanisms. These comparisons were based on
the UBFC-Phys dataset to categorize tasks into three levels:
(1) T1 vs. T2, (2) T1 vs. T3, and (3) T1 vs. T2 vs. T3.
The results of the sevenfold cross-validation indicated that
Zhang et al. ’s method achieved a mean accuracy of 81.8%
for T1 vs. T2, 73.3% for T1 vs. T3, and 55.8% for T1 vs.
T2 vs. T3.

2.2. Transformers in Computer Vision

Transformers, initially developed for natural language
processing (NLP) tasks [6], have recently been applied suc-
cessfully to computer vision problems. The Vision Trans-
former (ViT) [9], an adaptation of the original Transformer
model, treats an image as a sequence of pixels or patches,
similar to how a sentence is viewed as a sequence of words
in NLP. The strength of the Transformers in computer vi-
sion lies in its global self-attention mechanism. This mech-
anism allows each part of an image (patch) to interact with
all other parts, thereby capturing complex, long-range spa-

tial dependencies within the image. Despite its promising
results, Transformers have been criticized for their large
computational and data requirements, often requiring train-
ing on large-scale datasets [15]. Furthermore, their efficacy
with respect to temporal data is limited [23]. As such, while
they traditionally excel in identifying spatial relationships,
they often struggle to consistently recognize and analyze
patterns over time. Transformers, in their native configu-
ration, lack a built-in mechanism for temporal dependency,
causing them to underperform in tasks involving sequential
or time-series data. This constraint is due to the nonrecur-
rent nature of Transformers, making it difficult to maintain
and understand the temporal continuity and causality inher-
ently present in time-series data. The lack of a native tem-
poral dimension understanding in the Transformer architec-
ture is indeed a critical limitation when applied to problems
where time-dependent correlations are important.

2.3. Compact Convolutional Transformer

The CCT [15] was developed to address the challenges
of high computational cost and requirement of massive data
that come with the ViT. The CCT offers a unique solu-
tion by integrating the global receptive field of Transform-
ers and the local receptive field of convolutional neural net-
works (CNNs). As illustrated in Figure 1, the CCT bypasses
the need for class tokens and positional embedding by im-
plementing an innovative sequence pooling approach and
utilizing convolutions. The model uses convolutional tok-
enization to process images as token sequences, which al-
lows for efficient performance even with smaller datasets.
The CCT applies an inductive bias through convolutional
layers to minimize its dependence on positional embedding.
The flexibility of the model allows it to adjust its size, capa-
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ble of functioning with as few as 0.28M parameters, while
still delivering high-quality results. Impressively, Hassani
et al. [15] has demonstrated that the CCT outperforms the
ViT in terms of accuracy on widely recognized computer vi-
sion benchmarks such as CIFAR-10 and ImageNet, all the
while maintaining a lower computational cost.

2.4. Time-Series Data to Image Conversion

The Markov transition field (MTF) [27] is a method for
representing time series data as an image-like structure,
making it possible to analyze it using computer vision pi-
oneers such as ViT or CCT. MTF works by calculating the
transition probabilities between different states in the time
series and organizing them in a 2D grid, resulting in an im-
age that represents the transitions. Each pixel in the im-
age represents the transition probability from one state to
another. In this way, MTF captures both the temporal de-
pendencies and value distribution characteristics of a time
series. For a time-series such as X = {x1, x2, · · · , xn},
the values can be quantized in Q bins, and each xi can be
allocated to a related qj(j ∈ [1, Q]). By calculating the
transitions among bins in the way of a first-order Markov
chain along each time step, a matrix W of Q × Q size is
obtained. Its expression is as follows:

W =


w11 w12 · · · w1Q

w21 w22 · · · w2Q

...
...

. . .
...

wQ1 wQ2 · · · wQQ

 (1)

wij = p {xt ∈ qi | xt−1 ∈ qj} (2)

where wij denotes the probability that an element in
qj is followed by an element in qi. After normalization by∑Q

j=1 wij = 1, W is considered to be the Markov transi-
tion matrix. Because W is not sensitive to the distribution
of X and time dependency, in order to reduce the loss of
information, the Mij in the MTF is defined as follows:

M=


wij | x1 ∈ qi, x1 ∈ qj · · · wij | x1 ∈ qi, xn ∈ qj
wij | x2 ∈ qi, x1 ∈ qj · · · wij | x2 ∈ qi, xn ∈ qj

...
. . .

...
wij | xn ∈ qi, x1 ∈ qj · · · wij | xn ∈ qi, xn ∈ qj

 (3)

3. Our Proposed Framework
This study proposes a novel, multimodal deep learning

framework specifically designed for remote stress estima-
tion. We use a combination of facial expressions, using 478
distinctive landmarks, and rPPG signal extracted from video
data based on the UBFC-Phys dataset [22]. As presented
in Figure 2, the operational framework of our method is
organized into a CCT-LSTM pipeline which combines the
power of two profound deep learning methods: the CCT
and LSTM.

3.1. Feature Extraction Using Compact Convolu-
tional Transformer

The initial phase of our methodology involves the use of
CCT. CCT is a deep learning method selected for its effi-
ciency in extracting significant features from the datasets.
As presented in Figure 2, this method serves a dual purpose
in this study, aiding in the extraction of relevant features
from both the 478 facial landmarks and the rPPG signal.
Owing to its convolutional design, the CCT is inherently
capable of effectively handling spatial information, which is
particularly crucial when processing facial landmarks. Fur-
thermore, the transformer component of the CCT aids in
managing the intricate relationships between various fea-
tures.

3.2. Temporal Pattern Recognition Using Long
Short-Term Memory

Upon the completion of feature extraction, our method
progresses to the phase of temporal pattern recognition, fa-
cilitated by LSTM. LSTM forms a class of recurrent neural
networks, which have demonstrated superior capability in
identifying patterns over time-series data. Given the tempo-
ral nature of stress markers and rPPG signal, the application
of LSTM in stress estimation is particularly relevant. The
LSTM aids in accurately capturing and interpreting the tem-
poral patterns presented by the signal.

3.3. CCT-LSTM Pipeline

The CCT and LSTM form a unified pipeline, central
to our methodology, which harnesses the benefits of both
methods. As presented in Figure 2, the pipeline begins with
the CCT processing of facial landmarks and rPPG signal to
extract relevant features. Following this, the LSTM takes
over to analyze the temporal patterns embedded within
these features. This step-by-step progression ensures a
comprehensive analysis of the two modalities, resulting in a
more accurate and reliable stress estimation.

4. Method

4.1. Dataset

The UBFC-Phys dataset [22] was specifically created for
psycho-physiological research and was collected from 56
subjects, with 30 of them in the control group and 26 in the
test group. These subjects were exposed to three different
tasks designed to induce varying stress levels: a relaxation
mode (T1), a speech task (T2), and an arithmetic task (T3),
each lasting for 3 min. The subjects were systematically di-
vided into two groups: the control group and the test group.
The control group was given less challenging tasks, whereas
the test group faced more demanding tasks, serving to dif-
ferentiate the stress levels induced in each group.
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Figure 2. Schematic diagram of the proposed CCT-LSTM multimodal deep learning

4.2. Data Preprocessing for Facial Expression

To extract facial landmarks, we used the MediaPipe Face
Landmarker [12], which is capable of identifying and dis-
tinguishing 478 landmarks. This method generates three-
dimensional, normalized facial landmarks in the form of x,
y, and z coordinates.

A window size of 60 s is applied with an overlapping
moving interval of 5 s, then 478 landmarks are obtained
from each frame in the window block. Following the land-
mark detection in the window block, a three-dimensional
array is procured for each discrete window block. As pre-
sented in Figure 3, the three dimensions of this array corre-
spond to the total number of frames (60 s × 35 fps), number
of landmarks (478), and coordinates (3).

In the next step, the obtained array is decomposed to
each coordinate to form three arrays with the shape of (to-
tal number of frames, number of landmarks). Next, to
effectively compress the first dimension (total number of
frames), a principal component analysis is employed for
each coordinate to form a singular component array with
the form of (1, number of landmarks). Following this step,
we constructed an image representation using the MTF for
each dimension.

As there are three dimensions, these are respectively as-
signed to the three color channels of an RGB image rep-
resentation. This method thus permits the generation of a
comprehensive and detailed image representation of facial
landmarks while preserving the key characteristics and fea-
tures of the original data.

4.3. Data Preprocessing for rPPG

The rPPG extraction method in our work is based on
Face2PPG [4], which has three extraction processes: Rigid
Mesh Normalization, Dynamic Selection of Facial Regions,
and RGB to rPPG Conversion using Orthogonal Matrix
Image Transformation (OMIT). Rigid Mesh Normalization

Figure 3. Data preprocessing for facial expression

stabilizes the detected face by normalizing the facial mesh,
ensuring consistent signal extraction from the same facial
location regardless of the pose or movement. Dynamic Se-
lection of Facial Regions uses statistical and fractal analy-
ses to dynamically select the facial regions that provide the
best raw signal, discarding noisy or artifact-prone regions.
RGB to rPPG Conversion using OMIT is a novel conver-
sion method based on QR decomposition, which increases
the robustness of signal extraction against compression ar-
tifacts.

In parallel to the data preprocessing applied for facial
expression analysis, a temporal window size of 60 s, with
an overlapping interval of 5 s, was used for the extraction
of the rPPG signal. Following this extraction process, an
image representation was created for each window block
using MTF.

4.4. Model Validation

For the purposes of our experiments, we adopted two ap-
proaches:

1. Stress task classification (T1, T2, and T3)

2. Multilevel stress classification (T1, T3-test, and T3-
ctrl)

In the first experiment, we employed sevenfold cross-
validation. Then, 56 subjects were randomly divided into
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7 subsets: 6 subsets were used for training, and the remain-
ing 1 subset was used for testing the performance of the
model. For the second experiment, we chose to focus solely
on the arithmetic task (T3) as it was considered as the most
challenging task among the three, thus likely to induce the
highest level of stress. Our experiment aimed to classify
stress into three levels: stress experienced in T3-ctrl group
(lower stress), T3-test group (high stress), and relaxation
task (T1). Due to the imbalanced number of subjects in the
control and test groups, we used a stratified fivefold cross-
validation approach to maintain the ratio while splitting the
test and control groups into five separate subsets. In this
case, four subsets were used as the training set to train the
model, and the remaining one subset was used as the testing
set to evaluate the performance of the model.

For both experiments, we trained the CCT individually
for each modality (CCT-rPPG and CCT-Facial Landmark)
without LSTM for 100 epochs to demonstrate the maxi-
mum precision achievable using CCT for each individual
modality. Next, to investigate the performance of integrat-
ing the two modalities to form a CCT-LSTM multimodal
deep learning architecture, we used the best epoch weights
from each modality to initialize our multimodal framework
and train for 100 epochs. All these steps were performed for
every individual fold to ensure that the test data remained
unseen by the models.

5. Results and Discussion
We presented a novel, multimodal deep learning method

for remote stress estimation, which combines two modali-
ties (1) facial expression based on 478 landmarks and (2)
rPPG signals derived from video data.

In our first experiment, we focused on the classification
of stress tasks T1, T2, and T3. For this purpose, we ran-
domly divided 56 subjects into 7 subsets. Six of these sub-
sets served as the training set, whereas the remaining sub-
set was used for testing our model’s performance. As dis-
cussed in the previous section first we trained a CCT for
each individual modality, and then we trained our multi-
modal CCT-LSTM pipeline over 100 epochs for different
task combinations: T1 vs. T2, T1 vs. T3, and T1 vs. T2
vs. T3. Table 1 reports our stress task classification results
in comparison to the methodologies that Zhang et al. used
for their comparative study. These methodologies include
(1) MLP [8], which utilizes two fully connected layers to
extract features from PPG and EDA data and then com-
bines these features for stress classification using an addi-
tional four fully connected layers; (2) LIT [8], which uses
two CNN layers for PPG feature encoding and two CNN
plus two LSTM layers for EDA feature extraction, followed
by classification through three CNN and four fully con-
nected layers; (3) DFAF [13], which uses both inter and
intramodal attention mechanisms to exchange and match

information within and between modalities, subsequently
averaging and fusing these joint representations; (4) CAM
[21], which applies cross-modal attention to establish cor-
relations between modalities and then fuses these for clas-
sification; and (5) MFN [28], which uses self-attention to
encode unimodal features before combining them for stress
detection. As presented in Table 1, the obtained results indi-
cate that our multimodal CCT-LSTM outperforms all other
state-of-the-art methods in binary and three-class task clas-
sification including the proposed methods by Sabour et al.
and Zhang et al.

Our second experiment focused on multilevel stress clas-
sification. Due to the unequal number of participants in the
control and test groups, we used a stratified fivefold cross-
validation method to divide the test and control groups into
five subsets. Four subsets were used for training, and the
remaining one for testing. We trained the CCT model in-
dividually for each modality; facial expression and rPPG
without using LSTM, for 100 epochs. The objective was to
determine the highest precision achievable by CCT for each
modality individually. As presented in Table 2, across the
folds, the mean accuracy was 60.6% for rPPG and 62.0%
for the facial expression CCT model. These outcomes in-
dicated that the use of each modality in isolation is not a
reliable indicator of stress levels. Contrarily, our multi-
modal CCT-LSTM pipeline showed a significant increase
in performance, achieving an average accuracy of 80.5%
and an average F1 score of 80.4%. The considerable im-
provement in these metrics underscores the strength of a
multimodal approach and the combined application of CCT
and LSTM for stress estimation. Our proposed framework
demonstrated superior performance over all methods used
in [22] for stress estimation, highlighting the potential ad-
vantages of using an integrated multimodal approach in this
domain.

Subsequently, as detailed in Table 3, the mean values of
precision, recall, and F1 score were determined by aver-
aging across all five folds of the cross-validation process.
This calculation was performed for each class, namely T1
(Rest), T3-ctrl (lower stress), and T3-test (higher stress). As
presented in Table 3, among these classes, T3-ctrl outper-
formed the others by achieving the highest mean precision
and F1 score, with values of 0.872 and 0.839 respectively.
Alternatively, the T3-test class had the lowest mean scores
for these metrics, registering a mean precision of 0.746 and
an F1 score of 0.761.

In Table 4, the mean values of Precision, Recall, and F1
score across five different folds for each class are presented,
and calculated using our multimodal CCT-LSTM for mul-
tilevel stress classification. A close examination of Table
4 shows that the highest F1 score is observed in the fourth
fold, registering a remarkable 98.6%, whereas the fifth fold
exhibits the lowest F1 score, at 72.0%. The exceptionally
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Table 1. Experiment 1, stress task classification: Comparative experimental results between our method and other state-of-the-art methods
on the UBFC-Phys dataset for stress task classification. The values in the table are the mean values (± standard deviations) of the sevenfold
cross-validation, and the best results are in bold.

Methods T1 vs. T2 T1 vs. T3 T1 vs. T2 vs. T3

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

MLP [8] 0.709(±0.061) 0.706(±0.064) 0.599(±0.040) 0.587(±0.037) 0.440(±0.028) 0.434(±0.031)
LIT [8] 0.701(±0.063) 0.699(±0.066) 0.625(±0.024) 0.622(±0.025) 0.447(±0.027) 0.443(±0.031)
DFAF [13] 0.758(±0.035) 0.756(±0.035) 0.689(±0.042) 0.686(±0.043) 0.478(±0.034) 0.477(±0.036)
CAM [21] 0.726(±0.060) 0.722(±0.063) 0.650(±0.052) 0.645(±0.054) 0.494(±0.028) 0.487(±0.033)
MFN [28] 0.769(±0.035) 0.768(±0.035) 0.666(±0.071) 0.664(±0.071) 0.501(±0.038) 0.490(±0.043)
BCSA [30] 0.818(±0.063) 0.817(±0.063) 0.723(±0.039) 0.722(±0.039) 0.558(±0.052) 0.560(±0.051)
CCT-rPPG (Ours) 0.804(±0.043) 0.803(±0.043) 0.766(±0.037) 0.765(±0.055) 0.592(±0.042) 0.568(±0.051)
CCT-Facial Landmark (Ours) 0.965(±0.016) 0.965(±0.016) 0.865(±0.041) 0.865(±0.042) 0.755(±0.048) 0.749(±0.048)
Multimodal CCT-LSTM (Ours) 0.981(±0.016) 0.981(±0.016) 0.924(±0.037) 0.924(±0.037) 0.832(±0.058) 0.834(±0.056)

Table 2. Experiment 2, multilevel stress classification: The ex-
perimental results of our proposed method on the UBFC-Phys
dataset for multilevel stress classification. The values in the table
are the mean values (± standard deviations) of the fivefold cross-
validation, and the best results are in bold.

Methods T1 vs. T3 ctrl vs. T3 test

Accuracy F1 Score

CCT-rPPG 0.606(±0.041) 0.605(±0.042)
CCT-Facial Landmark 0.620(±0.100) 0.611(±0.103)
Multimodal CCT-LSTM 0.805(±0.094) 0.803(±0.095)

Table 3. Multimodal CCT-LSTM evaluation metrics for multilevel
stress classification. The values in the table are the mean values.
(± standard deviations) of the fivefold cross-validation.

Class Precision Recall F1 score

T1 0.827(±0.131) 0.800(±0.116) 0.809(±0.109)
T3 ctrl 0.872(±0.989) 0.819(±0.127) 0.839(±0.094)
T3 test 0.746(±0.118) 0.807(±0.177) 0.761(±0.119)

high F1 score achieved in the fourth fold indicates of the
robust capabilities of our multimodal CCT-LSTM model.
However, the variation in F1 score across the different folds
suggests that the dataset may not have a sufficient number
of samples, which could be a potential limitation affecting
the performance of the model.

6. Conclusion

Stress is a widespread concern in modern society, with
the potential to cause serious long-term physical and men-
tal health complications. The importance of stress detection
extends beyond healthcare to include areas such as moni-
toring driver conditions and human–robot interaction. De-
spite its importance, a high-accuracy method for stress task

Table 4. Multimodal CCT-LSTM k-fold cross-validation results
for multilevel stress classification. The best fold results are in bold.

K-folds Performance Metrics

Accuracy Precision Recall F1 score

Fold-1 0.776 0.779 0.776 0.762
Fold-2 0.746 0.757 0.749 0.749
Fold-3 0.800 0.834 0.809 0.802
Fold-4 0.986 0.985 0.987 0.985
Fold-5 0.720 0.721 0.723 0.719

5-Fold Mean 0.805 0.815 0.809 0.803

and level classifications still remains a considerable chal-
lenge. To address this, we have introduced a multimodal
deep learning approach for remote stress estimation, using
the CCT-LSTM model.

This study highlights the potential of multimodal deep
learning by presenting a novel CCT-LSTM model that in-
tegrates facial expressions and rPPG for stress level estima-
tion, achieving state-of-the-art results in both stress task and
level classifications. The first experiment set new bench-
marks in binary and multiclass stress task classification,
outperforming competing methods. The second experi-
ment for multilevel stress classification showed significant
improvement using the multimodal CCT-LSTM pipeline,
achieving an average accuracy of 80.5% and an F1 score
of 80.4% across fivefold cross-validation, compared with
moderate accuracy using standalone modalities. However,
the variation in F1 scores across different folds indicates the
need for a more extensive dataset. The model outperformed
prior attempts on the UBFC-Phys dataset, setting a new per-
formance benchmark for remote stress task and level classi-
fications. This highlights the potential of multimodal deep
learning and the CCT-LSTM model for remote noninva-
sive stress detection, with significant implications for health
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monitoring and human–robot interaction efficiency.
In the future, we plan to further different aspects of our

research. This includes an in-depth analysis of specific hy-
perparameters such as window size and moving interval
during the data preprocessing stage. We also aim to inves-
tigate alternative techniques for converting time-series data
into images. These efforts will help us refine our method-
ologies and potentially enhance the accuracy of our stress
detection model.
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